Picoblaze GCD

GCD on Picoblaze

Implementation, Simulation, and Synthesis

Files and Instances [ONSYRINESIS gamsesmEaxe:

FPGA Artix 7 ee354 GCD_picoblaze top.v module ee354 GCD top \
%3'1(' HEps
BINL E -
-t
Butt: . . I
i b ol o Standard two instances of the picoblaze processor o
BTNU o)) o)
Emb iS oL
o © Instance name Instance name o3
S processor program_rom 25
£ S <
mn) ks processor BRAM © S J
e | 2 kcpsm6.v prom_gcd.v 22 —ﬁ:AnJ
I_oswar-o— © instruction[17:0]| produced from 2 %) £an
r o module * prom_gcd.psm S - ll_";l"_':"
o = kcpsm6 53 I=1 I 2L
SWE —o— g' mOdUIe 8 c
[SWrso- prom_gcd o =
A

FSM In
Assembly

We need to program
each state separately
in assembly

Start, Step and Ack
are the external
Control signals used
here to exercise
sequencing control.

SINGLE-STEP

S

q:\ e

~

[

o

: 0

v thy £

Bmda\\iﬁR
BtnC

BtnD RESET

:t
c

e

m
=
=3
=
~

" Binary GCD STATE DIAGRAM

START’

RESET’

FSM In

/" Binary GCD STATE DIAGRAM)
ASSGm bly RESET' START (a=by - (i=1)
MULT
. SUB d<=d*2

(a=b).(i=0) i<=i-1

if (a0.b0) then a <= (a-b (i=1)

elsif (a0’.b0’) then
i<=i+1,a<=a/2,b<=b2
Each if/else represents a jumg s

(conditional/unconditional) if (a0’) then a <= a/2

if (b0') then b <=b/2 |

\ CK’
ACK

The Carry (C) and the Zero (Z) flags

Logical
56 Ei"ii B S e It is important to understand how the Arithmetic, Logical, Test, and
o7 0dxy0 OR sX, s¥ Compare instructions change the Carry (C) and the Zero (2Z) flags and
57 O5xkk OR sX, kk further how the conditional jumps, conditional calls, and conditional

oati or X, bk returns utilize the Carry (C) and the Zero (Z) flags.

-

32000 RETUEN C

Page 54 3p0on RETURN NC

Arithmetic Jump
50 10xy0 ADD sX, sY 87 22aaa JUMP aaag
59 1lxkk ADD =X, kk 88 3Zaaa JUMP Z, aaa
60 12xy0 ADDCY sX, sY 22 36aaa JUMP NZ, aaa
60 13xkk ADDCY s¥, kk 3Raaa JUMP C, aaa
61 18xy0 SUB sX, sY i 3Eaaa JUMP NC, aaa
£1 19xkk SUB sX, kk 89 26xy0 JUMPE (53X, sY)
62 1Axy0 SUBCY sX, sY .
2 1Bxkk SURCY sX, kk Subroutines

Test and Compare 97 20aaa CALL aaa
63 0Cxy0 TEST sX, sY 93 igaaa Ciii iz aaa
63 ODxkk TEST sX, kk 38222 EALL c.'aZT
64 OExy0 TESTCY sX, sY 4 3Caaa CALL NC, aaa
64 OFxkk TESTCY sX, kk f 24%y0 CALLE (sX, sY)
65 1Cxy0 COMPARE sX, sY “o 25000 RETURN
£5 1Dxkk COMBARE sX, kk i 31000 RETURN 2
66 1Exy0 COMPARECY sX, sY i 35000 RETURN N7
66 1Fxkk COMPARECY sX, kk .

-

Carry, Borrow, and Odd Parity

Even though the name of the flag is “Carry”, its meaning changes depending on the context.

Logical operations (AND, OR, and XOR) will reset the carry to zero.
The ADD operation will set the carry if the out-going carry C8 is true (otherwise will reset it).

The COMPARE operation performs comparison by performing subtraction. The COMPARE and
SUBtract operations will set the carry if the subtrahend is bigger (otherwise will reset the carry).
So the carry flag can be viewed as representing

the out-going borrow in subtraction.

In the case of TEST instructions, AND operation is performed to see if the result is zero or if the
result has odd number of 1’s as indicated by the carry flag. So the carry flag can be viewed as an
Odd Parity of the result 8 bits in the case of the TEST (and an Odd Parity of the result 8 bits plus
one incoming carry bit in the case of the TESTCY).

Top design - fabric logic to interface with the
PicoBlaze Processor

e How is our top design interfacing with the picoblaze processor through the
INPUT and OUTPUT instructions? Let’s consider the INPUT instruction.

INPUT sX, pp
“pp” is the 8-bit port address in hex that the processor will output on port_id

sX is one of the 16 8-bit registers (sO through sf) inside the processor that will
store the data coming through in_port[7:0]

In this lab, the processor informs the fabric logic
“in which state it is currently at (Init, Sub, Mult,
Done)” using the OUTPUTK instruction.

Possible to do so in two ways:
using OUTPUT sX, pp or using OUPUTK Kk, p

Suppose constant 02 (kk = 02) needs to conveyed to the output port 01 (pp = 01)

LOAD s5, 02 ; QUIREINK 02, 01
OUTPUT s5, 01

; extract from our .psm file
state_initial: OUTPUTK 00000001'b, Current_State ; Indicating Current State as Initial State

out_port interface

e \We have two output instructions available to us, OUTPUT and OUTPUTK
The regular OUTPUT instruction lets us output the 8-bit data of a register:
OUTPUT sX, pp

sX is the register containing the data we are outputting, pp is the 8-bit
address we output on port_id, write_strobe signal goes active.

The OUTPUTK instruction lets us output an 8-bit constant:

OUTPUTK Kk, p

‘kk” is the 8-bit constant we are outputting, p is the 4-bit address we output on
port id, k write_strobe signal goes active.

Comparison of interface between top and the
core designs in the case of the two designs

Top design without any Picoblaze

Ain
= A
- Core design
B
Hardware GCD
-based | t
Start/Ack (thL) _coun
Step (BtnU) 3 State

Top design with core implemented in Picoblaze

port_id
. A
Core design
B
Picoblaze GCD
-based ID['—D |_count
) State

This design has been used to evaluate the maximum clock rates that
can be achieved for a variety of device types and spesd grades._..

Spartan-6: (-1L) ~82MH=z | (-2} ~105MH=z | {-3) ~136MH=z
General Purpose 1/O Ports Viriex 6 . | (2)-23eMiz
Himtex-7- (-1} ~185MH= | | (-2} ~22BEMH=
Wirtex-7: | | (-3) ~232MH=
Inpart Ports
A = PORT OO
E = PORT 01 kcpsmé vour program
C = DPORT 02 [17:00 . . o 5
D = PORT O3 imstrauction bram s=nable mnall e instruction
- \(_\ addres=s [addiress —dl
D e 11 —> ek
[
c 4 [0 . [0
B I E nr.l:_i_tc_:ltl:uhc
L 4 *— ™ CE
read strobe — (5]
L D el =
E write strobe —
[Fm _> = PORT OB
port_id -
__________________________________ o Y <=
- —-"II D k3
inte=rrapt imterrupt ack —
F _>‘ = PORT 04
F =leep
e cE
res=t
1]
LS R - I
—r =1k
_> = PORT O2Z
1 cE
This diagram repressnis omne possible amangement im which KCPSMGE can be used to service 4 input ports E—_,J'I n]] W
and 4 general purpose output ports. Each port is up to 8-bits and could be connected directly to pins on the I _
device package or may connect to some of your other logic within the device. All KCPSME designs build on = FORT 01

wvariations of this fundamental arrangement. Suitable PSM code for this circuit is shown on page 51.

e
Fage 72 © Copyright 2010-2014 Xilinx £ XILINX.

SSD Display

duringqi | AIN[7:4] AIN[3:0] Bin[7:4] Bin[3:0]

duingqsubl A[7:4] A[3:0] B[7:4] B[3:0]

cring A muK GCE[74]_GCO[E:0] |_count7 4] _coun(3 0]

. ™

AN3 AN2 AN1 ANO

1. on reset 00 00 Ain, Bin
2. set sw[7:0]= 00111100
and press BtnR (in AB pulse) 3 C 0 0 Ain, Bin

After completing your .pSm 5. <cc cui7:00- c1010500
file and TOP Verilog file, Jntil now we are in @I state and L0 is on. Observe

that we now move to g_sub state and the LD6 glows.

SyntheSIZe the tOp, 4. press BtnL (start ack)

. . to start 3C 54 A, B
download the blt flle and 5. press BtnU to single-step 54 3 C A, B swapped
6. press BtnU to single-step 2A 1E 2, B halved, 1 =
tEBE;t_ 7. press BtnU to single-step 15 0F 2, B halved, 1 =
8. press BtnU to single-step 06 0F A-B, B
9. press BtnU to single-step 0OF 06 A, B swapped
10. press BtnU to single-step 0OF 03 &, B/Z
\(()Lj E;r]()l]l(j t)EB Eit)lea t() 11. press BtnlU to single-step 0C 03 A-B, B
. 12. press BtnU to single-step 06 03 A/Z, B
rephcate the StepS on the 13. press BtnU to single-step 03 03 &a/2, B

Until now we are in q_sub state and LD6 is on.

S|de reprOduced from your Observe that we now move to g mult state and the LD5 glows.

14, press BtnU to single-step 03 02 GCD, i count
66354 GCD rev5pdf 15. press BtnU to single-step 06 01 GCD, i _count
— — Until now we are in g mult state and LD5 is on.

Observe that we now move to g done state and the LD4 glows.

l6. press BtnU to single-step 0Cc 00 GCD, i count

17. press BtnU to single-step <= nothing new happens as
the state machine is waiting for ACK.

18. press BtnlL (start ack)
to ACK 3C 54 Ain, Bin

Now we are back in g i state and LD7 glows.

5.1 Demonstrate to your TA/Mentor

Submit files on Unix as per the following posting on the Bb on the next page

5.2 Blackboard posting and Files for submission
Picoblaze GCD

Using your experience with your previous assignment, where you designed, simulated, and implemented a Picoblaze-based 8-bit
divider, here you will complete a Picoblaze-based GCD finder. You have completed already your gcd_verilog lab (non-picoblaze lab,
involving designing the GCD RTL state machine in Verilog).

Directory: https://ece-classes.usc.edu/ee254/ee254| lab_manual/PicoBlaze/Picoblaze GCD

Assignment pdf: Picoblaze GCD handout.pdf
Videos (to be added next semester)

A .zip file to be downloaded and extracted into C:\Xilinx_projects:
An incomplete 8-bit divider design: Picoblaze GCD.zip
The zip file contains a TA’s completed .bit file (with dot points glowing on SSDs).

General reference: PicoBlaze/Picoblaze Design Steps Demo README rl.pdf

Please demonstrate your completed Picoblaze_GCD design to your TA.
Submit your files to the class Unix account ee201@viterbi-scfl.usc.edu or ee201@viterbi-scf2.usc.edu using the following submit command

submit -user ee20l -tag Picoblaze GCD ee354 GCD picoblaze top.v prom gcd.psm names.txt

https://ece-classes.usc.edu/ee254/ee254l_lab_manual/PicoBlaze/Picoblaze_GCD
https://ece-classes.usc.edu/ee254/ee254l_lab_manual/PicoBlaze/Picoblaze_GCD/Picoblaze_GCD_handout.pdf
https://ece-classes.usc.edu/ee254/ee254l_lab_manual/PicoBlaze/Picoblaze_GCD/Picoblaze_GCD.zip
https://viterbi-web.usc.edu/www-classes/engr/ee-s/254/ee254l_lab_manual/PicoBlaze/Picoblaze_Design_Steps_Demo_README_r1.pdf

	Slide 1: Picoblaze_GCD GCD on Picoblaze
	Slide 2
	Slide 5: FSM in Assembly
	Slide 6: FSM in Assembly
	Slide 7: The Carry (C) and the Zero (Z) flags
	Slide 8: Carry, Borrow, and Odd Parity
	Slide 9: Top design - fabric logic to interface with the PicoBlaze Processor
	Slide 10: In this lab, the processor informs the fabric logic “in which state it is currently at (Init, Sub, Mult, Done)” using the OUTPUTK instruction. Possible to do so in two ways: using OUTPUT sX, pp or using OUPUTK kk, p Suppose constant 02 (kk
	Slide 11: out_port interface
	Slide 12: Comparison of interface between top and the core designs in the case of the two designs
	Slide 13
	Slide 14: SSD Display
	Slide 15: After completing your .psm file and TOP Verilog file, synthesize the top, download the .bit file and test. You should be able to replicate the steps on the side reproduced from your ee354_GCD_rev5.pdf
	Slide 16: 5.1 Demonstrate to your TA/Mentor
	Slide 17: 5.2 Blackboard posting and Files for submission

