A separate 4-page handout is provided for paper submission. So, do not print this

EEA457 Computer Systems Organization Lab #7 Parts1 and 2

Design of a Pipelined 3-Element Adder
Objective

To design and implement a simple pipelined system (other than CPU).

It is important to obtain a deep understanding of the basic concepts of pipelining such as data-stationary control, forwarding,
stalling, and flushing. Since the textbook has presented a compl ete design of the pipelined CPU, it does not provide an opportu-
nity for studentsto arrive at the basic design of a new pipelined system by themselves. It is hoped that this lab provides such an
opportunity.

I ntroduction

The operation to be performed here (the instruction to be executed) is very simple. Using a pipelined system, a seriesof such
simple instructions are to be executed very much likein a CPU. We need to take care of data dependencies by designing appro-
priate forwarding unit (FU) and hazard detection and stalling unit (HDU).

Part 1

In this part of the lab, we study a pipelined adder for summing up three 16-bit quantities. If an overflow is generated then the
sum shall not be written back into the destination (result) register.

(SR) <= (8$Z) + (S8Y) + (s$X) if there is no overflow.

The pipdline has 5 stages: I nstruction Fetch (IF), Instruction Decode (= Register Fetch) (ID), Execution 1 (EX1),
Execution 2 (EX2), and Write Back (WB). INEX1, X _plus_Yisproduced. In EX2, z isaddedto X plus_Y.

Part 2

Part 2 issimilar to Part 1 except that it has only four stages. The EX2 and WB stages of part 1 are merged into one state called
EX2WB.

Part 1 Datapath
Please see figure 1 on next page.

In the | F stage, we have a Program Counter (PC) and an Instruction Memory (INS_MEM). The instruction memory holds a
sequence of the summation instructions. The instruction provides the destination register ID (ID = identification = address),
RA[3:0] ("R"forresult), and thethree sourceregister ID’'s, ZA[3:0], YA[3:0], XA[3:0],andaRUN control signal.
If the RUN signal is active then you ADD. If it isinactive, then the instruction istreated asaNOP. For simplicity, the instruction
format has been kept at 32 bits, though we use only 17 bits (the most significant bit INSTR [31] isthe RUN signa and the
lower 16 bits INSTR[15:12] , INSTR[11:8], INSTR[7:4], and INSTR[3:0] arethefourregister IDs, R, Z,
Y, and X respectively.

The second stage is called the ID stage (Instruction Decode stage) though there is nothing to decode here. Perhaps RF (for Reg-
ister Fetch stage) would be a more appropriate name. In the I D stage, we have amulti-ported register file with three read ports
X, Y, and z and one write port R (R for Result). The register fileis an internal forwarding register file.

Each of the two execution stages, EX1 and EX2, consists of a 16-bit adder with a carry out. There are forwarding muxesin
EX1and EX2. If an overflow is generated then the sum shall not be written back into the register file. This meansthat the writing
into the register fileis conditional and so is forwarding data to the instructions behind. Overflow converts an instruction into a
NOP.

eed57 pipe 3elem adder Verilog.fm 11/4/2010, 3/2/12 @ Copyright 2012 Gandhi Puvvada

v 2x3 ~ vd TX3 _
| | vxal _ | vxai
0 d e} d
|examxar [oamxal Tied 2 avl
wre JBe1q »oo|g
- <>|ﬁ__ élﬂxm £|H_>> _ L@Ubd« H%Cb_wlm BC_—OC_AH_
_<> al _ payorN VX dI=TX3IWX adl
0O d e} d
O=d O=d
[zxawa—al lxawAal . _ . — . — .
ZMHO4 Noismou_w z H»&wo“_ >H>>mo“_mox 1IVIS
| _ : _ ureseuab 1o} afied atefedas e uo 2160| a3yl meiq '
lvzai [vz-a pausn|y Bukeq Jo pa|fess Bupgs!
O d ¢ d UOIONJISUI JUB.IND 8y} }1afels 1Xau ayl ol ajqgng 199 ul 01 91bo| 8l [dwo)
'soxnwi Bupfemioy) Inoy ayl ol syted Buipremio) syl o |dwo) ‘g
O=d O=d (Dd Buipniour) siexsifel aulpdid sy uo sjoauod (NJ) 3|geus dA1 |fe a1 |dwoD 2
— _ ‘(vd @l)abers | ul UoiIdBUUOD (SSBIPPY 1INSaY) v 8yl a1 [dwiod os |y
_Nvm__\,_N ai _._”xm_\,_N ai abexs 1 ut uorels dwod = == = SOUI| PS1IOP UI PIX4eWl SUO1I08UU0D Buissiw | 81 (dwo) T
) — -
—— - F——
||W_mﬂv¢ T €15 T ¢S
ALam am =W\ 1 s (= S (5
-~ < |\ = |
- | ~» | | -
] -] -] L - Z
— a8 — 2 = 4 N E m
A ~ —
. I L 5 B] g oM) B
Q 2 tmyod X I a1 ©
I — — = | I— N
= = = L] 9 I R\
ve gM | va 03 vd 2x3 Ve TX3 [nop -\ > \ XY
. vd q P vd|) J S L d
I _
— —) _ > —
— ax VX vX dl VX
I XNIN X —
X > > _
o g T TMIOS A Max ar VA _
— ..M-I, S Q S m. ~ L YA dl m
axam | g v TMHOS Z v \ \a az Vi = | NI IN-SNI
1O | 0 paA _ vZ dr| vz
“A\ J - 8|4 ‘Bey
l T XN A L R
et _ qaz \
431\ = y -7
am% _ » Zx3 azml_d iz el
- - X3 Ve s TVIS al =1

(C) Copyright 2012 Gandhi Puvvada

9.fm 11/4/2010, 3/2/12

e_3elem_adder_Verilo

eed57_pip

We stopped completing the structural Verilog implementation of this lab. So, this page is crossed out.

N
N
™.
N

1x3 - 9oedgawTr] burtjesin

/\m

\\

pue Arquesse ssisasi zo3 —@=) {INO YLSNI ZXH ‘NI ¥LSNI ¢Xd [0:T€] 2ITM

!s ¥AAAVY XA e
¥HaAY ¢Xd ‘Y ¥HAAY ¢XE ‘NI dZ ¢XE'NI QA SNTd aX ¢Xd [0:ST] ®ITm
AN ‘vd ¢xa [0:g] eatm

!1N0D XA ‘ZMIOA Z ‘1IN0 NN ZXd NI ZDM exXd SITM

-

C

uxu.mommmmEﬂH pbutjesao
pue \wHQEomm,m/mmMm\er 103 —P

‘g ¥EAQ¥ TXH

N
/

//
/

100 JYILSNI TIXH ‘NI dLSNI “_Umm
‘100 Az TXd
¥ mmﬁm@ IXd ‘NI 4z IXZ'NI dX HNM\Z(H ‘ax x4

\

[0:T€]
‘s mmmaﬂ TXH

[0:GT]
\\\ 'vd IXE [0:¢€]

9ITM

SITM
SITM

,T_”NMZN IXH ' ZXANZ HNm CXANA TXH'ZXHINX TXH SITM

100D TXH ‘IMMOA Z ._”BMO_m X ‘TIM¥04 X \;HDO NQY TXH NI NAY TXH oITm
] ™ \ D]
s R/_H T 12
| 1O NNY 2x3 NI'NNd 2X3 1 NINAS DA
- FA N g =
— m \\\ // —
X \\\\ | /// L'_—L |
— LV_Z \\\ | /// m L
- 3 S TMHOS X
] m \\\ — _ . _ _||
‘ VI IX3 o5
vd nod L v
] d g 8300V 1x3 |
N e
_— — > N B ~
% —_— o | S¥3aav Ixa_ -]
Q| s¥3aav exa T < TMHOS Z — -
& g - o <m¥E<HXMﬁ@ e 0 A
S P Vv ¥30aV ¢x3 L) NCAATXAE —
\\ \ 1 MNA
| P XNWi 2z - az
N , d2 0 z,\DNxa&,m L]
T P NIaZea | T2 N
ZX3 X3

mb..nmlhnm._nlhmwmw opoo BoTTasA 939TdwoOOUT INO UT PSSN Saweu ._”mmm,.mmu

(C) Copyright 2012 Gandhi Puvvada

9.fm 11/4/2010, 3/2/12

e_3elem_adder_Verilo

eed57_pip

We stopped completing the structural Verilog implementation of this lab. So, this page is crossed out.

Structural coding vs. RTL coding:

\‘Here in this lab, structural coding styleis used.

The otheg style of coding, RTL_coding, isshown in lab #7 part 3.

However you are aware of the fact that the structural coding isless desirable for coding a module

(Generic Stage regi\ster component, pipe_reg2>

module pipe reg2(rstb clk,en,

vecle6 inl, veclé6 in2, vec16 in3,veclé6 _outl,veclé Qut2 veclé out3,

vecd 1n1 vecd 1n2 vecsd outl vec4 out2,
bit 1n1 bit 1n2 bit 1n3 bit in4, bit in5,

blt iné6,

bit outl,bit out2,bit out3 blt _out4,bit out5 bit outse,

instr in,instr out) ;

The generic component, pipe_reg2, defined mfrhe

eed57_|ab7_components.y, is used in the design; eed57/1ab7_Pl.v | EN
three times (instantiated three times) to servesale/EXl EXVEX2, || vecié_ini E’ vecl6_outl
and EX2/WB stage registers. o
—
Thisregister provides passage of three 16- b|t |tems two Zﬁ*«blt items, || veci6 in2 # |vecis out2
six single-bit items. / \ Q
\ -
The 16-bit itemsarefor carrying data, the 4-b|t itemsarefor carrymg . o
register IDs, and the 1-bit items areer carrying control signalssuch_|| vecle_in3| g jvecle_out3
register matches and the RUN sgnal , ©
.
The number of 16-bit, 4-bit, and’ L-bititemscarried acrossstagesvar- || “SSi-1nt] g | veed outd
ies between ID/EX1, EXT/EX2, and EX2/WB stage registers. . b
The pipe_reg2 component’is made adequately big (or bigger than vec4 \in2 E vec4 out2
needt_ad, perhaps). Stuq/ef‘_uts should carefully consider what is needed bit_i}ﬂ\ 4| bit outl
and tie zeros for unusead inputs and leave open unused outputs. — 4 ,
bit_in2—<— bit_out2
bit_in3—f bit out3
bit in4 B‘ip_out4
bit ins bit\outs
bit iné bit_outé
~|a
&l \5
g

eed57_pipe_3elem_adder_Verilog.fm 11/4/2010, 3/2/12

(C) Copyright 2012 Gandhi Puvvada

Instruction Format
Theinstruction format is as follows:

Add SR, $Z, $Y, $X

instr[31] = Run {1 =Run = 20D }, { 0 = NOP }
instr[15:12] = RA[3:0]
instr[11:8] = ZA[3:0]
instr[7:4] = YA[3:0]
instr[3:0] = XA[3:0]

instr[30:16] arenotused and arealways 000 _0000_0000_0000.

Example: 2dd $4, $3, $2, $1 ; Trandation: 80004321 (Hex)

Part 1 Data-stationary Control

Please see Fig. 1. Data-stationary control isemployed here. Sincethereis no multi-bit opcode to be decoded, thereisno "control
unit" to act asa"trandator of opcode" to translate it into "control signals' here. TheRUN control signal isasingle-bit opcode
and does not need any more decoding. Similar to the HDU (Hazard Detection Unit) and FU (Forwarding Unit) of the pipelined
CPU where register IDs are compared, here in the pipelined 3-element adder, we have a comparator station,
COMP_STATION, wherewe compare the sourceregister ID’ s (of X, Y, and z) of theinstructionin ID stage with the destination
register ID (of the result register R) of the instructions in the EX1 and EX2 stages, and generate appropriate inferences. The
inference labels are interpreted as follows:

XMEX1: Sourceregister X (ID_XA) Matcheswith the destination register in EX1 (EX1_RA), and so on.

Some of these inferences are used inthe ID stage itself to stall theinstruction, if needed. Others are carried through the pipeline,
and are used for forwarding.

Note that, unlike in the pipelined CPU of Lab #6, where some comparisonsare donein HDU, HDU_Br, FU_Br in ID stage and
some comparisonsare donein FU in EX stage, here all comparisons are done at one place (inthe D stage). (Thisislikein Lab
6 Part 5.) Hence some of the inferences drawn in the comparator station, may have to be carried through the pipe and used in
later stages of the pipeline (following the data-stationary method of control).

Overflow and Flushing

In adding up the three quantities, X, Y, and z, if there is an overflow in any stage (EX1 or EX2), then the result must not be
written back to the register file. Thisis achieved by converting the instruction into aNOP (aBUBBLE) by disabling its RUN
control signal. Thusif the calculation of X + Y in the EX1 stage generates an overflow then the instruction must be converted
to aNoOP and abubbleis sent into the EX2 stage, effectively flushing the instruction out of the pipeline. Similarly, if the calcu-
lationof (X plus Y + 2Z) inthe EX2 stage generates an overflow, then the instruction must be converted to aNOP and
abubbleis sent into the WB stage.

Data Hazar ds/Dependencies, Stalling, and Forwarding

Data dependenci es between instructions must be taken care of by your pipeline control, by forwarding and, if forwarding is not
possible, by stalling. Wherever possible, data dependencies should be resolved by forwarding. The register fileis an internally
forwarding type (like in the pipelined CPU) and resolves the dependency of theinstruction in ID stage on the instruction in WB
stage. Other dependencies: Here, we are proposing to provide necessary arrangement for forwar ding data into the EX1 stage and
into the EX2 stage from the W B stage only. Thisis because we cannot generally (note, we said generally; there may be exceptions to
it, and we useit in Part 2) forward data from the EX2 stage to the EX1 stage as the final result is not available at the beginning of
the clock. For example, the following dependency cannot be resolved by forwarding.

eed57 pipe 3elem adder Verilog.fm 11/4/2010, 3/2/12 @ Copyright 2012 Gandhi Puvvada

(SR) <= ($2) + (8Y) + (S$X)
($6) <= (83) + (%4) + (85) ; -- instruction I

($9) <= ($8) + ($7) + (s$6) ; -- instruction II

Herethe instruction II isdependentfor $6 (register X) upon $6 (register R) oftheinstruction I.
This dependency can not be resolved by the forwarding circuitry. (Quesion 1.1 Why ?). Please assume that we are not allowed
tore-order the order of summation of X, ¥, and z. In order to resolve the above dependency, the pipeline must stall the
dependent instruction in the | D stage (and consequently the next instruction in | F stage) until a point where the dependency can
be handled by forwarding. question 1.2 D0 you need to stall the dependent instruction for one clock or two clocks or three clocks
in the above case? quetion 1.3 DO you need to stall the dependent instruction in ID stage only or can you stall itin EX1 stage? In
lab #6 (MIPs pipelined CPU), do you need to stall adependent instruction only in ID stage or could you possibly let it progress
to the EX stage and then stall it? Question 1.4 Can you possibly stall a (any) dependent instruction in EX2 or isit that thereis
never ameaningful need to stall an instruction in EX2 stage?

Unlikein the above sequence of instructions, note that in the following sequence of instructions, the dependency of $6 (reg-
ister Z) oftheinstruction IV upon$6 (register R) oftheinstruction III,canberesolvedby forwarding
(Question1.5 How ?). Hence we need not (and should not) stall the dependent instruction IV here.

($SR) <= (8$Z) + (8Y) + (8X)
($6) <= ($3) + (S4) + (s85) ; -- instruction III
(89) <= (86) + (87) + (s8) ; -- instruction IV

Thekey point hereisthat forwarding help can be delayed until the help isreally necessary by the dependent instruction for some
computation or storage. The Z register isonly needed in the EX2 stage.

Y ou natice that there are two forwarding muxes, onein EX1 (Z1_mux) and the other in EX2 (Z2_mux), to help the source reg-
ister Z in our data path. quesion1.6 Keeping in mind that, in our design, datais forwarded from the WB stage only, should we
useZ1 muxinEX1or Z2 muxin EX2 to receive forwarding help for $6 in the above sequence? Write a sequence of instruc-
tionswhichtheother Z mux (Z1_muxin EX1or Z2 _mux in EX2) isused for forwarding. Quesion1.7 Instead of two 2-to-1 muxes,
Z1 mux and Z2_mux, can we go for one 3-to-1 mux in either EX1 or EX2 stage? Answer fully substantiating your reasonswith
any sketches. Y ou are the designer. Do not jump to conclusions.

Spurious Stalls: Are spurious stalls possible here? In this design, since the opcode RUN (ADD/NOP) is asingle bit opcode (and
hence does not take any time in decoding and recognizing whether it is a register reading instruction or not in the ID stage),
spurious stalling of aNOP instruction is avoided.

Note that in the pipelined CPU of the textbook, and in our Lab 6, spurious stalls can occur because a seemingly dependent in-
struction may be stalled by the HDU. For example ajump instruction such as j 3333 may be stalled in the ID stage if there
is a spurious match between the ' source register fields' of j 3333 and the destination register field of aload word instruction
in EX stage. This can happen because we are NOT waiting to decode the instruction in the ID stage before we make adecision
to stall. We are doing so because we assume that the decoding takes along time and an attempt to avoid spurious stalls by wait-
ing for decoding will cause elongating the critical path leading to alonger (slower) clock. Here we are avoiding such spurious
stalls. However, in this design of the pipelined 3-element adder, we may still stall an instruction in ID stage sometimes because
of its dependency upon an instruction ahead of it in EX1 stage and later that instruction in EX 1 stage may turn itself into aNOP
because of an overflow. In such cases, welose aclock but our overall numerical resultswill be asthe programmer expects. This
isan unavoidable stall. Though thisdesignis NOT intended to take into account timing aspects, please do not try to wait until
the last minute (I should be saying ’last nanosecond'!) to make adecision to stall though it might cost you a clock. It means that
you can not wait for an instruction in EX1 to finish addition and seeif it has produced an overflow to decide whether to stall a
dependent instructionin ID stage.

Produce all the 5 control signals needed in Fig 1 here and submit. -~ z_FORWL -~ z_FORW?2
v A
. Y_FORW1
| STALL -/
_
. X_FORW1

OO

eed57 pipe 3elem_adder Verilog.fm 11/4/2010, 3/2/12 6 | Lab #7 @ Copyright 2012 Gandhi Puvvada

Initial contents of the Register File

Register id Content Register id Content
Register 00 O 0001n Register 08 8 0100n
Register 01 1 0002n Register 09 9 0200n
Register 02 2 0004n Register 10 A 0400n
Register 03 3 0008n Register 11 B 0800n
Register 04 4 0010n Register 12 C 1000n
Register 05 5 0020n Register 13 D 2000n
Register 06 6 0040n Register 14 E FFF8h
Register 07 7 0080n Register 15 F FFFFn

Part 2 Datapath

Do not even read this part until you finished Part 1 design and answered all Part 1 questions, particularly the question 1.7. As
we said before, this part is similar to Part 1, except that it has only four stages. The EX2 and WB stages of part 1 are merged
into one stage called EX2WB. Because of this merger, there may be changes to hazard detection/stalling operations and/or for-
warding operations. We provided an incomplete block diagram for this part on the last page. We just removed the EX2/WB
stage register (of the Part 1) but did not fix anything else. Y ou please remove items which are not needed and compl ete the rest
of this block diagram. We are not providing separate exercise verilog files for this part. Most likely you will not have time to-
wards the end of the semester to implement this design.

Though we are not doing timing design, let usapply thissimple ruleregarding hel ping (forwarding) towards the end of the clock.

The register fileisinternally forwarding and we assume that the clock is wide enough for the instruction in EX2WB stage to

perform the original EX2 operation of adding Z, checking to seeif there was an overflow, and writing into the register file and

forwarding the result data (write data) at the end of the clock to the instruction in the ID stage. Question 2.1 If that is the case, the

instruction in EX2WB stage should not have any difficulty to help the instruction in EX1 towards the end of the clock for the
(X 1Y IZ) register as the recipient of the help does not have to perform any addition operation on this data.

Question 2.2 State which mux(es) you removed and which mux(es) you retained and why. Question 2.3 Finally how many comparators
in the COMP_STATION are really used (needed) in this design? Why the rest are not needed? question 2.4 If the clock period is
the samefor Part 1 and Part 2, which of these (Part 1 or Part 2) performs better? Isthe answer data dependent (meaning for some
data Part 1 performs better than Part 2 and for some other data Part 2 performs better than Part 1)? Please explain. Note: There
are no branches/jumps here and if we are executing millions of instructions, we should not care for adifference of just one clock.

\"Iharuction Streams -

7
-

Please read the‘i:estbench fleeea57_lab7 P1_tb.v. Thetestbench performsnearly exhaustivetesting of all pessi blecases
Itisimportant to read~and understand the instruction streams in testbench files before you use them for debg,gg’ ng/proving your
design. ~ _./

What you haveto do ‘\\ _

1. Complete Figures 1 and 1C. Go though the Flgure 1A and 1B. //

2. Createafolder c:\ModelSim projects\ee457 1ab7 ?L(urdéryourc \ModelSim projects). Downloadthe .zip
file(ee457 lab7 P1.zip) and extract the.vand .do flles,a1d pragethemmtheabovedlrectory

3. Create amodelsim project with the project naﬂeee457 _lab7 P1. Choe':@ee457 lab7_p1 for the project directory.

Add all verilog files to the project. /__..../""'/ \""“---\..__

Go through ee457 1ab7 cemponents v. Edit (in Notepad++) and completetheee2157 1ab7 _Pl.v.
Go through ee457 }a’B7 P1_tb.v and understand the instruction stream used for testing. Compﬁeall 3Ver|logf|les

Start sumulm. on by selecting ee457_1ab7 P1_ tb. Unselect "Enable optimization”. Optn}atlon
|V |_ Enable Upi:emmatlun

"‘__90 N~ o o A

qu Lﬁe given .do file to set up the waveform (command: do_ee457 lab7 P1 wave.do). -
ee457_p|pe 3elem_adder_Verilog.fm 11/4/2010, 3/2/12 © Copynght 2012 Gandhi Puvvaqa

°8

-~

T

We stopped completing the structural Verilog implementation of this lab. So, this page is crossed out.

",

",

A

. 9. Select the Memories tab in the workspace and double click on thereg_file to display its contentsin the right pane.

VSIM 14> restart -f

WSIM 15> log =/

WSIM 16> run 1ns
WSIM 17> mem save UUT/REG_FILEfreg_file -format hex -wordsperline & -outfile reg_file_initial. # ,_S‘(<t\
VSIM 18> do ee457_lab7_P1_wave.do
WSIM 19> run 499ns
WSIM 20= mem save UUT/REG_FILE/freg_file -format hex -wordsperline & -outfile reg_f ﬁle/ﬁnal txt “,

N ,/ l | wave —[BB Memory ...Efreq_file | KE

N Compile Sirmulate B8 Memory ligt ———————————————— A % | M Properties S|
A
[*{nstance |Range [pepth [width | | M Address Radix Data Radix
',
o, S & feed57_ab7_P1_th/UUT/INS_MEMmemory [0:63] 64 32 @ Hexadecmal ¢ symbolic
\, Class Browser U < 257 1ab7_P1_to)UUTREG FllEfreg_fle [0:15] 16 5 €= £ Decmal £ Binary
Toverage 4 " Octal /s
/
Qaﬁﬂuw " Decmal yd
Files (i) @ \ " Unsigned /
FSM List [g) l | - # Hexadednal
X, . y
v Library) ™, B Memory List | ofs] p
List N, Line Wrap 8 //
=t AN EH Memory List s H e x| " Fitin Window ! /
Message Viewer '11nsiance |Range ‘Depih |Width | | ' Words per Line 1/
Memory List {w) 4&\— jee457 1ab7_P1_th/UUT/INS_MEM/memary [0:63] 64 32 ‘ a
v Objects \\\ ¥ jee457 _Jab7_P1_th/UUT/REG_FILE req_fle [0:15] 16 16 ok | canfl |
Y H 1 J
om@ g right-click to @ - vencomens
PA State Machine List (3) emory Declaraton /
) y
+ Progess dlsplay pop-up Compare Contents...
Profiling 4 [Project [g si B Memory List Import Data Patterns. .. /
/
v Project (x) Export Data Patterns... '
Schematic (1) S
v Structure (z Dais - feed57_lab7_P1_th/UUT/REG_FILE/reg_file - Default = H & x| 7
. @ By \B ! == B v Data - jeed57_lab7_P1_th/UUT/RES_FILEfreq_file - Default :::: H o x|
v Transoipt "JD'J"J"J"JCI‘Q J
Verification Management ® 00000002\‘ HHHMNL A RHNNAE KHHEHL AR HALA AL UUGUGGDE 0ooL 0?02 ggr_],é, UEGB 010 ?UZU '_J_'_f‘_fg EEZE
Watch 00000004 |AMXEAAXXXAXENAE KXHEHHAXRXHEHHEE 00000008 |0100 0200 0:1/50 0800 1000 2000 fIfs ffff
v Wave 00000006 |RXEXXHXXKKKHKHAE KXHKAREKXKXHKARER i af'[el‘
00000008 |XEXKEHAXXHHEHHAX Edit ,/
v Wi 1 3 A s
Mew Window N Change... _JJ / run lS JJ
g —_
Sort » Wave Memory .\Efreg_file 4| 3
e || | UnMve) B vemory hea Re| - srpartostpoties... [[T, e T
Lifeer \ Export Data Patterns. ..
Justify ») ¥
- - -)
Properties I‘Igh'[-C| ick to] fnd- =l & ypata- (#2457 Jab7_P1_th/UUT/REG_FILEreq_fil - Default :: # f |
d|sp|ay pop-up ., Split Screen 0000(}(’00 0001 0002 0004 0007 000d 0015 0040 0080 |
Necopert GGD,G-’J-’J-’J“ 0097 0118 0093 0046 1000 2000 £££8 ffff
roperties. .. /
—_)p "o /
(L y
@ Gosk nstance after another 499ns
W
Close Al) run 499ns o

\ /

V4 AN
s

10. Initially the data content of the memory is displ ayed as XXXX. N

= ",
s b
/ *,

Y ou can simulate for a very short time (say 1ns) (ru,‘i 1ns) to display the actual |n|t|al contents.

11. Run the simulation for 499ns more (run 499!15) (total 500ns).

™,

",
N

12. Verify thefina register contents. Look at the waveform to seeif any signals are mlsbehaw ng. Look at the
TimeSpace. txt file, produced by the test,bench and placed in the project directory. Use"\lotepad or Notepad++ to look at this
file as WordPad (on Windows 7) refusato open thisfile asthefileis still being controlled‘/(updated by ModelSim. (On

Windows-XP, | could open the Timespace. txt filein Notepad++ while simulation is not yet done. If your O.S. does not
alow you to open thefilewhile si mulatlon is going on, please end the simulation, inspect the fﬁe and restart the simulation

again.

/

\

Debugging: Perform mcremental simulation to find errors. Use restart - £ to startthe smulamlon agaln from Ons. Now
run for short lengths of ti mefexarnl ning the register file contents, the waveforms, and the Timespace. ‘t;xt

13. After finishing al de‘buggmg, compiletherevised .v file, again restart (restart -£), runfor 1ns, examme register

contents using the command line command at VSIM> prompt: "examine -radix hex UUT/REG_FI LE/reg_ﬂIe“{

Further run

simulation for 499ns more (run 499ns) and again examine register contents using command " examine -radix hexU uT/

REG_FILE/reg fiie"
VSIM> e;{émine -radix hex UUT/REG_FILE/reg file
{OOQ,Z./ 0002 0004 0007 000d 0015 0040 0080 0097 0118 0099 0046 1000 2000 f££f£8 ffff} \\\

eed57 pipe 3elem adder Verilog.fm 11/4/2010, 3/2/12 © Copyright 2012 Gandhi Puvvada

We stopped completing the structural Verilog implementation of this lab. So, this page is crossed out.

~14. A better choiceisto get the output files created by Modelsim for submission as shown below. Do the following to get the
\QghtfHES(reg_file_initial.txt and reg file final.txt) for submission.

",
",

\restart -f /
log */run 1ns y,
mém\save UUT/REG_FILE/reg file -format hex -wordsperline 8 -outfile reg file initial.txt /
do ée457_lab7_Pl_wave.do /
run 439ns /
mem sa&g UUT/REG_FILE/reg_file -format hex -wordsperline 8 -outfile reg file final.txt V4

15. General é\uidelin&s
15.1. Start early amd seek help early if needed.

15.2. Finaly submlt Gnllne (through your unix account) (submission commands specified separately) one set@f filesfor a

team of two students.

A
S

15.3. You need to usethe flle names exactly as stated and follow the submission procedure exactly as s,pecmed We use unix
script files to automate gradi ng

s
S

15.4. Non-working lab subm|sson‘ Insimulation, it will be evident if your lab is not working. We dlscourage you from

submitting a non-working lab. If you want to submit a non-working lab, each member of your jrféam needs to send an email to
al lab graders (with acopy to al TAS) étati ng in the subject line, "EE457 Non-working lab suﬁmission request” and obtain an
approval from one of them. Submitting a rion-working lab or partial lab without such approval isinterpreted as an intention to
cheat. Sorry to say all this, but this makes sure that the system works well. /

7 o457 pipe 3dem adder Verilogfm 11/4/2010, 3/2/12 9 Labu7 (©) Copyright 2012 Gandhi Puvvada

What you haveto turn-in

On-line{one subm|SS|on for ateam of 2 students)

Please turn mthefollowmg T —

submit -user ee457d&b —taé gavvada lab7 pl eé257 Tab7Pl.v_ RF Content Lab7_ P1l.txt
Tlmeqpane txt names.txt TTT—

Paper submission (individual effort, each student separ ately)

Part 1: Please complete, staple together, and submit page 2 (Fig. 1 Block diagram), page 6 (Fig. 1C Logic for the 5
signals, and this page (Q & A).

Selected questionsfor Part 1 paper submission

Q 1.6 Keeping in mind that, in our design, dataisforwarded from the WB stage only, shouldweuseZ1_mux in EX1or Z2_mux
in EX2 to receive forwarding help for $6 in the sequence below?

Answer (circle): ZIMUX in EX1/ Z2MUX in EX2

(SR) <= (82Z) + (3Y) + (8X)

($6) <= (83) + (34) + (85) ; -- instruction III
(89) <= (g6) + ($7) + ($8) ; -- instruction IV

Write a sequence of instructions which the other Z mux (Z1_mux in EX1 or Z2_mux in EX2) is used for forwarding.

Q 1.7 Instead of two 2-to-1 muxes, Z1_mux and Z2_mux, can we go for one 3-to-1 mux in either EX1 or EX2 stage? Answer
fully substantiating your reasons with any sketches. Do not jump to conclusions.

eed57_pipe_3elem_adder_Verilog.fm 11/4/2010, 3/2/12 10 I Lab #7 © Copyright 2012 Gandhi Puvvada

Part 2 paper submission: Please complete, staple together, and submit the last page (block diagram) and this page.
Selected questionsfor Part 2 paper submission:

Q 2.1 You do not need to submit answer to the simple question 2.1 on page 7.
Q 2.2 State which mux(es) you removed which mux(es) you retained and why.

Q 2.4 1f the clock period isthe same for Part 1 and Part 2, which of these (Part 1 or Part 2) performs better? |s the answer data
dependent (meaning for some data Part 1 performs better than Part 2 and for some other data Part 2 performs better than Part
1)? Please explain. Note: There are no branches/jumps here and if we are executing millions of instructions, we should not care

for adifference of just one clock

ee457_pipe_3elem_adder_Verilog.fm 11/4/2010, 3/2/12 (C) Copyright 2012 Gandhi Puvvada

vy zX3 vd TX3 _
| | vxal _ | vxai
[¢) d o) d
[oxanxar [panxa (peb oW G/ PUe ZXT YIm) Zired 2 gV
wre JBe1q »oo|g
\A _<>|ﬁ__ _ _<>|ﬁ__ vy X3 £|H_>> _ L@Ubd« H%Cb_wlm BC_—OC_AH_
PRYIN VX AI=TX3NX al
0 d o) d
O=d O=d
[zxawa—al lxawAal
<N|o _<N ail "Jpsi efed s1y3 uo sfeubs
O d 0O d (Bupemio)) MHOH Jo/pue V1S Aue areouab 0] paau no A
*1591 81 8|dWoD puUe AIessadeu 10U 3. O ILM SWS]| SAOWS. 0] PSdU NO A
O=d O=d 3bels /M X3 8uo o sabiers
— _ a/M pue z X3 ay1 buibiew a1e am se panowal sem Bisifal abels g/n/z X3 aur
_ exanz ai _axm_\,_N ai abers @l uuorers duwiod Tey) 1000xe g abed uo T 1ed o) T ‘B o) Se awes au A[easeq siainbiysiy L
-
v 7147 7147
tam am W= S S (5
N 2 v 28
]~]~
E - E e
I L y —=Z —
kV_M L ;r_m] g oM L
Q Q i
S | m H>>m_0u X | I au—1 L
v am | vaoxa | MDA T w1 v
1Moo i v] v E SN mm? od
I _
o L o X T Tgean| v NI
XN X —
5 & Zl tmuod AN
o Q aA VA =
p— %I,m o) m. w vA di 4
ad am Y —]
R v TMHOS Z v az VT |
O 0 oA] vz dl]| vZ NINSNI #\
J . a|i4 Boy
T XNN- A Y 4
N3
0 \‘DN \ \
¢ M_I P -7
NERA T 4 NI A
(@M Aipdijdwss Joy Jo) gMe X3 \
-7 X3 Ve p TS al =1

(C) Copyright 2012 Gandhi Puvvada

er_Verilog.fm 11/4/2010, 3/2/12

e_3elem_add

eed57_pip

