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Serial Interfaces
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Serial Interfaces

• Embedded system often have to interface to several 
devices (sensors, actuators, memory, etc.)

• To help reduce the amount of wiring, many 
interfaces use a serial interface of some type.

• “Serial” implies that it sends or receives one bit at a 
time.
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Serial Interfaces

• Different from a parallel interface that sends/receives 
multiple bits at a time.

• Example: The LCDs often use a 4-bit or 8-bit parallel 
interface to transfer commands and data.
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• Serial interfaces: less hardware but slower
• Parallel interfaces: more hardware but faster
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Pick Your Serial Interface

• Embedded systems can use a variety of serial interfaces.
– Numerous manufacturers have developed interfaces
– Some of these become "standards"

• Choosing which to use depends on several factors.
• What interface is available on the device you need to talk to
• Speed
• Distance between devices
• Cost of wiring and connectors
• Complexity of software

• Common Serial Interfaces
• RS-232, I2C, SPI, 1-Wire, USB, SATA, PCIe, Thunderbolt
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RS-232 Interface
• One-to-one topology
• Full duplex (if both devices are capable of it)
• Longer distances

– Specs say 50 feet, but can often be much longer (>1000 ft) with proper 
cables and data rates.

• Very simple interface to implement in both hardware 
and software.

• Uses a minimum of three wires
– Transmit
– Receive
– Ground
– [Optional] handshake signals that 

are often not used.
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RS-232 Interface

• Despite its age, RS-232 is still heavily used
– Industrial devices
– Data logging devices
– “Headless” servers, for use during installation
– Anything that needs a simple interface, often for 

configuration
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RS-232 Interface
• RS-232 uses bipolar voltages to signal 1’s and 0’s

–3 to –15 Volts = 1
+3 to +15 Volts = 0

• MAX232 converts between 0-5V and bipolar signals

• Many devices used in EE459 projects with RS-232 
interfaces work the just 0 and 5V signals (“TTL Serial”)
– Make sure you know which voltages are required.
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RS-232 Interface

• An “asynchronous” interface
– I2C and SPI are synchronous interfaces since there is clock signal
– RS-232 only sends data, no clock signal accompanying the data
– In order to correctly receive the data, the receiver must derive 

clocking information by examining the data
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RS-232 Interface

• To correctly receive the data, the transmitter and 
receiver have to agree on how the data will be sent

• Must agree on data rate
– Data rates given in bits/second or “baud rate”
– Use any rate, as long as TX and RX devices agree on the rate
– In most cases, standard rates are used: 

• 300, 2400, 9600, 28800, 57600, 115200, etc.
– Many devices will specify that they can only communicate at one rate

• Must agree on the format of the data
– How many data bits sent for each character?
– Which comes first, the MSB or the LSB?
– What other bits are sent along with the data? 
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RS-232 Interface
• When idle, signal line sits in the 1 state

• To send a byte, the transmitter sends…
– Start bit (a zero)
– Data bits, LSB first, MSB last
– Parity bits (optional)
– Stop bits (a one, 1 or 2 of them)

• Example: to send an “M”
– ASCII code = 0x4D = 01001101
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RS-232 Interface

• Parity bit – sent after the MSB to help detect errors
• Even parity

– Transmitter adds a 0 or 1 so the number of ones sent  is even
– Receiver checks that an even number of ones was received

• Odd parity
– Transmitter adds a 0 or 1 so the number of ones sent  is odd
– Receiver checks that an odd number of ones was received

• No parity
– Don’t have to send parity if not needed

• If parity at received end is incorrect, a flag is set
• Transmitter and receiver must agree: odd, even or none
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AVR USART0 Module

• Supports both asynchronous and synchronous modes
• Data lengths of 5, 6, 7, 8 or 9 bits, plus parity
• Interrupt generation on both transmit and receive
• Uses same pins as PORTD, bit 0 and 1
• If TX or RX enabled, can’t use that pin for I/O
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AVR USART0 Module

• Bad News: lots of registers and bits

RXC0      TXC0      UDRE0      FE0        DOR0      UPE0       U2X0      MPCM0  

RXCIE0   TXCIE0    UDRIE0    RXEN0    TXEN0   USCZ02   RXB80    TRXB80

UMSEL01UMSEL02  UPM01   UPM00     USBS0    UCSZ01  UCSZ00  UCPOL0

UDR0[7:0]

UBRR0[7:0]
UBRR0[11:8]

Control and Status Register A
(UCSR0A)
Control and Status Register B
(UCSR0B)
Control and Status Register C
(UCSR0C)
Data Registers
(UDR0)

Baud Rate Register
(UBRR0H & UBRR0L)
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AVR USART0 Module

• Good News: Can ignore most bits or leave as zero

• UDR0 – received and transmitted data register
– Actually two registers at the same address
– Write to it ⇒ stores data to be transmitted
– Read from it ⇒ gets data that has been received

RXC0      TXC0      UDRE0      FE0        DOR0      UPE0       U2X0      MPCM0  

RXCIE0   TXCIE0    UDRIE0    RXEN0    TXEN0   USCZ02   RXB80    TRXB80

UMSEL01UMSEL02  UPM01   UPM00     USBS0    UCSZ01  UCSZ00  UCPOL0

UDR0[7:0]

UBRR0[7:0]
UBRR0[11:8]

Control and Status Register A
(UCSR0A)
Control and Status Register B
(UCSR0B)
Control and Status Register C
(UCSR0C)
Data Registers
(UDR0)

Baud Rate Register
(UBRR0H & UBRR0L)



D.15

RX and TX by polling

• First step, find the value to go in UBRR0 for the 
desired baud rate.

• The UBRR value must calculate to an integer to get 
the baud rate correct.

• Example:
– An Arduino with a 16MHz clock trying to send at 9600 baud 

would need a UBRR value of 103.167
– Using 103 gives a rate of 9615.4 baud which can cause 

errors.

UBRR =
fosc

16⇥BAUD
� 1
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RX and TX by polling

• For EE459 projects, clock oscillators are used that 
yield integer values to give correct baud rates
– 7.3728Mhz, 9.8304Mhz

• Can use compiler directives to calculate the value

• Store it in the UBRR0 register

#define FOSC 7372800            // Clock frequency
#define BAUD 9600               // Baud rate used
#define MYUBRR (FOSC/16/BAUD-1) // Value for UBRR0

UBRR0 = MYUBRR;             // Set baud rate
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RX and TX by polling

• Second steps
– Enable the receiver and/or transmitter
– Set the values in UCSR0C for the desired communications settings
– Most of the bits in UCSR0C can be left as zeros

• The receiver and transmitter are now ready to go and 
waiting for data.

UCSR0B |= (1 << TXEN0 | 1 << RXEN0);  // Enable RX and TX
UCSR0C = (3 << UCSZ00);               // Async., no parity,

// 1 stop bit, 8 data bits
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UMSEL01UMSEL02  UPM01   UPM00     USBS0    UCSZ01  UCSZ00  UCPOL0

UDR0[7:0]

UBRR0[7:0]
UBRR0[11:8]

Control and Status Register A
(UCSR0A)
Control and Status Register B
(UCSR0B)
Control and Status Register C
(UCSR0C)
Data Registers
(UDR0)

Baud Rate Register
(UBRR0H & UBRR0L)
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RX and TX by polling

• Routines for RX and TX
– Receiver: checks RXC0 bit to find out when new data has come in.
– Transmitter: checks UDRE0 bit to find out when transmitter is empty.

char rx_char()
{

// Wait for receive complete flag to go high
while ( !(UCSR0A & (1 << RXC0)) ) {}
return UDR0;

}

void tx_char(char ch)
{

// Wait for transmitter data register empty 
while ((UCSR0A & (1<<UDRE0)) == 0) {}
UDR0 = ch;

}
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RXCIE0   TXCIE0    UDRIE0    RXEN0    TXEN0   USCZ02   RXB80    TRXB80

UMSEL01UMSEL02  UPM01   UPM00     USBS0    UCSZ01  UCSZ00  UCPOL0

UDR0[7:0]

UBRR0[7:0]
UBRR0[11:8]

Control and Status Register A
(UCSR0A)
Control and Status Register B
(UCSR0B)
Control and Status Register C
(UCSR0C)
Data Registers
(UDR0)

Baud Rate Register
(UBRR0H & UBRR0L)
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RX and TX by polling
• Data being sent is buffered

– When sending data the UDRE0 (Data Register Empty) bit will change to 
a 1 (ready for next byte) while the previous byte is still being sent out 
the TX port.

– At 9600 baud, takes 1.04ms to send a byte, a long time.

• Can use the TXC0 (Transmit Complete) bit to check to see if the 
all bits have actually been sent.
– Test this bit if using USART to talk to multiple devices. 
– Send data to one device, but don’t switch to send to the other device 

until after the transmission is complete.
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RX and TX by polling

• Using interrupts can simplify serial communications
• The USART module can generate interrupts

– Whenever data is received and is in UDR0
– When the UDR0 register is empty and ready for the next data to be 

sent.
– When the data being sent has finished being transmitted.
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I2C Interface

• I2C (Inter-Integrated Circuit) Interface
– Also known as the “Two Wire Interface” (TWI)

• Most commonly used on a single PC board to transfer 
data between two or more ICs.

• Data rates are relatively slow (usually < 100 kb/sec)
• Example: A non-volatile memory IC stores configuration 

data used when a system powers up.
– Reducing the amount of wiring  is more important than speed

• Software interface is relatively complex
– Many µC’s include I2C hardware that simplify the task, a little.
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I2C Interface
• Bus topology

– One bus “master” can communicate with multiple “slave” 
devices over a single pair of wires.

• Clock and Data
– Clock (SCL) generated by the master device
– Data line (SDA) is bidirectional

• Half duplex
– Master ⇒ slave, or slave ⇒ master, but not at the same time
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I2C Interface
• I2C uses PC4 and PC5 on the ATmega328P

– If you are using the I2C module, these port bits can’t be used 
for anything else.

• Must have pull-up resistors
– Use separate external pull-ups (5k-10k) for the clock and data 

line.
– Some odd I2C devices come with pull-ups installed on them.  

Watch out for these (avoid if possible).

• Bus must float in high state when not in use
– Both the clock and data signal lines must sit in the 1 state 

when there is no I2C activity
– Always check for this first when debugging I2C
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I2C Addresses
• Every slave device has a unique 7-bit address that is 

fixed by the manufacturer (see the datasheet).
– Some I2C devices allow the lower address bit(s) to be changed 

so multiple devices can be on the same bus. 

• The 7-bit address is actually the upper 7-bits of an 8-bit 
address used on bus.  LSB is used for read/write.

• Some vendors specify the 8-bit address, others 
the 7-bit.
• The 8-bit address is the 7-bit address times 2 (shift 

the 7-bits over one place to the left).

1  0  1  1  1  0  0  0
7-bit address = 0x5C

8-bit address = 0xB8

LSB = 0 for write, 
1 for read



D.25

I2C Addresses
• Make sure you find the address before trying to write 

any software to communicate with a device!
• Some examples

I2C device 8-bit address
DS1307 real time clock 0xD0
PCF8563 real time clock 0xA2
24LC256 32kb EEPROM 0xA0
DS1631 temperature sensor 0x90
LIS3DH accelerometer 0x30
NHD-0420D3Z-NSW-BBW LCD 0x50
TSL2591 light sensor 0x52
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I2C Software
• Make sure you read the manufacturer’s datasheet to 

understand the sequence of steps that must be 
followed to work with an I2C device.

• What needs to be done to initialize it?
– Example: The DS1631 temperature sensor needs to be sent a 

0xAC to load the configuration register, followed by the byte 
to go in that register

• What commands need to be written to it to perform 
operations?

• How do you read data back from the device?
– Example: The DS1631 needs to be sent 0xAA ”Read 

Temperature” command, followed by a read of two bytes.
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I2C Software
• Some I2C devices are configured as a collection of 

registers, usually numbered from 0 on up.
• Writing to a device usually requires sending the address 

of the register first, then the data byte to go in that 
register.
– If more data is sent those bytes go in the subsequent 

registers.
– IMPORTANT: The I2C device address is not the same as the 

register address

• For example, to load registers 4, 5 and 6 with the values 
0x23, 0x52, 0xD5, the software would send four bytes
– 0x04, 0x23, 0x52, 0xD5
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I2C Software

• Reading from an I2C device with multiple registers 
usually requires writing to it first to tell which register 
you want to read data from, and then reading the data.
– If more than one byte is read, they come from the subsequent 

registers

• For example, to read from registers 7, 8 and 9 in a 
device, the software would first write 0x07, and then do  
a read operation of three bytes to get the contents of 
the three registers.
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I2C Software
• We provide software on our class web site that will 

communicate with I2C devices.
i2c_io(uint8_t dev_addr, uint8_t *wbuf, uint16_t wn,

uint8_t *rbuf, uint16_t rn);

dev_addr I2C 8-bit device address
wbuf pointer to buffer containing data to write
wn number of bytes to write
rbuf pointer to buffer to hold data being read
rn number of bytes to read

• You are welcome to use it, or find or develop your own.
• See the document on “Using the I2C interface” in the 

Reference Library section of the web site for more 
information on using our I2C software.
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I2C Example

#define I2C_ADDR 0x90       // I2C bus address for the DS1631

wdata[0] = 0xac; // Set config for active high = 1
wdata[1] = 0x00; // and continuous acquisitions
status = i2c_io(I2C_ADDR, wdata, 2, NULL, 0);

wdata[0] = 0x51; // Start conversions
status = i2c_io(I2C_ADDR, wdata, 1, NULL, 0);

while (1) { // Loop forever
// Send a read temperature command in wdata[0] and
// read 2 bytes back in rdata[0] and rdata[1]
wdata[0] = 0xaa;
status = i2c_io(I2C_ADDR, wdata, 1, rdata, 2);

c2 = rdata[0] * 2;
if (rdata[1] != 0)

c2++;
f = (c2 * 9) / 10 + 32;
sprintf(ostr, "Temp=0x%02x%02x=%3d ", rdata[0], rdata[1], f);
lcd_stringout(ostr);
_delay_ms(1000);

}
}

Example of using i2c_io to configure a DS1631 temperature 
sensor and read sensor data from it.
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I2C Debugging
• I2C devices can be challenging to get working.
• Do not try to debug I2C from the software side alone.
• The Tektronix oscilloscopes in OHE 240 have special 

trigging capabilities that will capture and display I2C 
transfers (or attempted transfers).

• Use of these scopes in I2C triggering mode is essential 
for working with I2C devices. 

• The document on “Using the I2C interface” in the 
Reference Library section of the web site has detailed 
instructions on how to use the scopes to debug I2C.
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I2C Debugging
• The Tek scopes will display the clock (yellow) and data 

(blue), and will also decipher what is being transferred.
• In this example, device at 0x90 was sent 0xAA, and 

then two bytes, 0x1A and 0x00, were read back
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I2C Debugging
• If the I2C device does not respond, this is shown on 

the display with a red exclamation point.



D.34

SPI Interface

• Serial Peripheral Interface Bus
• Uses four wires (three in many cases)
• Full Duplex

– Data is transferred in both directions at the same time

• Bus topology
– One master can talk with 

multiple slave devices using 
three wires

– SCLK (clock signal to slaves)
– MOSI (master out, slave in)
– MISO (master in, slave out)
– SS (slave select), one for each 

slave device
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SPI Interface

• Both devices have an 8-bit shift register
• There are no separate write and read operations
• A data transfer moves a byte from master to slave, 

and from slave to master at the same time.
• To read data, the master must transfer dummy data 

to the slave.

8-bit serial-in, serial-out
shift register

Clock
generator

8-bit serial-in, serial-out
shift register

MOSI

MISO

SPI Master Device SPI Slave Device

SCLK

SS
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SPI Registers

SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

SPIE - SPI Interupt Enable
SPE  - SPI Enable
DORD - Data Order
MSTR - Master/Slave Select

CPOL - Clock Polarity
CPHA - Clock Phase
SPR1 - SPI Clock Rate Select 1 
SPR0 - SPI Clock Rate Select 0

SPCR - SPI Control Register

SPIF WCOL SPR2X

SPSR - SPI Status Register

SPIF - SPI Interupt Flag
WCOL - Write Collision Flag
SPI2X - Double SPI Speed Bit

MSB LSB

SPDR - SPI Data Register
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SPI Registers
• SPCR – SPI Control Register

– SPE – Set to 1 to enable SPI operation
– MSTR – Set to 1 to make device SPI master
– SPR1, SPR0 – Determines clock frequency

• SPSR – SPI Status Register
– SPIF – A 1 after transfer complete
– SPR2X – Determines clock frequency

• SPDR – SPI Data Register
– Write data to SPDR to send
– Read received data from SPDR

SPI2X  SPR1   SPI0      SCLK
    0          0          0         fosc/4
    0          0          1         fosc/16
    0          1          0         fosc/64         
    0          1          1         fosc/128
    1          0          0         fosc/2
    1          0          1         fosc/8
    1          1          0         fosc/32
    1          1          1         fosc/64
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SPI Example
#include <avr/io.h>
#include <util/delay.h>

int main(void) {

DDRB |= (1 << PB3); // set MOSI for output
DDRB |= (1 << PB5); // set SCLK for output 
DDRB |= (1 << PB2); // set SS for output 

// Enable SPI, set for master mode, divide clock by 16
SPCR |= (1 << SPE) | (1 << MSTR) | (1 << SPR0);

while (1) {
PORTB &= ~(1 << PB2); // Select line to zero
SPDR = 'a'; // Send an 'a' 

while (!(SPSR & (1 << SPIF))) ; // Wait for transmit complete

PORTB |= (1 << PB2); // Select line to one

_delay_ms(10);
}

}


