
Picoblaze_GCD

GCD on Picoblaze

Implementation, Simulation, and Synthesis

Files and Instances for synthesis

FPGA Artix 7 ee354_GCD_picoblaze_top.v module ee354_GCD_top

Standard two instances of the picoblaze processor

picoblaze

processor

kcpsm6.v

module

kcpsm6

Instance name

processor

Program memory

BRAM

prom_gcd.v

produced from

prom_gcd.psm

module

prom_gcd

Instance name

program_rom

address[11:0]

instruction[17:0]

In
p

u
t

p
o

rt
s

 r
e

la
te

d
 f

a
b

ri
c

 l
o

g
ic

O
u

tp
u

t
p

o
rt

s
 r

e
la

te
d

 f
a

b
ri

c
 l
o

g
ic

 a
n

d

s
ta

n
d

a
rd

 S
S

D
 s

c
a

n
n

in
g

 l
o

g
ic

gcd_picoblaze.xdc

FSM in

Assembly

● We need to program

each state separately

in assembly

● Start, Step and Ack

are the external

Control signals used

here to exercise

sequencing control.

FSM in

Assembly

Each if/else represents a jump

(conditional/unconditional)

The Carry (C) and the Zero (Z) flags

It is important to understand how the Arithmetic, Logical, Test, and
Compare instructions change the Carry (C) and the Zero (Z) flags and
further how the conditional jumps, conditional calls, and conditional
returns utilize the Carry (C) and the Zero (Z) flags.

Carry, Borrow, and Odd Parity

Even though the name of the flag is “Carry”, its meaning changes depending on the context.

Logical operations (AND, OR, and XOR) will reset the carry to zero.
The ADD operation will set the carry if the out-going carry C8 is true (otherwise will reset it).

The COMPARE operation performs comparison by performing subtraction. The COMPARE and
SUBtract operations will set the carry if the subtrahend is bigger (otherwise will reset the carry).
So the carry flag can be viewed as representing
the out-going borrow in subtraction.

In the case of TEST instructions, AND operation is performed to see if the result is zero or if the
result has odd number of 1’s as indicated by the carry flag. So the carry flag can be viewed as an
Odd Parity of the result 8 bits in the case of the TEST (and an Odd Parity of the result 8 bits plus
one incoming carry bit in the case of the TESTCY).

Top design - fabric logic to interface with the

PicoBlaze Processor

● How is our top design interfacing with the picoblaze processor through the

INPUT and OUTPUT instructions? Let’s consider the INPUT instruction.

INPUT sX, pp

“pp” is the 8-bit port address in hex that the processor will output on port_id

sX is one of the 16 8-bit registers (s0 through sf) inside the processor that will

store the data coming through in_port[7:0]

In this lab, the processor informs the fabric logic

“in which state it is currently at (Init, Sub, Mult,

Done)” using the OUTPUTK instruction.

Possible to do so in two ways:

using OUTPUT sX, pp or using OUPUTK kk, p

Suppose constant 02 (kk = 02) needs to conveyed to the output port 01 (pp = 01)

LOAD s5, 02 ;

OUTPUT s5, 01

OUTPUTK 02, 01

; extract from our .psm file

state_initial: OUTPUTK 00000001'b, Current_State ; Indicating Current State as Initial State

out_port interface

● We have two output instructions available to us, OUTPUT and OUTPUTK

The regular OUTPUT instruction lets us output the 8-bit data of a register:

OUTPUT sX, pp

sX is the register containing the data we are outputting, pp is the 8-bit

address we output on port_id, write_strobe signal goes active.

The OUTPUTK instruction lets us output an 8-bit constant:

OUTPUTK kk, p

“kk” is the 8-bit constant we are outputting, p is the 4-bit address we output on

port_id , k_write_strobe signal goes active.

Comparison of interface between top and the
core designs in the case of the two designs

Top design without any Picoblaze

Core design

Hardware
-based

Ain

Bin

Start/Ack (BtnL)

Step (BtnU)

A

B

GCD

I_count

State

Top design with core implemented in Picoblaze

Core design

Picoblaze
-based

Ain

Bin

A

B

GCD

I_count

State

6’b000000

port_id

in_port out_port

SSD Display

After completing your .psm

file and TOP Verilog file,

synthesize the top,

download the .bit file and

test.

You should be able to

replicate the steps on the

side reproduced from your

ee354_GCD_rev5.pdf

5.1 Demonstrate to your TA/Mentor

Submit files on Unix as per the following posting on the Bb on the next page

5.2 Blackboard posting and Files for submission
Picoblaze_GCD
Using your experience with your previous assignment, where you designed, simulated, and implemented a Picoblaze-based 8-bit

divider, here you will complete a Picoblaze-based GCD finder. You have completed already your gcd_verilog lab (non-picoblaze lab,

involving designing the GCD RTL state machine in Verilog).

Directory: https://ece-classes.usc.edu/ee254/ee254l_lab_manual/PicoBlaze/Picoblaze_GCD

Assignment pdf: Picoblaze_GCD_handout.pdf

Videos (to be added next semester)

A .zip file to be downloaded and extracted into C:\Xilinx_projects:

An incomplete 8-bit divider design: Picoblaze_GCD.zip

The zip file contains a TA’s completed .bit file (with dot points glowing on SSDs).

General reference: PicoBlaze/Picoblaze_Design_Steps_Demo_README_r1.pdf

Please demonstrate your completed Picoblaze_GCD design to your TA.

Submit your files to the class Unix account ee201@viterbi-scf1.usc.edu or ee201@viterbi-scf2.usc.edu using the following submit command

submit -user ee201 -tag Picoblaze_GCD ee354_GCD_picoblaze_top.v prom_gcd.psm names.txt

https://ece-classes.usc.edu/ee254/ee254l_lab_manual/PicoBlaze/Picoblaze_GCD
https://ece-classes.usc.edu/ee254/ee254l_lab_manual/PicoBlaze/Picoblaze_GCD/Picoblaze_GCD_handout.pdf
https://ece-classes.usc.edu/ee254/ee254l_lab_manual/PicoBlaze/Picoblaze_GCD/Picoblaze_GCD.zip
https://viterbi-web.usc.edu/www-classes/engr/ee-s/254/ee254l_lab_manual/PicoBlaze/Picoblaze_Design_Steps_Demo_README_r1.pdf

	Slide 1: Picoblaze_GCD GCD on Picoblaze
	Slide 2
	Slide 5: FSM in Assembly
	Slide 6: FSM in Assembly
	Slide 7: The Carry (C) and the Zero (Z) flags
	Slide 8: Carry, Borrow, and Odd Parity
	Slide 9: Top design - fabric logic to interface with the PicoBlaze Processor
	Slide 10: In this lab, the processor informs the fabric logic “in which state it is currently at (Init, Sub, Mult, Done)” using the OUTPUTK instruction. Possible to do so in two ways: using OUTPUT sX, pp or using OUPUTK kk, p Suppose constant 02 (kk
	Slide 11: out_port interface
	Slide 12: Comparison of interface between top and the core designs in the case of the two designs
	Slide 13
	Slide 14: SSD Display
	Slide 15: After completing your .psm file and TOP Verilog file, synthesize the top, download the .bit file and test. You should be able to replicate the steps on the side reproduced from your ee354_GCD_rev5.pdf
	Slide 16: 5.1 Demonstrate to your TA/Mentor
	Slide 17: 5.2 Blackboard posting and Files for submission

