
HC(S)08 / RS08
Assembler Manual

 Revised: 29 April 2006 - HC08ASMRM - REV 1

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior is a trademark or reg-
istered trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. All other product or ser-
vice names are the property of their respective owners.

Copyright © 2006 by Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.

7700 West Parmer Lane

Austin, TX 78729

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

Table of Contents

I Using the HC(S)08/RS08 Assembler
Highlights . 15

Structure of this document . 15

1 Working with the Assembler 17
Programming Overview . 17

Project directory . 18

External Editor . 18

Using CodeWarrior to manage an assembly language project 18

The Wizard . 19

Analysis of groups and files in the project window . 29

CodeWarrior groups . 29

Creating a Target . 30

Generating Listing Files . 38

Renaming files. 39

Creating a new group . 41

Renaming groups in the project window. 42

Writing your assembly source files. 43

Analyzing the project files . 44

Assembling your source files . 47

Assembling with CodeWarrior . 47

Assembling with the Assembler . 51

Linking the application . 67

Linking with CodeWarrior . 67

Linking with the Linker. 71

Directly generating an ABS file . 80

Using CodeWarrior to generate an ABS file . 81

2 Assembler Graphical User Interface 89
Starting the Assembler . 89
3HC(S)08 / RS08 Assembler Manual

Table of Contents
 Assembler Main Window . 90

Window title . 91

Content area. 91

Toolbar . 92

Status bar . 93

Assembler menu bar . 93

File menu. 93

Assembler menu . 95

View menu. 95

Editor Setting dialog box . 96

Global Editor (shared by all tools and projects) . 96

Local Editor (shared by all tools) . 97

Editor started with the command line . 98

Editor started with DDE . 99

CodeWarrior with COM . 100

Modifiers . 101

Save Configuration dialog box . 102

Environment Configuration dialog box. 103

Option Settings dialog box . 105

Message settings dialog box . 106

Changing the class associated with a message . 108

About... dialog box . 110

Specifying the input file . 110

Use the command line in the toolbar to assemble. 110

Assembling a new file . 110

Assembling a file which has already been assembled. 110

Use the File > Assemble... entry . 111

Use Drag and Drop . 111

Message/Error feedback . 111

Use information from the assembler window . 112

Use a user-defined editor. 112

Line number can be specified on the command line. 112

Line number cannot be specified on the command line 112
4HC(S)08 / RS08 Assembler Manual

Table of Contents
3 Environment 115
Current directory. 116

Environment macros . 117

Global initialization file - mctools.ini (PC only) . 117

Local configuration file (usually project.ini) . 118

Line continuation . 120

Environment variables details. 121

ABSPATH: Absolute file path. 122

ASMOPTIONS: Default assembler options . 123

COPYRIGHT: Copyright entry in object file . 124

DEFAULTDIR: Default current directory. 125

ENVIRONMENT: Environment file specification. 126

ERRORFILE: Filename specification error . 127

GENPATH: Search path for input file . 130

INCLUDETIME: Creation time in the object file 131

OBJPATH: Object file path . 132

SRECORD: S-Record type . 133

TEXTPATH: Text file path . 134

TMP: Temporary directory . 135

USERNAME: User Name in object file . 136

4 Files 137
Input files . 137

Source files . 137

Include files . 137

Output files . 137

Object files . 138

Absolute files. 138

S-Record Files . 138

Listing files . 139

Debug listing files . 139

Error listing file . 139

File Processing . 140
5HC(S)08 / RS08 Assembler Manual

Table of Contents
5 Assembler Options 143
Types of assembler options . 143

Assembler Option details . 145

Using special modifiers. 145

List of Assembler options . 149

Detailed listing of all assembler options. 151

-Ci: Switch case sensitivity on label names OFF . 152

-CMacAngBrack: Angle brackets for grouping Macro Arguments 154

-CMacBrackets: Square brackets for macro arguments grouping. 155

-Compat: Compatibility modes . 156

-CS08/-C08/-CRS08: Derivative family . 159

-D: Define Label . 161

-Env: Set environment variable. 163

-F (-Fh, -F2o, -FA2o, -F2, -FA2): Output-file format 164

-H: Short Help . 166

-I: Include file path . 167

-L: Generate a listing file . 168

-Lasmc: Configure listing file . 171

-Lasms: Configure the address size in the listing file 173

-Lc: No Macro call in listing file. 175

-Ld: No macro definition in listing file . 178

-Le: No Macro expansion in listing file . 181

-Li: No included file in listing file . 184

-Lic: License information . 186

-LicA: License information about every feature in directory 187

-LicBorrow: Borrow license feature . 188

-LicWait: Wait until floating license is available from floating
License Server . 190

-Ll: Show label statistics . 191

-M (-Ms, -Mt): Memory model . 193

-MacroNest: Configure maximum macro nesting. 195

-MCUasm: Switch compatibility with MCUasm ON. 196

-N: Display notify box. 197

-NoBeep: No beep in case of an error . 198
6HC(S)08 / RS08 Assembler Manual

Table of Contents
-NoDebugInfo: No debug information for ELF/DWARF files. 199

-NoEnv: Do not use environment . 200

-ObjN: Object filename specification . 201

-Prod: Specify project file at startup . 203

-Struct: Support for structured types . 204

-V: Prints the Assembler version. 205

-View: Application standard occurrence . 206

-W1: No information messages. 208

-W2: No information and warning messages . 209

-WErrFile: Create "err.log" error file . 210

-Wmsg8x3: Cut filenames in Microsoft format to 8.3 211

-WmsgCE: RGB color for error messages . 212

-WmsgCF: RGB color for fatal messages. 213

-WmsgCI: RGB color for information messages . 214

-WmsgCU: RGB color for user messages. 215

-WmsgCW: RGB color for warning messages . 216

-WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode
217

-WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive
mode . 219

-WmsgFob: Message format for batch mode . 221

-WmsgFoi: Message format for interactive mode. 223

-WmsgFonf: Message format for no file information. 225

-WmsgFonp: Message format for no position information. 227

-WmsgNe: Number of error messages . 229

-WmsgNi: Number of Information messages . 230

-WmsgNu: Disable user messages . 231

-WmsgNw: Number of Warning messages . 233

-WmsgSd: Setting a message to disable . 234

-WmsgSe: Setting a message to Error. 235

-WmsgSi: Setting a message to Information. 236

-WmsgSw: Setting a Message to Warning . 237

-WOutFile: Create error listing file. 238

-WStdout: Write to standard output . 239
7HC(S)08 / RS08 Assembler Manual

Table of Contents
6 Sections 241
Section attributes. 241

Code sections. 241

Constant sections. 241

Data sections . 242

Section types . 242

Absolute sections. 242

Relocatable sections . 244

Relocatable vs. absolute sections . 247

Modularity. 247

Multiple developers. 247

Early development. 248

Enhanced portability . 248

Tracking overlaps . 248

Reusability. 248

7 Assembler Syntax 249
Comment line . 249

Source line . 249

Label field . 250

Operation field. 250

Operand field: Addressing modes (HC08 / HCS08). 265

Operand Field: Addressing Modes (RS08) . 276

Comment Field . 280

Symbols . 280

User-defined symbols . 280

External symbols . 281

Undefined symbols . 282

Reserved symbols . 282

Constants. 282

Integer constants . 283

String constants . 283

Floating-Point constants . 283

Operators. 283
8HC(S)08 / RS08 Assembler Manual

Table of Contents
Addition and subtraction operators (binary) . 284

Multiplication, division and modulo operators (binary) 285

Sign operators (unary). 285

Shift operators (binary) . 286

Bitwise operators (binary). 287

Bitwise operators (unary) . 288

Logical operators (unary) . 288

Relational operators (binary). 289

HIGH operator. 289

HIGH_6_13 Operator . 290

LOW operator . 290

MAP_ADDR_6 Operator . 291

PAGE operator . 292

Force operator (unary). 292

 Operator precedence. 293

Expression. 294

Absolute expression . 295

Simple relocatable expression. 296

Unary operation result. 296

Binary operations result . 297

Translation limits . 298

8 Assembler Directives 299
Directive overview . 299

Section-Definition directives. 299

Constant-Definition directives . 299

Data-Allocation directives. 299

Symbol-Linkage directives . 300

Assembly-Control directives. 300

Listing-File Control directives . 301

Macro Control directives. 302

Conditional Assembly directives . 302

Detailed descriptions of all assembler directives . 303

ABSENTRY - Application entry point . 304

ALIGN - Align Location Counter. 306
9HC(S)08 / RS08 Assembler Manual

Table of Contents
BASE - Set number base. 307

CLIST - List conditional assembly . 309

DC - Define Constant . 311

DCB - Define Constant Block. 313

DS - Define Space . 314

ELSE - Conditional assembly . 316

END - End assembly . 318

ENDFOR - End of FOR block . 319

ENDIF - End conditional assembly . 320

ENDM - End macro definition . 321

 EQU - Equate symbol value. 322

EVEN - Force word alignment . 323

FAIL - Generate Error message. 325

 FOR - Repeat assembly block . 329

IF - Conditional assembly . 331

IFcc - Conditional assembly . 333

INCLUDE - Include text from another file. 335

LIST - Enable Listing . 336

LLEN - Set Line Length . 338

LONGEVEN - Forcing Long-Word alignment. 340

 MACRO - Begin macro definition. 341

MEXIT - Terminate Macro Expansion . 342

MLIST - List macro expansions . 345

NOLIST - Disable Listing. 348

NOPAGE - Disable Paging . 350

OFFSET - Create absolute symbols . 351

ORG - Set Location Counter. 353

PAGE - Insert Page break . 355

PLEN - Set Page Length . 357

RAD50 - Rad50-encoded string constants . 358

SECTION - Declare Relocatable Section . 361

SET - Set Symbol Value . 363

SPC - Insert Blank Lines. 364

TABS - Set Tab Length . 365

TITLE - Provide Listing Title . 366
10HC(S)08 / RS08 Assembler Manual

Table of Contents
XDEF - External Symbol Definition. 367

XREF - External Symbol Reference . 368

XREFB - External Reference for Symbols located on the Direct Page . . . 369

9 Macros 371
Macro overview . 371

Defining a macro . 371

Calling macros . 372

Macro parameters . 372

Macro argument grouping. 373

Labels inside macros. 375

Macro expansion. 376

Nested macros. 376

10 Assembler Listing File 377
Page header . 377

Source listing . 378

Abs. 378

 Rel. 379

Loc. 380

Obj. code . 381

Source line. 382

11 Mixed C and Assembler Applications 383
Memory models . 383

Parameter passing scheme . 384

Return Value . 384

Accessing assembly variables in an ANSI-C source file 384

Accessing ANSI-C variables in an assembly source file 385

Invoking an assembly function in an ANSI-C source file 386

Example of a C file . 387

Support for structured types . 389

Structured type definition . 389

Types allowed for structured type fields . 390

Variable definition . 391
11HC(S)08 / RS08 Assembler Manual

Table of Contents
Variable declaration. 391

Accessing a structured variable. 392

 Structured type: Limitations . 393

12 Make Applications 395
Assembly applications . 395

Directly generating an absolute file . 395

Mixed C and assembly applications . 395

Memory maps and segmentation . 396

13 How to ... 397
How to work with absolute sections . 397

Defining absolute sections in an assembly source file 397

Linking an application containing absolute sections. 399

How to work with relocatable sections. 400

Defining relocatable sections in a source file . 400

Linking an application containing relocatable sections 401

How to initialize the Vector table . 402

Initializing the Vector table in the linker PRM file 403

Initializing the Vector Table in a source file using a relocatable section . . 405

Initializing the Vector Table in a source file using an absolute section . . . 408

 Splitting an application into different modules . 410

Example of an Assembly File (Test1.asm) . 410

 Corresponding include file (Test1.inc). 410

Example of an assembly File (Test2.asm). 411

Using the direct addressing mode to access symbols . 412

Using the direct addressing mode to access external symbols 413

Using the direct addressing mode to access exported symbols. 413

Defining symbols in the direct page . 413

Using the force operator . 414

Using SHORT sections . 414
12HC(S)08 / RS08 Assembler Manual

Table of Contents
II Appendices

A Global Configuration File Entries 419
[Installation] Section. 420

Path . 420

Group. 420

[Options] Section . 421

DefaultDir . 421

[XXX_Assembler] Section . 422

SaveOnExit . 422

SaveAppearance . 422

SaveEditor . 423

SaveOptions . 423

RecentProject0, RecentProject1, ... 423

[Editor] Section. 425

Editor_Name . 425

Editor_Exe. 425

Editor_Opts . 426

Example . 427

B Local Configuration File Entries 429
[Editor] Section. 430

Editor_Name . 430

Editor_Exe. 430

Editor_Opts . 431

[XXX_Assembler] Section . 432

RecentCommandLineX, X= integer . 432

CurrentCommandLine. 432

StatusbarEnabled. 433

ToolbarEnabled . 433

WindowPos . 434

WindowFont . 434

TipFilePos . 435

ShowTipOfDay . 435
13HC(S)08 / RS08 Assembler Manual

Table of Contents
Options . 436

EditorType. 436

EditorCommandLine. 437

EditorDDEClientName . 437

EditorDDETopicName . 437

EditorDDEServiceName . 438

Example . 439

C MASM Compatibility 441
Comment Line . 441

Constants (Integers) . 441

Operators. 442

Directives . 442

D MCUasm Compatibility 445
Labels . 445

SET directive . 445

Obsolete directives . 446

Index 447
14HC(S)08 / RS08 Assembler Manual

I

Using the HC(S)08/RS08
Assembler

This document explains how to effectively use the HC(S)08/RS08 Macro Assembler.

Highlights
The major features of the HC(S)08/RS08 Assembler are:

• Graphical User Interface

• On-line Help

• 32-bit Application

• Conforms to the Freescale Assembly Language Input Standard

Structure of this document
This section has the following chapters:

• “Working with the Assembler” on page 17: A tutorial using the CodeWarrior
Development Studio to create and configure an assembly-code project. In addition,
there is a description of using the Assembler and the Linker as standalone Build
Tools.

• “Assembler Graphical User Interface” on page 89: A description of the Macro
Assembler’s Graphical User Interface (GUI)

• “Environment” on page 115: A detailed description of the Environment variables
used by the Macro Assembler

• “Files” on page 137: A description of the input and output file the Assembles uses or
generates.
15HC(S)08 / RS08 Assembler Manual

Structure of this document
• “Assembler Options” on page 143: A detailed description of the full set of assembler
options

• “Sections” on page 241: A description of the attributes and types of sections

• “Assembler Syntax” on page 249: A detailed description of the input syntax used in
assembly input files.

• “Assembler Directives” on page 299: A list of every directive that the Assembler
supports

• “Macros” on page 371: A description of how to use macros with the Assembler

• “Assembler Listing File” on page 377: A description of the assembler output files

• “Mixed C and Assembler Applications” on page 383: A description of the important
issues to be considered when mixing both assembly and C source files in the same
project

• “Make Applications” on page 395: A description of special issues for the linker

• “How to ...” on page 397: Examples of assembly source code, linker PRM, and
assembler output listings.

In addition to the chapters in this section, there are the following chapters of Appendices

• “Global Configuration File Entries” on page 419: Description of the sections and
entries that can appear in the global configuration file - mcutools.ini

• “Local Configuration File Entries” on page 429: Description of the sections and
entries that can appear in the local configuration file - project.ini

• “MASM Compatibility” on page 441: Description of extensions for compatibility
with the MASM Assembler

• “MCUasm Compatibility” on page 445: Description of extensions for compatibility
with the MCUasm Assembler
16 HC(S)08 / RS08 Assembler Manual

1
Working with the Assembler

This chapter is primarily a tutorial for creating and managing HC(S)08/RS08 assembly
projects with the CodeWarrior Development Studio. In addition, there are directions to
utilize the Assembler and Smart Linker Build Tools in the CodeWarrior Development
Studio for assembling and linking assembly projects.

Programming Overview
In general terms, an embedded systems developer programs small but powerful
microprocessors to perform specific tasks. These software programs for controlling the
hardware is often referred to as firmware. One such use for firmware might be controlling
small stepping motors in an automobile seat.
The developer instructs what the hardware should do with one or more programming
languages, which have evolved over time. The three principal languages in use to program
embedded microprocessors are C and its variants, various forms of C++, and assembly
languages which are specially tailored to families of microcontrollers. C and C++ have
been fairly standardized through years of use, whereas assembly languages vary widely
and are usually designed by semiconductor manufacturers for specific families or even
subfamilies of their embedded microprocessors.
Assembly language instructions are considered as being at a lower level (closer to the
hardware) than the essentially standardized C instructions. Programming in C may require
some additional assembly instructions to be generated over and beyond what an
experienced developer could do in straight assembly language to accomplish the same
result. As a result, assembly language programs are usually faster to execute than C
instructions, but require much more programming effort. In addition, each chip series
usually has its own specialized assembly language which is only applicable for that family
(or subfamily) of CPU derivatives.
Higher-level languages like C use compilers to translate the syntax used by the
programmer to the machine-language of the microprocessor, whereas assembly language
uses assemblers. It is also possible to mix assembly and C source code in a single project.
See the Mixed C and Assembler Applications chapter.
This manual covers the Assembler dedicated to the Freescale 8-bit HC(S)08 series of
microcontrollers. There is a companion manual for this series that covers the HC(S)08
Compiler.
The HC(S)08 Assembler can be used as a transparent, integral part of the CodeWarrior
Development Studio. This is the recommended way to get your project up and running in
minimal time. Alternatively, the Assembler can also be configured and used as a
standalone macro assembler as a member of Build Tool Utilities such as a (Smart) Linker,
Compiler, ROM Burner, Simulator or Debugger, etc.
The typical configuration of an Assembler is its association with a Project directory on
page 18 and an External Editor on page 18. CodeWarrior uses the project directory for
storing the files it creates and coordinates the various tools integrated into the
17HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Using CodeWarrior to manage an assembly language project
CodeWarrior suite. The Assembler is but one of these tools that CodeWarrior coordinates
for your projects. The tools used most frequently within CodeWarrior are its Editor,
Compiler, Assembler, Linker, the Simulator/Debugger, and Processor Expert. Most of
these “Build Tools” are located in the prog subfolder of the CodeWarrior installation. The
others are directly integrated into the CodeWarrior Development Studio
The textual statements and instructions of the assembly-language syntax are written by
editors. CodeWarrior has its own editor, although any external text editor can be used for
writing assembly code programs. If you have a favorite editor, chances are that it can be
configured so as to provide both error and positive feedback from either CodeWarrior or
the standalone Assembler.

Project directory
A project directory contains all of the environment files that you need to configure your
development environment.
In the process of designing a project, you can either start from scratch by making your
own Source code, configuration (*.ini), and various layout files for your project for use
with standalone project-building tools. This was how embedded microprocessor projects
were developed in the recent past. On the other hand, you can have the CodeWarrior IDE
coordinate and manage the entire project. This is recommended because it is easier and
faster than employing standalone tools. However, you can still utilize any of the Build
Tools in the CodeWarrior suite.

External Editor
CodeWarrior reduces programming effort because its internal editor is configured with the
Assembler to enable error feedback. You can use the Configuration dialog box of the
standalone Assembler or other standalone Build Tools in CodeWarrior to configure or to
select your choice of editors. Please refer to the Editor Setting dialog box section of this
manual.

Using CodeWarrior to manage an assembly
language project

CodeWarrior has an integrated Wizard to easily configure and manage the creation of your
project. The Wizard will get your project up and running in short order by following a
short series of steps to create and coordinate the project and to generate the basic files that
are located in the project directory.
This section will create a basic CodeWarrior project that uses assembly source code. A
sample program is included for a project created using the Wizard. For example, the
program included for an assembly project calculates the next number in a Fibonacci series.
It is much easier to analyze any program if you already have some familiarity with solving
the result in advance.
In case you did not know, a Fibonacci series is a mathematical infinite series that is very
easy to visualize (Listing 1.1 on page 19):
18 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Using CodeWarrior to manage an assembly language project
Listing 1.1 Fibonacci series

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... to infinity-->

It is simple to calculate the next number in this series. The first calculated result is actually
the third number in the series because the first two numbers make up the starting point: 0
and 1. The next term in a Fibonacci series is the sum of the preceding two terms. The first
sum is then: 0 + 1 = 1. The second sum is 1 + 1 = 2. The sixth sum is 5 + 8 = 13. And so on
to infinity.
Let’s now rapidly create a project with CodeWarrior and analyze the assembly source and
the Linker’s parameter files to calculate a Fibonacci series for a particular 8-bit
microprocessor in the Freescale HC(S)08 family - the MC68HC908GP32. Along the way,
some CodeWarrior tips demonstrate how CodeWarrior could help manage your projects.

The Wizard
Start the HC(S)08/RS08 Codewarrior IDE application. Its path is:

<CodeWarrior installation folder>\bin\IDE.exe)

After CodeWarrior opens, press the Create New Project button. If CodeWarrior is already
running, select New... from the File menu (File > New...). See Figure 1.1 on page 19.

Figure 1.1 Startup dialog box
19HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Using CodeWarrior to manage an assembly language project
Press the Create New Project button. The HC(S)08 New Project dialog box appears,
showing the Project Parameters panel of the Wizard Map. If CodeWarrior is already open,
select New... from the File menu (File > New...). The HC(S) New Project dialog box
appears (Figure 1.2 on page 20).

Figure 1.2 HC(S)08 New Project dialog box

Enter the Project Parameters of the Wizard Map for your project. For the programming
language, check Assembly and uncheck both C and C++. Type the name for the project in
the Project name: text box. In the event that you want another location for the project
directory than the default in the Location: text box, press Set... and browse to the new
location. There is no need to first prepare an empty folder, as CodeWarrior automatically
creates its own folder - the project directory.

NOTE If you do not use the default Location for the project directory, you need not
enter a name in the Project name: text box. Whatever you enter in the
File name: text box will be entered into Location automatically.

CodeWarrior uses the default *.mcp extension, so you do not have to explicitly append
any extension to the filename.
Press the Save and Next > buttons to close the dialog boxes.
20 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Using CodeWarrior to manage an assembly language project
The Device and Connection dialog box of the Wizard Map appears (Figure 1.3 on
page 21).

Figure 1.3 Device and Connection dialog box

Select the desired CPU derivative for the project. Expand HC08 and G Family. In this
case, the MC68HC908GP32 derivative is selected. For Connections, select the default -
Full Chip Simulation. Press Next >. The Add Additional Files dialog box appears
(Figure 1.4 on page 22).
21HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Using CodeWarrior to manage an assembly language project
Figure 1.4 Add Additional Files dialog box

If you wanted to add any existing files to your project, you could browse in the left panel -
Add existing files to the project - for the files and press the Add button. The added files
would then appear in the right panel - Project Files. No user files are to be added for this
project, so you can either uncheck the Copy files to project check box or make sure that no
files are selected and leave this check box checked.
Check the Create main template file check box. This enables template files including a
main.asm file in the Sources subfolder to be created in the project directory (ABC, in
this case) with some sample assembly-source code. Press Next >. The Processor Expert
panel appears (Figure 1.5 on page 23).
22 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Using CodeWarrior to manage an assembly language project
Figure 1.5 Processor Expert dialog box

The default - None - is selected. For this simple demo project, you do not need the Rapid
Application Development (RAD) tool - Processor Expert - in the CodeWarrior
Development Studio. A basic demo assembly language project is being created. In
practice, you would probably routinely use Processor Expert on account of its many
advantages.

Press Finish >. The Wizard now creates the project (Figure 1.6 on page 24).
23HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Using CodeWarrior to manage an assembly language project
Figure 1.6 The CodeWarrior project is being created...

Using the Wizard, an HC(S)08 project is set up in a matter of a minute or two. You can
add additional components to your project afterwards. A number of files and folders are
automatically generated in the root folder that was used in the project-naming process.
This folder is referred to in this manual as the project directory. The major GUI
component for your project is the project window. The CodeWarrior project window
appears (Figure 1.7 on page 25).
24 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Using CodeWarrior to manage an assembly language project
Figure 1.7 CodeWarrior project window

If you expand the three “folder” icons, actually groups of files, by clicking in the
CodeWarrior project window, you could view some of the files that CodeWarrior created.
In general, any files in the project window with red check marks will remain checked until
they are successfully assembled, compiled, or linked. At this final stage of the Wizard, you
could safely close the project and you can reopen it later. A CodeWarrior project reopens
in the same configuration it had when it was last saved (Figure 1.8 on page 25).

Figure 1.8 Project window showing some of the files that the Wizard created

You should examine the types and location of folders and files that CodeWarrior created
in the actual project directory so that you know their location if you later configure the
Assembler. If you work with standalone tools such as a Compiler, Linker, Simulator/
25HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Using CodeWarrior to manage an assembly language project
Debugger, etc., you may need to specify the paths to these files. So it is helpful to know
their typical locations and functions.
You could use the Windows Explorer (Figure 1.9 on page 26) to examine the actual
folders and files that CodeWarrior created for your project and displays in the project
window above. The name and location for the project directory are what you selected
when creating the project using the Wizard.

Figure 1.9 Project directory in Windows Explorer

The project directory holds a total of six subfolders and 15 files at this point. The major
file for any CodeWarrior project is its <project_name>.mcp file. This is the file you
can use to reopen your project.
Return back to the CodeWarrior project window. Double-click on the main.asm file in
the Sources group. The editor in CodeWarrior opens the main.asm file (Figure 1.10 on
page 27).
26 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Using CodeWarrior to manage an assembly language project
Figure 1.10 Sample main.asm file in the project

You can use this sample main.asm file as a base to rewrite your own assembly source
program. Otherwise, you can import other assembly-code files into the project and delete
the default main.asm file from the project. For this project, the main.asm file contains
the sample Fibonacci program.
As a precaution, you can see if the project is configured correctly and if the source code is
free of syntactical errors. It is not necessary that you do so, but you should make (build)
the default project that CodeWarrior just created. Either press the Make button from the
toolbar or select (Project > Make) from the Project menu. All of the red check marks will
disappear after a successful building of the project (Figure 1.11 on page 28).
27HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Using CodeWarrior to manage an assembly language project
Figure 1.11 Project window after a successful build

If you checked the project directory after the first successful build (make) of the project
with the Windows Explorer, you would see that another subfolder and four additional files
were created (Figure 1.12 on page 28).

Figure 1.12 main.o file generated...

The new subfolder - ObjectCode - holds an object file for every assembly source-code file
that is assembled. In this case, the main.asm.o object-code file was generated.
28 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window
Analysis of groups and files in the project
window

There are three default groups for this holding this project’s files. It really does not matter
in which group a file resides as long as that file is somewhere in the project window. A file
does not even have to be in any group. The groups do not correspond to any physical
folders in the project directory. They are simply present in the project window for
conveniently grouping files anyway you choose. You can add, rename, or delete files or
groups, or you can move files or groups anywhere in the project window.

CodeWarrior groups
These groups and their usual functions are:

• Sources

This group contains the assembly source code files.

• Includes

This group holds include files. One include file is for the particular CPU derivative.
In this case, the MC68HC908GP32.inc file is for the MC68HC908GP32
derivative.

• Project Settings

– Linker Files

This group holds the burner file, the Linker PRM file, and the Linker mapping
file.

NOTE The default configuration of the project by the Wizard does not generate an
assembler output listing file for every *.asm source file. However, you can
afterwards select the Generate a listing file in the assembler options for the
Assembler to generate a format-configurable listing file of the assembly source
code (with the inclusion of include files, if desired). Assembler listing files
(with the *.lst file extension) are located in the bin subfolder in the project
directory when *.asm files are assembled with this option set.

TIP To set up your project for generating assembler output listing files, select:
Edit > <target_name> Settings... > Target > Assembler for HC08 > Options >
Output. (The default <target_name> is Standard.) Check Generate a listing
file. If you want to format the listing files differently than the default, check
Configure listing file and make the desired options. You can also add these listing
files to the project window for easier viewing instead of having to continually hunt
for them. For example, you might add the listing files to the Sources group in order
to have them near the assembly source files in the project window.
29HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window
This initial building of your project shows whether it is created and configured correctly.
Now you can utilize some of CodeWarrior’s features for managing your project. One
useful feature is the creation of additional build targets for your projects. You can use
multiple targets to have additional subprojects, each with its own files and configuration.
However, it is not at all necessary to use multiple build targets and renaming files and
groups in CodeWarrior, so you might skip the following sections about some
CodeWarrior project-management features and resume the Assembler part of this tutorial
at “Writing your assembly source files” on page 43.

Creating a Target
The Wizard created one target which is named Standard. You can check this out for
yourself by double-clicking on the Targets tab in the project window. The Targets panel
appears (Figure 1.13 on page 30).

Figure 1.13 Targets panel

Creating another build target is easy. Select Project > Create Target.... (If Create Target...
is grayed in the Project menu, click once on the project window and try again.) The New
Target dialog box appears (Figure 1.14 on page 31).
30 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window
Figure 1.14 New Target dialog box

Enter the name for the new target and select either of the two options. The Clone existing
target: option should be used if you plan on using any material from the existing
(Standard) build target. You can later delete whatever you do not want. Press OK. Now
there is another build target for your project (Figure 1.15 on page 31).

Figure 1.15 Two build targets are now available

You can use the new target by clicking its icon so that the black arrow is attached to it and
then select the Files tab. The project window now lists the files used for the new build
target. In practice, a number of these files will be the same cloned files used by the other
targets, but you can add or delete files as with any build target. You can also select which
target is the default upon opening the project by selecting Project > Set Default Target.
This project just cloned the default Standard build target without changing the
configuration. That does not do much at this point but to change the <target_name>.
So let’s create a subfolder in the Sources folder and include another main.asm file
that you can use for your new build target. If you do not create another main.asm file in
31HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window
a separate folder, any changes to the original main.asm file would affect all build
targets.

NOTE In practice, you would rename the files that are not common with files in other
build targets to some unique filename for each build target. We will rename
them later after you see what might occur when common filenames are used for
files that differ among build targets.

One way to have a separate assembler-source file for each project is to remove the original
main.asm file from the project (both build targets simultaneously) and then add the
appropriate main.asm file back into each build target. In either build target, right-select
the main.asm file and select Remove from the right-context menu (Figure 1.16 on
page 32).

Figure 1.16 Removing the original main.asm file simultaneously from all build targets

A Freescale CodeWarrior dialog box appears, asking if you want to remove this file from
the project. Press OK. The main.asm file is now removed from all build targets.
However, the main.asm still remains in the Sources folder in the project directory.
From Windows Explorer, create new subfolders, one for each build target, in the
Sources folder. You may name them as you choose, but you should use a meaningful
name, such as the same name as the appropriate build target. Then cut the main.asm file
from the Sources folder and paste it into every build target’s folder (Figure 1.17 on
page 33)
32 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window
Figure 1.17 Project directory with a separate main.asm source file for each build target

Now the appropriate main.asm file is added to each build target. In the Project menu,
select the Sources group for any of the build targets and then select Add Files.... The
Select files to add... dialog box appears (Figure 1.18 on page 33).

Figure 1.18 Select files to add... dialog box

Select the appropriate folder for the build target, press Open, and select the main.asm
file. Press Open again. The Add Files dialog box appears (Figure 1.19 on page 34).
33HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window
Figure 1.19 Add Files dialog box

The figure above would be used for the Alpha 0.1 build target. Deselect the original build
target (Standard) and keep the new build target (Alpha 0.1) checked. Press OK. The
main.asm file is now added to the Alpha 0.1 build target. Repeat this procedure for
adding the main.asm to the remaining build target.
Now you can modify a main.asm file for one build target without its adversely affecting
the other build targets. You could repeat this procedure for any other files in the project
that would be different for other build targets. However, you should not do this for those
files that are common to all build targets.

NOTE The main.asm file was added to each build target, but only one of them is
active. The inactive main.asm file will have n/a entries for the Code and Data
columns in the project window (Figure 1.20 on page 35).
34 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window
Figure 1.20 Project window showing active and inactive main.asm files

So far you have not yet used the editor for this project. For one of the build targets, say the
Alpha 0.1, double click on the active main.asm file in the project window. This file
opens. Adjust the mode of the main.asm file’s window so as to have a comfortable
view. One way is to choose the Docked-window option. Right-click on the title bar for the
main.asm file and select Docked in the right-context menu (Figure 1.21 on page 35).

Figure 1.21 Docked-window option for the main.asm file
35HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window
The docked-window view could be adjusted so as to appear as in Figure 1.22 on page 36.

Figure 1.22 Docked-window view for the main.asm file and project window

Now you can modify the main.asm file in a minor manner. Let’s add a NOP instruction
after the CLI instruction. Place the cursor at the end of the comment in the CLI
36 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window
instruction line and press Enter on the keyboard. Type NOP and press Enter once more
(Figure 1.23 on page 37).

Figure 1.23 Modified main.asm file

There are numerous ways to save any changes made by the editor to the main.asm file.
Some of these are:

• Pressing the Save icon on the Toolbar

• Selecting File > Save or entering Ctrl+S with the keyboard.

• Selecting Project > Check Syntax (Ctrl+;). This also checks the syntax for the
main.asm file, as the name for the command suggests.

• Selecting Project > Compile (Ctrl+F7) or pressing the Compile icon on the Toolbar.
This also checks the syntax, assembles the main.asm file, and produces a
main.asm.o object-code file in the bin folder in the project directory, if
successful.

• Selecting Project > Bring Up To Date (Ctrl+U). If successful, this does everything
that Compile does plus assembling multiple assembly-code files. In addition, each
37HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window
file with a red check mark is processed. However, no executable output (*.abs) file
is generated.

• Selecting Project > Make (F7) or pressing Make on any of the two Toolbars. This
effects all the functions that Bring Up To Date does in addition to generating an
executable *.asm file in the bin folder, if successful

• Selecting Project > Debug (F5) or pressing the Debug icon on any of the two
Toolbars. This does everything that Make does in addition to starting the Simulator/
Debugger Build Tool (hiwave.exe in the prog folder in the CodeWarrior
installation folder), if successful.

Generating Listing Files
It was mentioned previously that the assembler output listing files were not generated
without making configuration changes for the build target. Generating a listing file is easy
to set up using Assembler options. Select Edit > <target_name> Settings > Target >
Assembler for HC08. The Assembler for HC08 preference panel opens (Figure 1.24 on
page 38).

Figure 1.24 Assembler for HC08 preference panel

Press Options. The HC08 Assembler Option Settings dialog box opens (Figure 1.25 on
page 39).
38 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window
Figure 1.25 HC08 Assembler Option Settings dialog box

Check Generate a listing file and also Do not print included files in lsting file (unless you
actually want to view the sometimes lengthy include files). Press OK twice to close the
dialog box and the preference panel. Then repeat this procedure for the remaining build
targets. With these options set, the Assembler will generate a listing file in the bin folder
for all *.asm files for each build target. The filename for this listing file is the same as the
*.asm file, but with the *.lst file extension.
Using the same filename for the main.asm file for all build targets causes a problem for
the assembler output listing file. To which main.asm file does the main.lst listing
file correspond? You could eliminate this confusion by choosing a unique filename for the
main.asm file for each build target. However, using the poor practice of using common
filenames for files that differ in other build targets was done intentionally so that:

• You could see the confusion it causes with listing files.

• This allows you to employ another CodeWarrior functionality - renaming files.

Renaming files
It is possible to change the name of a file in the project window, add it to the project, and
remove the former file from the project window simultaneously.
39HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window
Double-click on the active main.asm file’s icon in the project window. The editor opens
that file. Select File > Save as.... The Save As dialog box appears (Figure 1.26 on
page 40).

Figure 1.26 Save As dialog box

Enter the new filename in the Object name: text box. Press Save. Close the open file by
selecting File > Close or by pressing the Close button in the Title bar of the open file.
Now:

• The new filename (e.g., main_Standard.asm) replaces the former filename in
the project window for all build targets.

• A file with the new filname is created in the folder selected in the Save As dialog box
<project_name> \<all_source-files>\<build_target>, or in this case:
ABC\Sources\Standard.

However, the original file still exists in its folder with its original filename.
You can use this procedure for renaming other files in the project window:

• Open the file in the project window that you want to rename.

• Select File > Save As....

• Browse for the folder in which to store the new file.

• Enter a new filename. Press Save.

Renaming a filename in this manner simultaneously removes the older file from and
imports the newer file into the project (window). Repeat this procedure for the other build
targets. You can delete the two unneeded main.asm files from the two subfolders, if you
choose, as they now longer are involved with the project. You could also delete the
main.lst listing file and the main.dbg file from the bin folder if any of them is
present.
If you build any of the two build projects from this point, a unique listing file is generated
for each build target in the bin folder.
40 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window
Creating a new group
From the Project menu, select Create Group.... The Create Group dialog box appears
(Figure 1.27 on page 41).

Figure 1.27 Create Group dialog box

Enter a name for the new group in the Enter name for new group: text box. Press OK. The
new group appears in the project window (Figure 1.28 on page 41).

Figure 1.28 Project window now has another group

There is only one reason for creating a group: placing one or more files in it. And “Oops!”
The group name has an error. But you can rectify that later. Let’s place the two listing files
located in the bin folder into the new group. (If there are not two listing files - one for
each build target, build the build targets until there are two.) Select Project > Add Files....
41HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window
Figure 1.29 New group - Select files to add... dialog box

Select the two listing files and press Open. The Add Files dialog box appears
(Figure 1.30 on page 42).

Figure 1.30 New group - Add Files dialog box

Check all of the build targets - the default. Press OK. Now the listing files are conveniently
grouped into the new group in the project window.

Renaming groups in the project window
In addition to the ease in changing your Target Name or renaming files in the project
window, you can also rename any of the groups in the project window.
42 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Writing your assembly source files
Double-click on the misnamed group - Bad Nam. The Rename Group dialog box appears
(Figure 1.31 on page 43).

Figure 1.31 Rename Group dialog box

Enter a new name for the group and press OK. The group name is now changed in the
project window (Figure 1.32 on page 43).

Figure 1.32 Project window with the renamed group

Writing your assembly source files
Once your project is configured, you can start writing your application’s assembly source
code and the Linker’s PRM file.

NOTE You can write an assembly application using one or several assembly units.
Each assembly unit performs one particular task. An assembly unit is
comprised of an assembly source file and, perhaps, some additional include
43HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analyzing the project files
files. Variables are exported from or imported to the different assembly units
so that a variable defined in an assembly unit can be used in another assembly
unit. You create the application by linking all of the assembly units.

The usual procedure for writing an assembly source-code file is to use the editor that is
integrated into CodeWarrior. You can begin a new file by pressing the New Text File icon
on the Toolbar to open a new file, write your assembly source code, and later save it with
a *.asm file extension using the Save icon on the Toolbar to name and store it wherever
you want it placed - usually in the Sources folder.
After the assembly-code file is written, it is added to the project using the Project menu. If
the source file is still open in the project window, select the Sources group icon in the
project window, single click on the file that you are writing, and then select
Project > Add <filename> to Project. The newly created file is added to the Sources
group in the project. If you do not first select the destination group’s icon (for example,
Sources) in the project window, the file will probably be added to the bottom of the files
and groups in the project window, which is OK. You can drag and drop the icon for any
file wherever you want in the project window.

Analyzing the project files
We will analyze the default main.asm file that was generated when the project was
created with the Wizard. Listing 1.2 on page 44 is the default but renamed
main_Standard.asm file that is located in the Sources folder created by the
Wizard. This is the assembler source code for the Fibonacci program.

Listing 1.2 main_Standard.asm file

;***
;* This stationery serves as the framework for a user application. *
;* For a more comprehensive program that demonstrates the more *
;* advanced functionality of this processor, please see the *
;* demonstration applications, located in the examples *
;* subdirectory of the "Freescale CodeWarrior for HC08" program *
;* directory. *
;***

; export symbols
XDEF _Startup, main
; we use export 'Entry' as symbol. This allows us to
; reference 'Entry' either in the linker .prm file
; or from C/C++ later on

XREF __SEG_END_SSTACK ; symbol defined by the linker
; for the end of the stack

Include derivative-specific definitions

INCLUDE 'derivative.inc'
44 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analyzing the project files
; variable/data section
MY_ZEROPAGE: SECTION SHORT ; Insert here your data definition
Counter: DS.B 1
FiboRes: DS.B 1

; code section
MyCode: SECTION
main:
_Startup:

LDHX #__SEG_END_SSTACK ; initialize the stack pointer
TXS
CLI ; enable interrupts

mainLoop:
CLRA ; A contains counter

cntLoop: INCA
CBEQA #14,mainLoop ; larger values cause overflow.
feed_watchdog
STA Counter ; update global.
BSR CalcFibo
STA FiboRes ; store result
LDA Counter
BRA cntLoop ; next round.

; Function to calculate fibonacci numbers. Argument is in A.
CalcFibo:

DBNZA fiboDo ; fiboDo
INCA
RTS

fiboDo:
PSHA ; the counter
CLRX ; second last = 0
LDA #$01 ; last = 1

FiboLoop: PSHA

ADD 1,SP
PULX
DBNZ 1,SP,FiboLoop

FiboDone: PULH ; release counter
RTS ; result in A

;**
spurious - Spurious Interrupt Service Routine. *
;* (unwanted interrupt) *
;**
spurious: ; placed here so that security value

NOP ; does not change all the time.
RTI
45HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analyzing the project files
;**
;* Interrupt Vectors *
;**

ORG $FFFA

DC.W spurious ;
DC.W spurious ; SWI
DC.W _Startup ; Reset

Since the RS08 memory map is different from the HC08 one (and so is the instruction set),
Listing 1.3 on page 46 shows a similar example for RS08.

NOTE In order to assemble files for the RS08 derivative the option -Crs08 should be
passed to the assembler. This can be done either directly (in the command line
or in the assembler command bar) or by choosing the “Code generation” tab
from the assembler options menu. Then select the “Derivative family” option
and enable the RS08 Derivative Family radio button.

Listing 1.3 Contents of Example File test_rs08.asm

 XDEF Entry ; Make the symbol entry visible for external module
 ; This is necessary to allow the linker to find the
 ; symbol and use it as the entry point for the
 ; application.
cstSec: SECTION ; Define a constant relocatable section
var1: DC.B 5 ; Assign 5 to the symbol var1
dataSec: SECTION ; Define a data relocatable section
data: DS.B 1 ; Define one byte variable in RAM
codeSec: SECTION ; Define a code relocatable section
Entry:
 LDA var1
main:
 INCA
 STA data
 BRA main

When writing your assembly source code, pay special attention to the following:

• Make sure that symbols outside of the current source file (in another source file or in
the linker configuration file) that are referenced from the current source file are
externally visible. Notice that we have inserted the assembly directive “XDEF
_Startup, main” where appropriate in the example.
46 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files
• In order to make debugging from the application easier, we strongly recommend that
you define separate sections for code, constant data (defined with DC) and variables
(defined with DS). This will mean that the symbols located in the variable or constant
data sections can be displayed in the data window component.

• Make sure to initialize the stack pointer when using BSR or JSR instructions in your
application. The stack can be initialized in the assembly source code and allocated to
RAM memory in the Linker parameter file, if a *.prm file is used.

NOTE The default assembly project using the Wizard with CodeWarrior initializes the
stack pointer automatically with a symbol defined by the Linker for the end of
the stack “__SEG_END_SSTACK”.

NOTE For the RS08 derivative initializing the stack does not apply.

Assembling your source files
Once an assembly source file is available, you can assemble it. You can either utilize
CodeWarrior to assemble the *.asm files or alternatively you can use the standalone
assembler of the build tools in the prog folder in the CodeWarrior installation.

Assembling with CodeWarrior
CodeWarrior simplifies the assembly of your assembly source code. You can assemble the
source code files into object (*.o) files without linking them by:

• selecting one or more *.asm files in the project window and then select Compile
from the Project menu (Project > Compile). Only *.asm files that were selected
will generate updated *.o object files.

• selecting Project > Bring Up To Date. It is not necessary to select any assembly
source files.

The object files are generated and placed into the ObjectCode subfolder in the project
directory. The object file (and its path) that results from assembling the main.asm file in
the default Code Warrior project is:

 <project_name>\<project_name>_Data\<build-target_name>\
ObjectCode\main.asm.o.

NOTE The build-target name can be changed to whatever you choose in the Target
Settings preference panel. Select Edit > <target> Settings... > Target > Target
Settings and enter the revised target name into the Target Name: text box. The
default Target Name is Standard.
47HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files
Or, you can assemble all the *.asm files and link the resulting object files to generate the
executable <target_name>.abs file by invoking either Make or Debug from the
Project menu (Project > Make or Project > Debug). This results in the generation of the
<target_name>.abs file in the bin subfolder of the project directory.
Two other files generated by CodeWarrior after Linking (Make) or Debug are:

• <target_name>.map

This Linker map file lists the names, load addresses, and lengths of all segments in
your program. In addition, it lists the names and load addresses of any groups in the
program, the start address, and messages about any errors the Linker encounters.

• <target_name>.abs.s19

This is an S-Record File that can be used for programming a ROM memory.

TIP The remaining file in the default bin subfolder is the <target_name>.dbg
file that was generated back when the *.asm file was successfully assembled.
This debugging file was generated because a bullet was present in the debugging
column in the project window.
You can enter (or deselect by toggling) a debugging bullet by clicking at the
intersection of the *.asm file (or whatever other source-code file selected for
debugging) and the debugging column in the project window. Whenever the
debugger or simulator does not show the file in its Source window, check first to
see if the debugging bullet is present or not in the project window. The bullet must
be present for debugging purposes.

TIP The Wizard does not generate default assembler-output listing files. If you want
such listing files generated, you have to select this option: Edit > <target_name>
Settings > Target > Assembler for HC08 > Options. Select the Output tab in the
HC08 Assembler Option Settings dialog box. Check Generate a listing file and Do
not print included files in list file. (You can uncheck Do not print included files in
list file if you choose, but be advised that the include files are usually quite
lengthy.) Now a *.lst file will be generated in the bin subfolder of the project
directory whenever a *.asm file is assembled.

TIP You can add the *.lst files to the project window for easier viewing. This way
you do not have to continually hunt for them with your editor.

Listing 1.4 on page 48 shows the main.lst file for this project. The comments are
truncated on the far-right edge due to size constraints of the manual’s page.

Listing 1.4 main_Standard.lst assembler output listing file

Freescale HC08-Assembler
48 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files
(c) Copyright Freescale 1987-2005

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

1 1

;***

2 2 ;* This stationery serves as the fram
3 3 ;* For a more comprehensive program t
4 4 ;* advanced functionality of this pro
5 5 ;* demonstration applications, locate
6 6 ;* subdirectory of the "Freescale Cod
7 7 ;* directory.
8 8 ;************************************
9 9

10 10 ; export symbols
11 11 XDEF _Startup, main
12 12 ; we use export 'Entry' a
13 13 ; reference 'Entry' eithe
14 14 ; or from C/C++ later on
15 15
16 16 XREF __SEG_END_SSTACK ;
17 17
18 18 ; Include derivative-specific d
19 19 INCLUDE 'derivative.inc'

 1238 20
 1239 21 ; variable/data section
 1240 22 MY_ZEROPAGE: SECTION SHORT ;
 1241 23 000000 Counter: DS.B 1
 1242 24 000001 FiboRes: DS.B 1
 1243 25
 1244 26
 1245 27 ; code section
 1246 28 MyCode: SECTION
 1247 29 main:
 1248 30 _Startup:
 1249 31 000000 45 xxxx LDHX #__SEG_END_SSTACK
 1250 32 000003 94 TXS
 1251 33 000004 9A CLI ;
 1252 34 mainLoop:
 1253 35 000005 4F CLRA ;
 1254 36 000006 4C cntLoop: INCA
 1255 37 000007 41 0E FB CBEQA #14,mainLoop ;
 1256 38 feed_watchdog
 1257 13m 00000A C7 FFFF + STACOPCTL
 1258 39 00000D B7 xx STA Counter ;
 1259 40 00000F AD 06 BSR CalcFibo
 1260 41 000011 B7 xx STA FiboRes ;
49HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files
 1261 42 000013 B6 xx LDA Counter
 1262 43 000015 20 EF BRA cntLoop ;
 1263 44
 1264 45 CalcFibo: ; Function to calculate f
 1265 46 000017 4B 02 DBNZA fiboDo ;
 1266 47 000019 4C INCA
 1267 48 00001A 81 RTS
 1268 49 fiboDo:
 1269 50 00001B 87 PSHA ;
 1270 51 00001C 5F CLRX ;
 1271 52 00001D A6 01 LDA #$01 ;
 1272 53 00001F 87 FiboLoop: PSHA ;
 1273 54 000020 9F TXA
 1274 55 000021 9EEB 01 ADD 1,SP
 1275 56 000024 88 PULX
 1276 57 000025 9E6B 01 F6 DBNZ 1,SP,FiboLoop
 1277 58 000029 8A FiboDone: PULH ;
 1278 59 00002A 81 RTS ;
 1279 60
 1280 61 ;*************************************
 1281 62 ;* spurious - Spurious Interrupt Servi
 1282 63 ;* (unwanted interrupt)

Freescale HC08-Assembler
(c) Copyright Freescale 1987-2005

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1283 64 ;************************************
 1284 65 spurious: ;
 1285 66 00002B 9D NOP ;
 1286 67 00002C 80 RTI
 1287 68
 1288 69 ;************************************
 1289 70 ;* Interrupt Vectors
 1290 71 ;************************************
 1291 72 ORG $FFFA
 1292 73
 1293 74 a00FFFA xxxx DC.W spurious ;
 1294 75 a00FFFC xxxx DC.W spurious
 1295 76 a00FFFE xxxx DC.W _Startup ;
50 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files
Assembling with the Assembler
It is also possible to use the HC(S)08 Assembler as a standalone assembler. If you prefer
not to use the assembler but do want to use the Linker, you can skip this section and
proceed to “Linking the application” on page 67.
This tutorial does not create another project from scratch with the Build Tools, but instead
uses some files of a project already created by the CodeWarrior Wizard. CodeWarrior can
create, configure, and mange a project much easier and quicker than using the Build
Tools. However, the Build Tools could also create and configure another project from
scratch.
A Build Tool such as the Assembler makes use of a project directory file for configuring
and locating its input and generated files. The folder that is designated for this purpose is
referred to by a Build Tool as the “current directory.”
Start the Assembler. You can do this by opening the ahc08.exe file in the prog folder
in the HC08 CodeWarrior installation. The Assembler opens (Figure 1.33 on page 51).

Figure 1.33 HC08 Assembler opens...

Read any of the Tips if you choose to and then press Close to close the Tip of the Day
dialog box.

Configuring the Assembler
A Build Tool, such as the Assembler, requires information from configuration files. There
are two types of configuration data:

• Global

This data is common to all Build Tools and projects. There may be common data for
each Build Tool (Assembler, Compiler, Linker, ...) such as listing the most recent
51HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files
projects, etc. All tools may store some global data into the mcutools.ini file.
The tool first searches for this file in the directory of the tool itself (path of the
executable). If there is no mcutools.ini file in this directory, the tool looks for
an mcutools.ini file located in the MS WINDOWS installation directory (e.g.
C:\WINDOWS). See Listing 1.5 on page 52.

Listing 1.5 Typical locations for a global configuration file

\CW installation directory\prog\mcutools.ini - #1 priority
C:\WINDOWS\mcutools.ini - used if there is no mcutools.ini file above

If a tool is started in the default location C:\Program Files\CW08
V5.x\prog directory, the initialization file in the same directory as the tool is used:

C:\Program Files\CW08 V5.x\prog\mcutools.ini.

But if the tool is started outside the CodeWarrior installation directory, the
initialization file in the Windows directory is used. For example,
C:\WINDOWS\mcutools.ini.

For information about entries for the global configuration file, see
Global Configuration File Entries in the Appendices.

• Local

This file could be used by any Build Tool for a particular project. For information
about entries for the local configuration file, see Local Configuration File Entries in
the Appendices.

After opening the Assembler, you would load the configuration file for your project if it
already had one. However, you will create a new configuration file for the project in this
tutorial and save it so that when the project is reopened, its previously saved configuration
state will be used. From the File menu, select New / Default Configuration. The HC08
Assembler Default Configuration dialog box appears (Figure 1.34 on page 53)
52 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files
Figure 1.34 HC08 Assembler New / Default dialog box

Now let’s save this configuration in a newly created folder that will become the project
directory. From the File menu, select Save Configuration As.... A Saving Configuration
as... dialog box appears. Navigate to the folder of your choice and Click on the Create
New Folder icon in the Toolbar. Enter a name for the project directory (Figure 1.35 on
page 53).

Figure 1.35 Loading configuration dialog box

Press Open. In this case, Model T becomes the project directory in the Projects folder.
Press Save and the project.ini file is created in the Model T folder and becomes the
local configuration file for this project. The current directory for the HC08 Assembler is
changed to your project directory (Figure 1.36 on page 54).
53HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files
Figure 1.36 Assembler’s current directory switches to your project directory...

If you were to examine the project directory with the Windows Explorer at this point, it
would only contain the project.ini configuration file that the Assembler just created
(Figure 1.37 on page 54).

Figure 1.37 Project directory in Windows Explorer

If you further examined the contents of the project.ini configuration file, you would
see that it contains Assembler options in the [AHC08_Assembler] portion of the file. The
project.ini file for this project only has an [AHC08_Assembler] section
(Listing 1.6 on page 54).

Listing 1.6 Contents of the project.ini file

[AHC08_Assembler]
StatusbarEnabled=1
ToolbarEnabled=1
WindowPos=0,1,-1,-1,-1,-1,66,87,505,453
54 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files
EditorType=4

The AHC08_Assembler options are described in detail in [XXX_Assembler] Section in
the Appendices.
Next, you set the object-file format that you will use (HIWARE or ELF/DWARF). Select
Assembler > Options. The Assembler displays the HC08 Assembler Option Settings
dialog box (Figure 1.38 on page 55).

Figure 1.38 .HC08 Assembler Option Settings dialog box

In the Output panel, select the check boxes labeled Generate a listing file and Object
File Format. For the Object File Format, select the ELF/DWARF 2.0 Object File
Format in the pull-down menu. The listing file could be much shorter if the Do not
print included files in list file check box is checked, so you may want to select that
option also. Press OK to close the HC08 Assembler Option Settings dialog box.

NOTE Note: For the RS08 derivative the HIWARE Object File Format is not
supported.
55HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files
Save the changes to the configuration by:

• selecting File > Save Configuration (Ctrl + S) or

• pressing the Save button on the toolbar.

After the changes to the configuration are saved, the project.ini file’s contents are as
follows (Listing 1.7 on page 56).

Listing 1.7 project.ini file after some assembly options were added

[AHC08_Assembler]
StatusbarEnabled=1
ToolbarEnabled=1
WindowPos=0,1,-1,-1,-1,-1,66,87,482,269
EditorType=4
Options=-F2 -L=%(TEXTPATH)\%n.lst -Li

Input Files
Now that the project’s configuration is set, you can assemble an assembly-code file.
However, the project does not contain any source-code files at this point. You could create
assembly *.asm and include *.inc files from scratch for this project. However, for
simplicity’s sake, you can copy-and-paste the main_Standard.asm and the
derivative.inc files from the previous CodeWarrior project. For this project you
should have a project directory named Model T. Within this folder, you should have
another folder named Sources, which contains the two files described above. Using a
text editor of your choice, the main_Standard.asm file should be slightly modified so
that it appears as below (Listing 1.8 on page 56):

Listing 1.8 main.asm_Standard file

;***
;* This stationery serves as the framework for a user application. *
;* For a more comprehensive program that demonstrates the more *
;* advanced functionality of this processor, please see the *
;* demonstration applications, located in the examples *
;* subdirectory of the "Freescale CodeWarrior for HC08" program *
;* directory. *
;***

; export symbols
XDEF _Startup, main
; we use export '_Startup' as symbol. This allows us to
; reference '_Startup' either in the linker .prm file
; or from C/C++ later on

XREF __SEG_END_SSTACK ; symbol defined by the linker
; for the end of the stack
56 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files
Include derivative-specific definitions

INCLUDE 'derivative.inc'

; variable/data section
MY_ZEROPAGE: SECTION SHORT ; Insert here your data definition
Counter: DS.B 1
FiboRes: DS.B 1

; code section
MyCode: SECTION
main:
_Startup:

LDHX #__SEG_END_SSTACK ; initialize the stack pointer
TXS
CLI ; enable interrupts

mainLoop:
CLRA ; A contains counter

cntLoop: INCA
CBEQA #14,mainLoop ; larger values cause overflow.

STA Counter ; update global.
BSR CalcFibo
STA FiboRes ; store result
LDA Counter
BRA cntLoop ; next round.

; Function to calculate fibonacci numbers. Argument is in A.
CalcFibo:

DBNZA fiboDo ; fiboDo
INCA
RTS

fiboDo:
PSHA ; the counter
CLRX ; second last = 0
LDA #$01 ; last = 1

FiboLoop: PSHA

ADD 1,SP
PULX
DBNZ 1,SP,FiboLoop

FiboDone: PULH ; release counter
RTS ; result in A

Now there are three files in the project (Figure 1.39 on page 58):

• the project.ini configuration file and
57HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files
• two files in the Sources folder:

– main_Standard.asm

– derivative.inc.

Figure 1.39 Project files

Assembling the assembly source-code files
Let’s assemble the main_Standard.asm file. From the File menu, select Assemble.
The Select File to Assemble dialog box appears (Figure 1.40 on page 59).
58 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files
Figure 1.40 Select Files to Assemble dialog box

Browse to the Sources folder in the project directory and select the
main_Standard.asm file. Press Open and the main.asm file should start assembling
(Figure 1.41 on page 59).

Figure 1.41 Results of assembling the main.asm file...

The project window provides information about the assembly process or generates error
messages if the assembly was unsuccessful. In this case an error message is generated. -
the A2209 File not found message. If you right-click on the text containing the error
message, a context menu appears (Figure 1.42 on page 60).

NOTE If you get any other types of errors, make sure the main_Standard.asm
file is modified as shown in Listing 1.8 on page 56
59HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files
Figure 1.42 Context menu

Select Help on “file not found” and help for the A2309 error message appears
(Figure 1.43 on page 61).
60 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files
Figure 1.43 A2309: File not found

You know that the file exists because it is included in the Sources folder that you
imported into the project directory. The help message for the A2309 error states that the
Assembler looks for this “missing” include file first in the current directory and then in the
directory specified by the GENPATH environment variable. This suggests that the
GENPATH environment variable should specify the location of the derivative.inc
include file.

NOTE If you read the main.asm file, you could have anticipated this on account of
this statement on line 20: INCLUDE 'derivative.inc'.

To fix this, select File > Configuration. The Configuration dialog box appears
(Figure 1.44 on page 62).
61HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files
Figure 1.44 Browsing for the Sources folder

Select the Environment tab and then General Path. Press the “...” button and navigate in
the Browse for Folder dialog box for the folder that contains the derivative.inc file
- the aforementioned Sources folder in the project directory. Press OK to close the
Browse for Folder dialog box. The Configuration dialog box is now again active
(Figure 1.45 on page 63).
62 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files
Figure 1.45 Adding a GENPATH

Press the Add button, and the path to the derivative.inc file “E:\Projects\Model
T\Sources” now appears in the lower panel. Press OK. An asterisk now appears in the Title
bar, so save the change to the configuration by pressing the Save button in the Toolbar or
by selecting File > Save Configuration. The asterisk disappears.

TIP You can clear the messages in the Assembler window at any time by selecting
View > Log > Clear Log.

Now that you have supplied the path to the derivative.inc file, let’s attempt again to
assemble the main_Standard.asm file.
Select File > Assemble and again navigate to the main_Standard.asm file and press
Open. However, the A2309 error message reappears but this time for a different include
file - MC68HC908GP32.inc. (Figure 1.46 on page 64).

NOTE In this case, the derivative.inc file has this statement:
INCLUDE 'MC68HC908GP32.inc'. Therefore, a prior reading of the
assembly-code and include files would suggest these include files might
require GENPATH configurations. Therefore, you should set any needed
GENPATH in advance of assembling the source-code files.
63HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files
Figure 1.46 Assemble attempt #2

You fix this by repeating the GENPATH routine for the other include file (Figure 1.47 on
page 65). The MC68HC908GP32.inc file is located at this path:

CW08 V5.x\lib\c08c\include

The include folder is the typical place for “missing” include files.
64 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files
Figure 1.47 Adding another GENPATH

After the GENPATH is set up for the second include file and saved as before, you can try to
assemble the main_Standard.asm file for the third time (Figure 1.48 on page 65).

Figure 1.48 Assemble attempt #3 - success!
65HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files
The Macro Assembler indicates successful assembling and indicated that the Code Size
was 40 bytes. The message “*** 0 error(s),” indicates that the
main_Standard.asm file assembled without errors. Do not forget to save the
configuration one additional time.
The Assembler also generated a main_Standard.dbg file (for use with the Simulator/
Debugger), a main_Standard.o object file (for further processing with the Linker),
and a main_Standard.lst output listing file in the project directory. The binary
object-code file has the same name as the input module, but with the ‘*.o’ extension -
main_Standard.o. The debug file has the same name as the input module, but with
the ‘*.dbg’ extension - main_Standard.dbg and the assembly output listing file has
the *.lst extension (Figure 1.49 on page 66).

Figure 1.49 Project directory after a successful assembly

The ERR.TXT file is present in the project directory on account of the earlier failed
attempts at assembling. The ERR.TXT file is empty upon a successful assembly. You can
delete this file. Let’s take an additional look at the project.ini file (Figure 1.8 on
page 25).

Listing 1.9 project.ini file after GENPATH environmental variable is created

[AHC08_Assembler]
StatusbarEnabled=1
ToolbarEnabled=1
WindowPos=0,1,-1,-1,-1,-1,66,87,767,535
EditorType=1
Options=-F2 -L=%(TEXTPATH)\%n.lst -Li
RecentCommandLine0=""E:\Projects\Model T\Sources\main_Standard.asm""
CurrentCommandLine=""E:\Projects\Model T\Sources\main_Standard.asm""
[Environment Variables]
GENPATH=C:\Program Files\Freescale\CW08 V5.x\
66 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Linking the application
lib\hc08c\include;E:\Projects\Model T\Sources
OBJPATH=
TEXTPATH=
ABSPATH=
LIBPATH=

The haphazard running of this project was intentionally designed to fail in order to
illustrate what would occur if the path of any include file is not properly configured. Be
aware that include files may be included by either *.asm or *.inc files. In addition,
remember that the lib folder in the CodeWarrior installation contains several derivative-
specific include and prm files available for inclusion into your projects.

Linking the application
Once the object files are available you can link your application. The linker organizes the
code and data sections into ROM and RAM memory areas according to the project’s linker
parameter (PRM) file.

Linking with CodeWarrior
The Linker’s input files are object-code files from assembler and compiler, library files,
and the Linker PRM file.

PRM file
If you are using CodeWarrior to manage your project, a pre-configured PRM file for a
particular derivative is already set up (Listing 1.10 on page 67). Listing 1.11 on page 68 is
an example Linker PRM file for the RS08 derivative.

Listing 1.10 Linker PRM file for the GP32 derivative - Project.prm

/* This is a linker parameter file for the GP32 */

NAMES END /* CodeWarrior will pass all the needed files to the linker
by command line. But here you may add your own files too. */

SEGMENTS /* Here all RAM/ROM areas of the device are listed. Used in
PLACEMENT below. */

ROM = READ_ONLY 0x8000 TO 0xFDFF;
Z_RAM = READ_WRITE 0x0040 TO 0x00FF;
RAM = READ_WRITE 0x0100 TO 0x023F;

END

PLACEMENT /* Here all predefined and user segments are placed into the
SEGMENTS defined above. */

DEFAULT_RAM INTO RAM;
67HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Linking the application
_DATA_ZEROPAGE, MY_ZEROPAGE INTO Z_RAM;
DEFAULT_ROM, ROM_VAR, STRINGS INTO ROM;

END

STACKSIZE 0x50

//VECTOR 0 _Startup /* Reset vector: This is the default entry
// point for a C/C++ application. */
//VECTOR 0 Entry /* Reset vector: this is the default entry point

for an Assembly application. */
//INIT Entry /* For assembly applications: that this is as

well the initialization entry point */

Listing 1.11 Linker PRM file for the RS08 derivative

LINK test_rs08.abs
NAMES test_rs08.o END
SEGMENTS
 TINY_RAM = READ_WRITE 0x0000 TO 0x000D;
 DIRECT_RAM = READ_WRITE 0x0020 TO 0x004F;
 ROM = READ_ONLY 0x3800 TO 0x3FFB;
 RESET_JMP_AREA= READ_ONLY 0x3FFD TO 0x3FFF;
END

PLACEMENT
 DEFAULT_ROM INTO ROM;
 DEFAULT_RAM INTO DIRECT_RAM;

 TINY_RAM_VARS, INTO TINY_RAM;
 DIRECT_RAM_VARS INTO DIRECT_RAM,
TINY_RAM;
END

STACKSIZE 0x00 // no stack for RS08

VECTOR 0 Entry
INIT Entry

The Linker PRM file allocates memory for the stack and the sections named in the
assembly source code files. If the sections in the source code are not specifically
referenced in the PLACEMENT section, then these sections are included in
DEFAULT_ROM or DEFAULT_RAM. You may use a different PRM file for each build
target instead of the default PRM file generated by the Wizard - Project.prm.
The Linker for HC08 preference panel controls which PRM file is used for your
CodeWarrior project. The default PRM file for a CodeWarrior project is the PRM file in
the project window. Let’s see what other options exist for the PRM file. From the Edit
68 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Linking the application
menu, select <target_name> Settings... > Target > Linker for HC08. The Linker for
HC08 preference panel appears (Figure 1.50 on page 69).

Figure 1.50 Linker for HC08 preference panel

There are three radio buttons for selecting the PRM file and another for selecting an
absolute, single-file assembly project:

• Use Custom PRM file

This option will browse for an existing PRM file for the build target.

• Use Template PRM file

This option uses a template PRM in the pull-down menu and copies it for use in your
build target.

• Use PRM file from project - the default

• Absolute, Single-File Assembly project.

An absolute assembly project does not require a PRM file. Therefore, the
configuration information that is otherwise present in a PRM file must be included in
a single-file *.asm file. Only one *.asm file is allowed for absolute assembly.

In case you want to change the filename of the application, you can determine the
filename and its path with the Application Filename: text box.
69HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Linking the application
The ‘STACKSIZE’ entry is used to set the stack size. The size of the stack for this project
is 80 bytes. Some entries in the Linker PRM file may be commented-out by the IDE, as are
the three last items in the Project.prm file in Listing 1.10 on page 67.

Linking the object-code files
You can run this relocatable assembly project from the Project menu: Select Project >
Make or Project > Debug. The Linker generates a *.abs file and a *.abs.s19
standard S-Record File in the bin subfolder of the project directory. You can use an
S-Record File to program ROM memory (Figure 1.51 on page 70).

Figure 1.51 bin folder in the project directory in Windows Explorer after linking

The Project.abs, Project.abs.s19, and Project.map files in the Figure
above are the Linker output files resulting from the object-code and PRM files and
configuration in the build target that is selected in the Targets panel in the project window.
The Full Chip Simulation option in CodeWarrior was selected when the project was
created, so if Project > Debug is selected, the debugger opens and you can follow each
assembly-code instruction during the execution of the program with the Hiwave Simulator
(Figure 1.52 on page 71).
70 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Linking the application
Figure 1.52 hiwave.exe - Simulator/Debugger build tool

You can single-step the Simulator through the Fibonacci program from the Run menu in
the Simulator (Run > Assembly Step or Ctrl+F11). You can monitor the seven panels in
the Simulator while following the logic in the Fibonacci application.

Linking with the Linker
If you are using the Linker (SmartLinker) build tool utility for a relocatable assembly
project, you will use a PRM file for the Linker to allocate ROM and RAM memory areas.

• Using a text editor, create the project’s linker parameter file. You can modify a
*.prm file from another project and rename it as <target_name>.prm.

• Store the PRM file in a convenient location, such as the project directory.

• In the <project_name>.prm file, change the name of the executable (*.abs)
file to whatever you choose, e.g., <project_name>.abs. In addition, you can
also modify the start and end addresses for the ROM and RAM memory areas. The
module’s Model T.prm file — a PRM file for an MC68HC908GP32 from another
(CodeWarrior) project was adapted — is shown in Listing 1.12 on page 72.
71HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Linking the application
Listing 1.12 Layout of a PRM file for the Linker - Model T.prm

/* This is a linker parameter file for the GP32 */

LINK Model_T.abs /* Absolute executable file */
NAMES main_Standard.o /* Input object-code files are listed here. */
END

SEGMENTS /* Here all RAM/ROM areas of the device are listed. Used in
PLACEMENT below. */

ROM = READ_ONLY 0x8000 TO 0xFDFF;
Z_RAM = READ_WRITE 0x0040 TO 0x00FF;
RAM = READ_WRITE 0x0100 TO 0x023F;

END

PLACEMENT /* Here all predefined and user segments are placed into the
SEGMENTS defined above. */

DEFAULT_RAM INTO RAM;
_DATA_ZEROPAGE, MY_ZEROPAGE INTO Z_RAM;
DEFAULT_ROM, ROM_VAR, STRINGS INTO ROM;

END

STACKSIZE 0x50

VECTOR 0 _Startup /* Reset vector: this is the default entry point
for an Assembly application. */

INIT _Startup /* For assembly applications: that this is as
well the initialization entry point */

NOTE If you are adapting a PRM file from a CodeWarrior project, all you really need
is adding the LINK portion and adding whatever object-code filenames that are
to be linked in the NAMES portion.

NOTE The default size for the stack using the CodeWarrior Wizard for the GP32 is 80
bytes - (STACKSIZE 0x50). This Linker statement and
__SEG_END_SSTACK in the assembly-code snippet below determine the size
and placement of the stack in RAM:
MyCode: SECTION ; code section
main:
_Startup:

LDHX #__SEG_END_SSTACK ; initialize stack pointer
TXS
72 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Linking the application
The statements in the linker parameter file are described in the Linker portion of the Build
Tool Utilities manual.

• Start the Linker.

The SmartLinker tool is located in the prog folder in the CodeWarrior installation:
prog\linker.exe

• Press Close to close the Tip of the Day dialog box.

• Load the project’s configuration file. Use the same <project.ini> file that the
Assembler used for its configuration - the project.ini file in the project
directory:

File > Load Configuration and navigate to and select the project’s configuration file
(Figure 1.53 on page 73).

Figure 1.53 HC(S)08 Linker

• Press Open to load the configuration file. The project directory is now the current
directory for the Linker. You should press the Save button to save the configuration.
From the File menu in the Smart Linker, select Link: (File > Link). The Select File to
Link dialog box appears (Figure 1.54 on page 74).
73HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Linking the application
Figure 1.54 Select File to Link dialog box

• Browse to locate and select the PRM file for your project. Press Open. The Smart
Linker links the object-code files in the NAMES section to produce the executable
*.abs file, as specified in the LINK portion of the Linker PRM file (Figure 1.55 on
page 75).
74 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Linking the application
Figure 1.55 Linker main window after linking

The messages in the linker’s project window indicated that:

• The current directory for the Linker is the project directory,
E:\Projects\Model T.

• The Model T.prm file was used to name the executable file, which object files
were linked, and how the RAM and ROM memory areas were allocated for the
relocatable sections. The Reset and application entry points were also specified in
this file.

• There was one object file, main_Standard.o.

• The output format was DWARF 2.0.

• The Code Size was 42 bytes.

• A Linker Map file - Model_T.map was generated.

• No errors or warnings occurred and no information messages were issued.

The TEXTPATH environmental variable was not used for this project. Therefore, the
Linker generates its *.map Linker Map file in the same folder that contains the PRM file
for the project. Because the ABSPATH environment variable was not used, the *.abs
executable file is generated in the same folder as the Linker PRM file. Figure 1.56 on
page 76 shows the contents of the project directory after the relocatable assembly project
was linked.
75HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Linking the application
Figure 1.56 Project directory after linking

The Simulator/Debugger Build Tool, hiwave.exe, located in the prog folder in the
CodeWarrior installation could be used to simulate the program that was assembled using
the main_Standard.asm source-code file and linked to generate the Model_T.abs
executable.
Start the Simulator. The GUI for the Simulator appears (Figure 1.57 on page 77).
76 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Linking the application
Figure 1.57 True-Time Simulator & Real-Time Debugger

Select Set Connection... from the Component menu. The Set Connection dialog box
appears (Figure 1.58 on page 78)
77HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Linking the application
Figure 1.58 Set Connection dialog box

The CPU derivative for this project is in the HC08 subfamily, so select HC08 from the
Processor pull-down menu. Select Full Chip Simulation in the Connection pull-down
menu. Press OK. From the File menu, select Load Application.... The Load Executable
File dialog box appears (Figure 1.59 on page 79)
78 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Linking the application
Figure 1.59 Load Executable File dialog box

Browse to and select the Model_T.abs file in the project directory. Press Open. The
Simulator is now set up to be run (Figure 1.60 on page 80).
79HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Directly generating an ABS file
Figure 1.60 Simulator is now ready

You can repeatedly press the Assembly Step (Ctrl+F11) icon to single-step the Simulator
through the assembly source-code and monitor the program’s logic of the Fibonacci
application in the eight panels within the Simulator’s GUI.

Directly generating an ABS file
You can also use CodeWarrior or the Assembler build tool to generate an ABS file directly
from your assembly-source file. The Assembler may also be configured to generate an
S-Record File at the same time.
When you use CodeWarrior or the Assembler to directly generate an ABS file, there is no
Linker involved. This means that the application must be implemented in a single
assembly unit and must contain only absolute sections.
80 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Directly generating an ABS file
Using CodeWarrior to generate an ABS file
You can use the Wizard to produce an absolute assembly project. To do so, you follow the
same steps in creating a relocatable-assembly project given earlier. There are some
exceptions, however:

• No PRM file is required.

• The memory area allocation is determined directly in a single *.asm file assembly
source file.

• CodeWarrior needs some configurations to be applied to the Linker and Assembler
preference panels.

Start the CodeWarrior Wizard and create an assembler project in the usual manner. See
“The Wizard” on page 19. Next, convert the main_Standard.asm relocatable
assembly file to the absolute assembly file below in Listing 1.13 on page 81.

Adapting the main_Standard.asm file produced
by the Wizard
Changing the SECTION directives in a relocatable assembly file to ORG directives is
required. The ORG directives must specify the absolute memory areas for ROM and RAM.
Listing 1.13 on page 81 is an adaptation of the main_Standard.asm file produced
previously by the Wizard. This file may be used by CodeWarrior or the Assembler build
tool.

Listing 1.13 Example source file — main_Standard.asm

;**
;* This stationery serves as the framework for a user *
;* application. For a more comprehensive program that *
;* demonstrates the more advanced functionality of this *
;* processor, please see the demonstration applications *
;* located in the examples subdirectory of Codewarrior *
;* for the HC08 program directory. *
;**

; application entry point
ABSENTRY _Startup

; export symbols
XDEF _Startup, main
; we use '_Startup' as an export symbol. This allows
; us to reference '_Startup' either in the linker
; *.prm file or from C/C++ later on.

; Include derivative-specific definitions
INCLUDE 'derivative.inc'

; variable/data section
81HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Directly generating an ABS file
ORG $0040
Counter: DS.B 1
FiboRes: DS.B 1

; initial value for SP
initStack: EQU $023E

; code section
ORG $8000

main:
_Startup:

LDHX #initStack ; initialize the stack pointer
TXS
CLI ; enable interrupts

mainLoop:
CLRA ; A contains a counter.

cntLoop: INCA
CBEQA #14,mainLoop ; Larger values cause overflow.
STA COPCTL ; Feed the watchdog.
STA Counter ; update global
BSR CalcFibo
STA FiboRes ; store result
LDA Counter
BRA cntLoop ; next round

CalcFibo: ; Function to compute Fibonacci numbers. Argument is in A.
DBNZA fiboDo ; fiboDo
INCA
RTS

fiboDo:
PSHA ; the counter
CLRX ; second last = 0
LDA #$01 ; last = 1

FiboLoop: PSHA ; push last
TXA
ADD 1,SP
PULX
DBNZ 1,SP,FiboLoop

FiboDone: PULH ; release counter
RTS ; Result in A

;**
;* spurious - Spurious Interrupt Service Routine. *
;* (unwanted interrupt) *
;**
spurious: ; Put here so the security

NOP ; value does not change
RTI ; all the time.
82 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Directly generating an ABS file
;**
;* Interrupt Vectors *
;**

ORG $FFFA
DC.W spurious ;
DC.W spurious ; SWI
DC.W _Startup ; Reset

Listing 1.14 on page 83 is a similar example for RS08.

Listing 1.14 Example source file abstest_rs08.asm

ABSENTRY entry; Specifies the application Entry point
XDEF entry ; Make the symbol entry visible (needed for debugging)
 ORG $40 ; Define an absolute constant section
var1: DC.B 5 ; Assign 5 to the symbol var1
 ORG $80 ; Define an absolute data section
data: DS.B 1 ; Define one byte variable in RAM at $80
 ORG $B00 ; Define an absolute code section
entry:
 LDA var1
main:
 INCA
 STA data
 BRA main

When writing your assembly source file for direct absolute file generation, pay special
attention to the following points:

• The Reset vector is usually initialized in the assembly source file with the application
entry point. An absolute section containing the application’s entry point address is
created at the reset vector address. To set the entry point of the application at address
$FFFA on the _Startup label the following code is needed (Listing 1.15 on
page 83).

Listing 1.15 Setting the Reset vector address

ORG $FFFA
DC.W spurious ;
DC.W spurious ; SWI
DC.W _Startup ; Reset

The ABSENTRY directive is used to write the address of the application entry point in the generated
absolute file. To set the entry point of the application on the _Startup label in the absolute file, the
following code is needed (Listing 1.16 on page 84).
83HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Directly generating an ABS file
Listing 1.16 Using ABSENTRY to enter the entry-point address

ABSENTRY _Startup

CAUTION We strongly recommend that you use separate sections for code,
(variable) data, and constants. All sections used in the assembler
application must be absolute and defined using the ORG directive. The
addresses for constant or code sections have to be located in the ROM
memory area, while the data sections have to be located in a RAM area
(according to the hardware that you intend to use). The programmer is
responsible for making sure that no section overlaps occur.

Reconfiguring CodeWarrior
From the Edit menu, open the Assembler for HC08 preference panel. Select Edit >
<target_name> Settings... > Target > Assembler for HC08. The Assembler preference
panel appears (Figure 1.61 on page 84)

Figure 1.61 Assembler for HC08 preference panel
84 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Directly generating an ABS file
Press the Options button. The HC08 Assembler Option Settings dialog box appears
(Figure 1.62 on page 85).

Figure 1.62 HC08 Assembler Option Settings dialog box

In the Output panel, select Object File Format > ELF/DWARF 2.0 Absolute File. Press
OK to close the dialog box. Now, select the Linker for HC08 preference panel and select
Options. The Linker for HC08 preference panel opens (Figure 1.63 on page 86).
85HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Directly generating an ABS file
Figure 1.63 Linker for HC08 preference panel

Select the Absolute, Single-File Assembly project radio button and press OK. The
assembler is now configured to directly produce an absolute assembly *.abs output file.

Assembling and generating the application
All that is needed to produce the executable *.abs file is to select Project > Make or
Project > Debug. CodeWarrior produces the same *.abs and *.abs.s19 output files
that the Assembler and Linker generated for relocatable assembly.
The *.abs.s19 file generated in the bin subfolder of the project directory is a standard
S-Record File. You can burn this file directly into a ROM memory.
If you selected Project > Debug, the debugger opens and you can follow the execution of
the program while assemble-stepping the Simulator. You can single-step the simulator
through the program from the Run menu in the Simulator (Run > Assembly Step or Ctrl +
F11).

Using the Assembler build tool for absolute
assembly
Use the same project - Model T that was used for the relocatable assembly project. Use an
absolute assembly source file of the type listed in Listing 1.13 on page 81, name the file -
main.asm, and insert this file into the Sources file in the project directory.
86 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Directly generating an ABS file
1. Start the Assembler. You can do this by opening the ahc08.exe file in the prog
folder in the HC08 CodeWarrior installation. The Assembler opens. Close the Tip of
the Day dialog box.

2. Using File > Load Configuration, browse for project directory and set it to be the
current directory for the Assembler.

3. Select Assembler > Options. The Option Settings dialog box appears.

4. In the Output dialog box, select the check box in front of the label Object File Format.
The Assembler displays more information at the bottom of the dialog box.

5. Select the ELF/DWARF 2.0 Absolute File menuitem in the pull-down menu. Click OK.

6. Select the assembly source-code file that will be assembled: Select File > Assemble.
The Select File to Assemble dialog box appears (Figure 1.64 on page 87).

Figure 1.64 Select File to Assemble dialog box

7. Browse to the absolute-assembly source-code file - main.asm. Click Open. The
Assembler now assembles the source code. Make sure that the GENPATH
configurations are set for the two include files needed for the main.asm file in this
project in case they have not yet been previously set. Messages about the assembly
process are created in the assembler main window (Figure 1.65 on page 88).
87HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Directly generating an ABS file
Figure 1.65 Successful absolute assembly

The messages indicate that:

• An assembly source code (main.asm) file, plus derivative.inc and
MC68HC908GP32.inc files were read as input.

• A debugging (main.dbg) file was generated in the project directory.

• An S-Record File was created, main.sx. This file can be used to program ROM
memory.

• An absolute executable file was generated, main.abs.

• The Code Size is 51 bytes.

• An assembly outlet listing file (main.lst) was written to the project directory.

The main.abs file can be used as input to the Simulator, with which you can follow the
execution of your program.
88 HC(S)08 / RS08 Assembler Manual

2
Assembler Graphical User
Interface

The Macro Assembler runs under Windows 9X, Windows NT, 2000, XP, 2003, and
compatible operating systems.

This chapter covers the following topics:

• Starting the Assembler on page 89

• Assembler Main Window on page 90

• Editor Setting dialog box on page 96

• Save Configuration dialog box on page 102

• Option Settings dialog box on page 105

• Message settings dialog box on page 106

• About... dialog box on page 110

• Specifying the input file on page 110

• Message/Error feedback on page 111

Starting the Assembler
When you start the Assembler, the Assembler displays a standard Tip of the Day
(Figure 2.1 on page 90) window containing news and tips about the Assembler.
89HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Assembler Main Window
Figure 2.1 Tip of the Day dialog box

Click Next Tip to see the next piece of information about the Assembler.

Click Close to close the Tip of the Day dialog box.

If you do not want the Assembler to automatically open the standard Tip of the Day
window when the Assembler is started, uncheck Show Tips on StartUp.

If you want the Assembler to automatically open the standard Tip of the Day window at
Assembler start up, choose Help > Tip of the Day.... The Assembler displays the Tip of the
Day dialog box. Check the Show Tips on StartUp check box.

 Assembler Main Window
This window is only visible on the screen when you do not specify any filename when you
start the Assembler.

The assembler window consists of a window title, a menu bar, a toolbar, a content area,
and a status bar (Figure 2.2 on page 91).
90 HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Assembler Main Window
Figure 2.2 HC08 Assembler main window

Window title
The window title displays the Assembler name and the project name. If a project is not
loaded, the Assembler displays “Default Configuration” in the window title. An asterisk
(*) after the configuration name indicates that some settings have changed. The
Assembler adds an asterisk (*) whenever an option, the editor configuration, or the
window appearance changes.

Content area
The Assembler displays logging information about the assembly session in the content
area. This logging information consists of:

• the name of the file being assembled,

• the whole name (including full path specifications) of the files processed (main
assembly file and all included files),

• the list of any error, warning, and information messages generated, and

• the size of the code (in bytes) generated during the assembly session.

When a file is dropped into the assembly window content area, the Assembler either loads
the corresponding file as a configuration file or the Assembler assembles the file. The
Assembler loads the file as a configuration if the file has the *.ini extension. If the file
does not end with the *.ini extension, the Assembler assembles the file using the
current option settings.
91HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Assembler Main Window
All text in the assembler window content area can have context information consisting of
two items:

• a filename including a position inside of a file and

• a message number.

File context information is available for all output lines where a filename is displayed.
There are two ways to open the file specified in the file-context information in the editor
specified in the editor configuration:

• If a file context is available for a line, double-click on a line containing file-context
information.

• Click with the right mouse on the line and select “Open...”. This entry is only
available if a file context is available.

If the Assembler cannot open a file even though a context menu entry is present, then the
editor configuration information is incorrect (see the on page 96Editor Setting dialog
box on page 96 section below).

The message number is available for any message output. There are three ways to open the
corresponding entry in the help file:

• Select one line of the message and press the F1 key. If the selected line does not have
a message number, the main help is displayed.

• Press Shift-F1 and then click on the message text. If the point clicked does not
have a message number, the main help is displayed.

• Click the right mouse button on the message text and select Help on.... This entry is
only available if a message number is available.

Toolbar
The three buttons on the left hand side of the toolbar correspond to the menu items of the
File menu. You can use the New , Load, and Save buttons to reset, load and
save configuration files for the Macro Assembler.

The Help button and the Context Help button allow you to open the Help file or
the Context Help.

When pressing the buttons above, the mouse cursor changes to a question mark
beside an arrow. The Assembler opens Help for the next item on which you click. You can
get specific Help on menus, toolbar buttons, or on the window area by using this Context
Help.

The editable combo box contains a list of the last commands which were executed. After a
command line has been selected or entered in this combo box, click the Assemble
button to execute this command. The Stop button becomes enabled whenever
some file is assembled. When the Stop button is pressed, the assembler stops the assembly
process.
92 HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Assembler Main Window
Pressing the Options Dialog Box button opens the Option Settings dialog box.

Pressing the Message Dialog Box button opens the Message Settings dialog box.

Pressing the Clear button clears the assembler window’s content area.

Status bar
When pointing to a button in the tool bar or a menu entry, the message area displays the
function of the button or menu entry to which you are pointing.

Figure 2.3 Status bar

Assembler menu bar
The following menus are available in the menu bar (Table 2.1 on page 93):

File menu
With the file menu, Assembler configuration files can be saved or loaded. An Assembler
configuration file contains the following information:

• the assembler option settings specified in the assembler dialog boxes,

• the list of the last command line which was executed and the current command line,

• the window position, size, and font,

Table 2.1 Menu bar options

Menu Description

File menu on page 93 Contains entries to manage Assembler configuration files

Assembler menu on
page 95

Contains entries to set Assembler options

View menu on
page 95

Contains entries to customize the Assembler window output

Help A standard Windows Help menu
93HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Assembler Main Window
• the editor currently associated with the Assembler. This editor may be specifically
associated with the Assembler or globally defined for all Tools. (See the Editor
Setting dialog box on page 96.),

• the Tips of the Day settings, including its startup configuration, and what is the
current entry, and

• Configuration files are text files which have the standard *.ini extension. You can
define as many configuration files as required for the project and can switch among
the different configuration files using the File > Load Configuration, File | Save
Configuration menu entries, or the corresponding toolbar buttons.

Table 2.2 File menu options

Menu entry Description

Assemble A standard Open File dialog box is opened, displaying
the list of all the *.asm files in the project directory. The
input file can be selected using the features from the
standard Open File dialog box. The selected file is
assembled when the Open File dialog box is closed by
clicking OK.

New/Default
Configuration

Resets the Assembler option settings to their default
values. The default Assembler options which are
activated are specified in the Assembler Options
chapter.

Load Configuration A standard Open File dialog box is opened, displaying
the list of all the *.ini files in the project directory. The
configuration file can be selected using the features
from the standard Open File dialog box. The
configuration data stored in the selected file is loaded
and used in further assembly sessions.

Save Configuration Saves the current settings in the configuration file
specified on the title bar.

Save Configuration
As...

A standard Save As dialog box is opened, displaying
the list of all the *.ini files in the project directory. The
name or location of the configuration file can be
specified using the features from the standard Save As
dialog box. The current settings are saved in the
specified configuration file when the Save As dialog box
is closed by clicking OK.
94 HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Assembler Main Window
Assembler menu
The Assembler menu (Table 2.3 on page 95) allows you to customize the Assembler. You
can graphically set or reset the Assembler options or to stop the assembling process.

View menu
The View menu (Table 2.4 on page 95) lets you customize the assembler
window. You can specify if the status bar or the toolbar must be displayed or be
hidden. You can also define the font used in the window or clear the window.

Configuration... Opens the Configuration dialog box to specify the editor
used for error feedback and which parts to save with a
configuration.

See Editor Setting dialog box on page 96
and Save Configuration dialog box on page 102.

1. project.ini
2.

Recent project list. This list can be used to reopen a
recently opened project.

Exit Closes the Assembler.

Table 2.3 Assembler menu options

Menu entry Description

Options Defines the options which must be activated when assembling
an input file. (See Option Settings dialog box on page 105)

Messages Maps messages to a different message class (See Message
settings dialog box on page 106)

Stop assembling Stops the assembling of the current source file.

Table 2.4 View menu options

Menu entry Description

Toolbar Switches display from the toolbar in the assembler window.

Status Bar Switches display from the status bar in the assembler window.

Table 2.2 File menu options (continued)

Menu entry Description
95HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Editor Setting dialog box
Editor Setting dialog box
The Editor Setting dialog box has a main selection entry. Depending on the main type of
editor selected, the content below changes.

These are the main entries for the Editor configuration:

• “Global Editor (shared by all tools and projects)” on page 96

• “Local Editor (shared by all tools)” on page 97

• “Editor started with the command line” on page 98

• “Editor started with DDE” on page 99

• “CodeWarrior with COM” on page 100

Global Editor (shared by all tools and
projects)
This entry (Figure 2.4 on page 97) is shared by all tools (Compiler/Linker/Assembler/...)
for all projects. This setting is stored in the [Editor] section of the mcutools.ini
global initialization file. Some Modifiers on page 101 can be specified in the editor
command line.

Log... Customizes the output in the assembler window content area.
The following two entries in this table are available when Log...
is selected:

Change Font Opens a standard font dialog box. The options selected in the
font dialog box are applied to the assembler window content
area.

Clear Log Clears the assembler window content area.

Table 2.4 View menu options (continued)

Menu entry Description
96 HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Editor Setting dialog box
Figure 2.4 Global Editor Configuration dialog box

Local Editor (shared by all tools)
This entry (on page 98) is shared by all tools (Compiler, Linker, Assembler, ...) for the
current project. This setting is stored in the [Editor] section of the local initialization
file, usually project.ini in the current directory. Some Modifiers on page 101 can be
specified in the editor command line.
97HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Editor Setting dialog box
Figure 2.5 Local editor configuration dialog box

Editor started with the command line
When this editor type is selected, a separate editor is associated with the Assembler for
error feedback. The editor configured in the shell is not used for error feedback.

Enter the command which should be used to start the editor (Figure 2.6 on page 99).

The format from the editor command depends on the syntax which should be used to start
the editor. Modifiers can be specified in the editor command line to refer to a filename and
line and column position numbers. (See the Modifiers on page 101 section below.)
98 HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Editor Setting dialog box
Figure 2.6 Command-Line Editor configuration

Example of configuring a command-line editor
The following case portrays the syntax used for configuring an external editors.
Listing 2.1 on page 99 can be used for the UltraEdit-32 editor.

Listing 2.1 UltraEdit-32 configuration

C:\UltraEdit32\uedit32.exe %f /#:%l

Editor started with DDE
Enter the service, topic and client name to be used for a DDE (Dynamic Data Exchange)
connection to the editor (Figure 2.7 on page 100). All entries can have modifiers for the
filename and line number, as explained in the Modifiers on page 101 section.
99HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Editor Setting dialog box
Figure 2.7 DDE Editor configuration

For the Microsoft Developer Studio, use the settings in Listing 2.2 on page 100:

Listing 2.2 Microsoft Developer Studio configuration settings

Service Name: msdev
Topic Name: system
Client Command: [open(%f)]

CodeWarrior with COM
If CodeWarrior with COM is enabled, the CodeWarrior IDE (registered as a COM server
by the installation script) is used as the editor (Figure 2.8 on page 101).
100 HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Editor Setting dialog box
Figure 2.8 COM Editor Configuration

Modifiers
The configurations may contain some modifiers to tell the editor which file to open and at
which line and column.

• The %f modifier refers to the name of the file (including path and extension) where
the error has been detected.

• The %l modifier refers to the line number where the message has been detected.

• The %c modifier refers to the column number where the message has been detected.

CAUTION The %l modifier can only be used with an editor
which can be started with a line number as a parameter. This is not
the case for WinEdit version 3.1 or lower or for the Notepad. When you
work with such an editor, you can start it with the filename
as a parameter and then select the menu entry ‘Go to’ to jump
on the line where the message has been detected. In that case the editor
command looks like:
C:\WINAPPS\WINEDIT\Winedit.exe %f
101HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Save Configuration dialog box
NOTE Please check your editor manual to define the command line which should be
used to start the editor.

Save Configuration dialog box
The second index of the configuration dialog box contains all options for the save
operation (Figure 2.9 on page 102).

Figure 2.9 Save Configuration dialog box

In the Save Configuration index, there are four check boxes where you can choose which
items to save into a project file when the configuration is saved.

This dialog box has the following configurations:

• Options: This item is related to the option and message settings. If this check box is
set, the current option and message settings are stored in the project file when the
configuration is saved. By disabling this check box, changes done to the option and
message settings are not saved, and the previous settings remain valid.
102 HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Save Configuration dialog box
• Editor Configuration: This item is related to the editor settings. If you set this check
box, the current editor settings are stored in the project file when the configuration is
saved. If you disable this check box, the previous settings remain valid.

• Appearance: This item is related to many parts like the window position (only loaded
at startup time) and the command-line content and history. If you set this check box,
these settings are stored in the project file when the current configuration is saved. If
you disable this check box, the previous settings remain valid.

• Environment Variables: With this set, the environment variable changes done in the
Environment property panel are also saved.

NOTE By disabling selective options only some parts of a configuration file can be
written. For example, when the best Assembler options are found, the save
option mark can be removed. Then future save commands will not modify the
options any longer.

• Save on Exit: If this option is set, the Assembler writes the configuration on exit. The
Assembler does not prompt you to confirm this operation. If this option is not set, the
assembler does not write the configuration at exit, even if options or other parts of
the configuration have changed. No confirmation will appear in any case when
closing the assembler.

NOTE Almost all settings are stored in the project configuration file.
The only exceptions are:
- The recently used configuration list.
- All settings in the Save Configuration dialog box.

NOTE The configurations of the Assembler can, and in fact are intended to, coexist in
the same file as the project configuration of other tools and the IDF. When an
editor is configured by the shell, the assembler can read this content out of the
project file, if present. The default project configuration filename is
project.ini. The assembler automatically opens an existing
project.ini in the current directory at startup. Also when using the -Prod:
Specify project file at startup assembler option at startup or loading the
configuration manually, a different name other than project.ini can be
chosen.

Environment Configuration dialog box
The third page of the dialog box is used to configure the environment (Figure 2.10 on
page 104).
103HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Save Configuration dialog box
Figure 2.10 Environment Configuration dialog box

The content of the dialog box is read from the actual project file out of the
[Environment Variables] section.

The following variables are available (Table 2.5 on page 104):

Various Environment Variables: other variables not covered in the above table.

The following buttons are available for the Configuration dialog box:

Table 2.5 Path environment variables

Path Environment variable

General GENPATH

Object OBJPATH

Text TEXTPATH

Absolute ABSPATH

Header File LIBPATH
104 HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Option Settings dialog box
• Add: Adds a new line or entry

• Change: Changes a line or entry

• Delete: Deletes a line or entry

• Up: Moves a line or entry up

• Down: Moves a line or entry down

Note that the variables are written to the project file only if you press the Save button (or
using File -> Save Configuration or CTRL-S). In addition, it can be specified in the Save
Configuration dialog box if the environment is written to the project file or not.

Option Settings dialog box
Use this dialog box (Figure 2.11 on page 105) to set or reset assembler options.

Figure 2.11 Option Settings dialog box
105HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Message settings dialog box
The options available are arranged into different groups, and a sheet is available for each
of these groups. The content of the list box depends on the selected sheet (Table 2.6 on
page 106):

An assembler option is set when the check box in front of it is checked. To obtain more
detailed information about a specific option, select it and press the F1 key or the Help
button. To select an option, click once on the option text. The option text is then displayed
inverted.

When the dialog box is opened and no option is selected, pressing the F1 key or the Help
button shows the help about this dialog box.

The available options are listed in the Assembler Options chapter.

Message settings dialog box
You can use the Message Settings (Table 2.7 on page 107) dialog box to map messages to
a different message class.

Table 2.6 Option Settings options

Group Description

Output Lists options related to the output files generation (which kind
of file should be generated).

Input Lists options related to the input files.

Language Lists options related to the programming language (ANSI-C,
C++, ...)

Host Lists options related to the host.

Code Generation Lists options related to code generation (memory models, ...).

Messages Lists options controlling the generation of error messages.

Various Lists various additional options (options used for compatibility,
...).
106 HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Message settings dialog box
Figure 2.12 Message Settings dialog box

Some buttons in the dialog box may be disabled. For example, if an option cannot be
moved to an information message, the ‘Move to: Information’ button is disabled. The
buttons in Table 2.7 on page 107 are available in the Message Settings dialog box:

Table 2.7 Message Settings options

Button Description

Move to: Disabled The selected messages are disabled; they will no longer be
displayed.

Move to: Information The selected messages are changed to information
messages.

Move to: Warning The selected messages are changed to warning
messages.

Move to: Error The selected messages are changed to error messages.

Move to: Default The selected messages are changed to their default
message types.

Reset All Resets all messages to their default message types.

OK Exits this dialog box and saves any changes.
107HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Message settings dialog box
A panel is available for each error message class and the content of the list box depends on
the selected panel (Table 2.8 on page 108):

Each message has its own character (‘A’ for Assembler message) followed by a 4- or
5-digit number. This number allows an easy search for the message on-line help.

Changing the class associated with a
message
You can configure your own mapping of messages to the different classes. To do this, use
one of the buttons located on the right hand of the dialog box. Each button refers to a
message class. To change the class associated with a message, you have to select the
message in the list box and then click the button associated with the class where you want
to move the message.

Cancel Exits this dialog box without accepting any changes.

Help Displays online help about this dialog box.

Table 2.8 Message classes

Message group Description

Disabled Lists all disabled messages. That means that messages
displayed in the list box will not be displayed by the Assembler.

Information Lists all information messages. Information messages informs
about action taken by the Assembler.

Warning Lists all warning messages. When such a message is
generated, translation of the input file continues and an object
file will be generated.

Error Lists all error messages. When such a message is generated,
translation of the input file continues, but no object file will be
generated.

Fatal Lists all fatal error messages. When such a message is
generated, translation of the input file stops immediately. Fatal
messages cannot be changed. They are only listed to call
context help.

Table 2.7 Message Settings options (continued)

Button Description
108 HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Message settings dialog box
Example
To define the A2336: Value too big warning as an error message:

• Click the Warning sheet to display the list of all warning messages in the list box.

• Click on the A2336: Value too big string in the list box to select the message.

• Click Error to define this message as an error message. The ahc08 dialog box
appears. Press Yes to close the ahc08 dialog box (Figure 2.13 on page 109).

Figure 2.13 HC08 Assembler Message Settings dialog box

NOTE Messages cannot be moved from or to the fatal error class.

NOTE The Move to buttons are enabled when all selected messages can be moved.
When one message is marked, which cannot be moved to a specific group, the
corresponding Move to button is disabled (grayed).

If you want to validate the modification you have performed in the error message
mapping, close the HC08 Assembler Message Settings dialog box with the OK button. If
you close it using the Cancel button, the previous message mapping remains valid.
109HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
About... dialog box
About... dialog box
The About... dialog box can be opened with the menu Help > About. The About... dialog
box contains much information including the current directory and the versions of
subparts of the Assembler. The main Assembler version is displayed separately on top of
the dialog box.

With the Extended Information button it is possible to get license information about all
software components in the same directory of the executable.

Press OK to close this dialog box.

NOTE During assembling, the subversions of the subparts cannot be requested. They
are only displayed if the Assembler is not processing files.

Specifying the input file
There are different ways to specify the input file which must be assembled. During
assembling of a source file, the options are set according to the configuration performed
by the user in the different dialog boxes and according to the options specified on the
command line.

Before starting to assemble a file, make sure you have associated a working directory with
your assembler.

Use the command line in the toolbar to
assemble
You can use the command line to assemble a new file or to reassemble a previously
created file.

Assembling a new file
A new filename and additional assembler options can be entered in the command line. The
specified file is assembled when you press the Assemble button in the tool bar or when you
press the enter key.

Assembling a file which has already been
assembled
The commands executed previously can be displayed using the arrow on the right side of
the command line. A command is selected by clicking on it. It appears in the command
110 HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Message/Error feedback
line. The specified file will be processed when the button Assemble in the tool bar is
selected.

Use the File > Assemble... entry
When the menu entry File > Assemble... is selected a standard file Open File dialog box is
opened, displaying the list of all the *.asm files in the project directory. You can browse
to get the name of the file that you want to assemble. Select the desired file and click Open
in the Open File dialog box to assemble the selected file.

Use Drag and Drop
A filename can be dragged from an external software (for example the File Manager/
Explorer) and dropped into the assembler window. The dropped file will be assembled
when the mouse button is released in the assembler window. If a file being dragged has the
*.ini extension, it is considered to be a configuration and it is immediately loaded and
not assembled. To assemble a source file with the *.ini extension, use one of the other
methods.

Message/Error feedback
After assembly, there are several ways to check where different errors or warnings have
been detected. The default format of the error message is as on page 111. A typical error
message is like the one in Listing 2.4 on page 111.

Listing 2.3 Typical error feedback message

Default configuration of an error message
>> <FileName>, line <line number>, col <column number>,
pos <absolute position in file>
<Portion of code generating the problem>
<message class><message number>: <Message string>

Listing 2.4 Error message example

>> in "C:\Freescale\demo\fiboerr.asm", line 18, col 0, pos 722
DC label

^
ERROR A1104: Undeclared user defined symbol: label
111HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Message/Error feedback
For different message formats, see the following Assembler options:

• -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode

• -WmsgFob: Message format for batch mode

• -WmsgFoi: Message format for interactive mode

• -WmsgFonf: Message format for no file information

• -WmsgFonp: Message format for no position information.

Use information from the assembler
window
Once a file has been assembled, the assembler window content area displays the list of all
the errors or warnings detected.

The user can use his usual editor to open the source file and correct the errors.

Use a user-defined editor
The editor for Error Feedback can be configured using the Configuration dialog box.
Error feedback is performed differently, depending on whether or not the editor can be
started with a line number.

Line number can be specified on the
command line
Editors like UltraEdit-32 or WinEdit (v95 or higher) can be started with a line number in
the command line. When these editors have been correctly configured, they can be started
automatically by double clicking on an error message. The configured editor will be
started, the file where the error occurs is automatically opened and the cursor is placed on
the line where the error was detected.

Line number cannot be specified on the
command line
Editors like WinEdit v31 or lower, Notepad, or Wordpad cannot be started with a line
number in the command line. When these editors have been correctly configured, they can
be started automatically by double clicking on an error message. The configured editor
will be started, and the file is automatically opened where the error occurs. To scroll to the
position where the error was detected, you have to:

• Activate the assembler again.
112 HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Message/Error feedback
• Click the line on which the message was generated. This line is highlighted on the
screen.

• Copy the line in the clipboard by pressing CTRL + C.

• Activate the editor again.

• Select Search > Find; the standard Find dialog box is opened.

• Paste the contents of the clipboard in the Edit box pressing CTRL + V.

• Click Forward to jump to the position where the error was detected.
113HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Message/Error feedback
114 HC(S)08 / RS08 Assembler Manual

3
Environment

This part describes the environment variables used by the Assembler. Some of those
environment variables are also used by other tools (e.g., Linker or Compiler), so consult
also the respective documentation.

There are three ways to specify an environment:

1) The current project file with the Environment Variables section. This file may be
specified on Tool startup using the -Prod: Specify project file at startup assembler option.
This is the recommended method and is also supported by the IDE.

2) An optional ‘default.env’ file in the current directory. This file is supported for
compatibility reasons with earlier versions. The name of this file may be specified using
the ENVIRONMENT: Environment file specification on page 126 environment variable.
Using the default.env file is not recommended.

3) Setting environment variables on system level (DOS level). This is also not
recommended.

Various parameters of the Assembler may be set in an environment using so-called
environment variables. The syntax is always the same (Listing 3.1 on page 115).

Listing 3.1 Syntax for setting environment variables

Parameter: KeyName=ParamDef

Listing 3.2 on page 115 is a typical example of setting an environment variable.

Listing 3.2 Setting the GENPATH environment variable

GENPATH=C:\INSTALL\LIB;D:\PROJECTS\TESTS;/usr/local/lib;
/home/me/my_project

These parameters may be defined in several ways:

• Using system environment variables supported by your operating system.

• Putting the definitions in a file called default.env (.hidefaults for UNIX)
in the default directory.

• Putting the definitions in a file given by the value of the ENVIRONMENT system
environment variable.
115HC(S)08 / RS08 Assembler Manual

Environment
Current directory
NOTE The default directory mentioned above can be set via the DEFAULTDIR
system environment variable.

When looking for an environment variable, all programs first search the system
environment, then the default.env (.hidefaults for UNIX) file and finally the
global environment file given by ENVIRONMENT. If no definition can be found, a default
value is assumed.

NOTE The environment may also be changed using the -Env: Set environment
variable assembler option.

Current directory
The most important environment for all tools is the current directory. The current
directory is the base search directory where the tool starts to search for files (e.g., for the
default.env or .hidefaults)

Normally, the current directory of a launched tool is determined by the operating system
or by the program that launches another one (e.g., IDE, Make Utility, ...).

For the UNIX operating system, the current directory for an executable is also the current
directory from where the binary file has been started.

For MS Windows-based operating systems, the current directory definition is quite
complex:

• If the tool is launched using the File Manager/Explorer, the current directory is the
location of the launched executable tool.

• If the tool is launched using an Icon on the Desktop, the current directory is the one
specified and associated with the Icon in its properties.

• If the tool is launched by dragging a file on the icon of the executable tool on the
desktop, the directory on the desktop is the current directory.

• If the tool is launched by another launching tool with its own current directory
specification (e.g., an editor as IDE, a Make utility, ...), the current directory is the
one specified by the launching tool.

• When a local project file is loaded, the current directory is set to the directory which
contains the local project file. Changing the current project file also changes the
current directory if the other project file is in a different directory. Note that
browsing for an assembly source file does not change the current directory.

To overwrite this behavior, the DEFAULTDIR: Default current directory on page 125
system environment variable may be used.
116 HC(S)08 / RS08 Assembler Manual

Environment
Environment macros
The current directory is displayed among other information with the -V: Prints the
Assembler version assembler option and in the About... box.

Environment macros
It is possible to use macros (Listing 3.3 on page 117) in your environment settings.

Listing 3.3 Using a macro for setting environment variables

MyVAR=C:\test
TEXTPATH=$(MyVAR)\txt
OBJPATH=${MyVAR}\obj

In the example in Listing 3.3 on page 117, TEXTPATH is expanded to ‘C:\test\txt’,
and OBJPATH is expanded to ‘C:\test\obj’.

From the example above, you can see that you either can use $() or ${}. However, the
variable referenced has to be defined somewhere.

In addition, the following special variables in Listing 3.4 on page 117 are allowed. Note
that they are case-sensitive and always surrounded by {}. Also the variable content
contains a directory separator ‘\’ as well.

Listing 3.4 Special variables used with macros for setting environment variables

{Compiler}
This is the path of the directory one level higher than the directory for executable tool. That is, if the
executable is ‘C:\Freescale\prog\linker.exe’, then the variable is ‘C:\Freescale\’.
Note that {Compiler} is also used for the Assembler.

{Project}
Path of the directory containing the current project file. For example, if the current project file is
‘C:\demo\project.ini’, the variable contains ‘C:\demo\’.

{System}
This is the path were your Windows O/S is installed, e.g., ‘C:\WINNT\’.

Global initialization file - mctools.ini (PC
only)

All tools may store some global data into the mcutools.ini file.The tool first searches
for this file in the directory of the tool itself (path of the executable tool). If there is no
117HC(S)08 / RS08 Assembler Manual

Environment
Local configuration file (usually project.ini)
mcutools.ini file in this directory, the tool looks for an mcutools.ini file located
in the MS Windows installation directory (e.g., C:\WINDOWS).

Listing 3.5 on page 118 shows two typical locations used for the mcutools.ini files.

Listing 3.5 Usual locations for the mcutools.ini files

C:\WINDOWS\mcutools.ini
D:\INSTALL\prog\mcutools.ini

If a tool is started in the D:\INSTALL\prog\ directory, the initialization file located in
the same directory as the tool is used (D:\INSTALL\prog\mcutools.ini).

But if the tool is started outside of the D:\INSTALL\prog directory, the initialization
file in the Windows directory is used (C:\WINDOWS\mcutools.ini).

Local configuration file (usually project.ini)
The Assembler does not change the default.env file in any way. The Assembler only
reads the contents. All the configuration properties are stored in the configuration file. The
same configuration file can and is intended to be used by different applications
(Assembler, Linker, etc.).

The processor name is encoded into the section name, so that the Assembler for different
processors can use the same file without any overlapping. Different versions of the same
Assembler are using the same entries. This usually only leads to a potential problem when
options only available in one version are stored in the configuration file. In such situations,
two files must be maintained for the different Assembler versions. If no incompatible
options are enabled when the file is last saved, the same file can be used for both
Assembler versions.

The current directory is always the directory that holds the configuration file. If a
configuration file in a different directory is loaded, then the current directory also changes.
When the current directory changes, the whole default.env file is also reloaded.
When a configuration file is loaded or stored, the options located in the ASMOPTIONS:
Default assembler options on page 123 environment variable are reloaded and added to
the project’s options.

This behavior has to be noticed when in different directories different default.env
files exist which contain incompatible options in their ASMOPTIONS environment
variables. When a project is loaded using the first default.env file, its ASMOPTIONS
options are added to the configuration file. If this configuration is then stored in a different
directory, where a default.env file exists with these incompatible options, the
Assembler adds the options and remarks the inconsistency. Then a message box appears to
inform the user that those options from the default.env file were not added. In such a
118 HC(S)08 / RS08 Assembler Manual

Environment
Local configuration file (usually project.ini)
situation, the user can either remove the options from the configuration file with the
advanced option dialog box or he can remove the option from the default.env file
with the shell or a text editor depending upon which options should be used in the future.

At startup, the configuration stored in the project.ini file located in the current Paths
Local Configuration File Entries documents the sections and entries you can put in a
project.ini file.

Most environment variables contain path lists telling where to look for files. A path list is
a list of directory names separated by semicolons following the syntax in Listing 3.6 on
page 119.

Listing 3.6 Syntax used for setting path lists of environment variables

PathList=DirSpec{";"DirSpec}
DirSpec=["*"]DirectoryName

Listing 3.7 on page 119 is a typical example of setting an environment variable.

Listing 3.7 Setting the paths for the GEBNPATH environment variable

GENPATH=C:\INSTALL\LIB;D:\PROJECTS\TESTS;/usr/local/Freescale/lib;/
home/me/my_project

If a directory name is preceded by an asterisk (*), the programs recursively search that
whole directory tree for a file, not just the given directory itself. The directories are
searched in the order they appear in the path list. Listing 3.8 on page 119 shows the use of
an asterisk (*) for recursively searching the entire C drive for a configuration file with a
\INSTALL\LIB path.

Listing 3.8 Recursive search for a continuation line

LIBPATH=*C:\INSTALL\LIB

NOTE Some DOS/UNIX environment variables (like GENPATH, LIBPATH, etc.) are
used. For further details refer to Environment variables details on page 121.

We strongly recommend working with the Shell and setting the environment by means of
a default.env file in your project directory. (This 'project dir' can be set in the
Shell's 'Configure' dialog box). Doing it this way, you can have different projects in
different directories, each with its own environment.
119HC(S)08 / RS08 Assembler Manual

Environment
Line continuation
NOTE When starting the Assembler from an external editor, do not set the
DEFAULTDIR system environment variable. If you do so and this variable
does not contain the project directory given in the editor’s project
configuration, files might not be put where you expect them to be put!

 A synonym also exists for some environment variables. Those synonyms may be used for
older releases of the Assembler, but they are deprecated and thus they will be removed in
the future.

Line continuation
It is possible to specify an environment variable in an environment file (default.env
or.hidefaults) over multiple lines using the line continuation character ‘\’
(Listing 3.9 on page 120):

Listing 3.9 Using multiple lines for an environment variable

ASMOPTIONS=\
-W2\
-WmsgNe=10

Listing 3.9 on page 120 is the same as the alternate source code in Listing 3.10 on
page 120.

Listing 3.10 Alternate form of using multiple lines

ASMOPTIONS=-W2 -WmsgNe=10

But this feature may be dangerous when used together with paths (Listing 3.11 on
page 120).

Listing 3.11 A path is included by the line continuation character

GENPATH=.\
TEXTFILE=.\txt
will result in
GENPATH=.TEXTFILE=.\txt

In order to avoid such problems, we recommend that you use a semicolon’;’ at the end of a path if there
is a backslash ‘\’ at the end (Listing 3.12 on page 121 on page 121).
120 HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details
Listing 3.12 Recommended style whenever a backlash is present

GENPATH=.\;
TEXTFILE=.\txt

Environment variables details
The remainder of this section is devoted to describing each of the environment variables
available for the Assembler. The environment variables are listed in alphabetical order and
each is divided into several sections (Table 3.1 on page 121).

.

Table 3.1 Topics used for describing environment variables

Topic Description

Tools Lists tools which are using this variable.

Synonym (where one
exists)

A synonym exists for some environment variables. These
synonyms may be used for older releases of the Assembler but
they are deprecated and they will be removed in the future. A
synonym has lower precedence than the environment variable.

Syntax Specifies the syntax of the option in an EBNF format.

Arguments Describes and lists optional and required arguments for the
variable.

Default (if one exists) Shows the default setting for the variable if one exists.

Description Provides a detailed description of the option and its usage.

Example Gives an example of usage and effects of the variable where
possible. An example shows an entry in the default.env for the
PC or in the .hidefaults for UNIX.

See also (if needed) Names related sections.
121HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details
ABSPATH: Absolute file path

Tools

Compiler, Assembler, Linker, Decoder, or Debugger

Syntax

ABSPATH={<path>}

Arguments

<path>: Paths separated by semicolons, without spaces

Description

This environment variable is only relevant when absolute files are directly
generated by the Macro Assembler instead of relocatable object files. When this
environment variable is defined, the Assembler will store the absolute files it
produces in the first directory specified there. If ABSPATH is not set, the generated
absolute files will be stored in the directory where the source file was found.

Example

ABSPATH=\sources\bin;..\..\headers;\usr\local\bin
122 HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details
ASMOPTIONS: Default assembler options

Tools

Assembler

Syntax

ASMOPTIONS={<option>}

Arguments

<option>: Assembler command-line option

Description

If this environment variable is set, the Assembler appends its contents to its
command line each time a file is assembled. It can be used to globally specify
certain options that should always be set, so you do not have to specify them each
time a file is assembled.

Options enumerated there must be valid assembler options and are separated by
space characters.

Example

ASMOPTIONS=-W2 -L

See also

Assembler Options chapter
123HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details
COPYRIGHT: Copyright entry in object file

Tools

Compiler, Assembler, Linker, or Librarian

Syntax

COPYRIGHT=<copyright>

Arguments

<copyright>: copyright entry

Description

Each object file contains an entry for a copyright string. This information may be
retrieved from the object files using the Decoder.

Example

COPYRIGHT=Copyright

See also

Environment variables:

• USERNAME: User Name in object file on page 136

• INCLUDETIME: Creation time in the object file on page 131
124 HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details
DEFAULTDIR: Default current directory

Tools

Compiler, Assembler, Linker, Decoder, Debugger, Librarian, or Maker

Syntax

DEFAULTDIR=<directory>

Arguments

<directory>: Directory to be the default current directory

Description

The default directory for all tools may be specified with this environment variable.
Each of the tools indicated above will take the directory specified as its current
directory instead of the one defined by the operating system or launching tool (e.g.,
editor).

NOTE This is an environment variable on the system level (global environment
variable). It cannot be specified in a default environment file (default.env
or.hidefaults).

Example

DEFAULTDIR=C:\INSTALL\PROJECT

See also

“Current directory” on page 116

 “All tools may store some global data into the mcutools.ini file.The tool first
searches for this file in the directory of the tool itself (path of the executable tool).
If there is no mcutools.ini file in this directory, the tool looks for an mcutools.ini
file located in the MS Windows installation directory (e.g., C:\WINDOWS).”
125HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details
ENVIRONMENT: Environment file specification

Tools

Compiler, Assembler, Linker, Decoder, Debugger, Librarian, or Maker

Synonym

HIENVIRONMENT

Syntax

ENVIRONMENT=<file>

Arguments

<file>: filename with path specification, without spaces

Description

This variable has to be specified on the system level. Normally the Assembler
looks in the current directory for an environment file named default.env
(.hidefaults on UNIX). Using ENVIRONMENT (e.g., set in the
autoexec.bat (DOS) or .cshrc (UNIX)), a different filename may be
specified.

NOTE This is an environment variable on the system level (global environment
variable). It cannot be specified in a default environment file (default.env
or.hidefaults).

Example

ENVIRONMENT=\Freescale\prog\global.env
126 HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details
ERRORFILE: Filename specification error

Tools

Compiler, Assembler, or Linker

Syntax

ERRORFILE=<filename>

Arguments

<filename>: Filename with possible format specifiers

Default

EDOUT

Description

The ERRORFILE environment variable specifies the name for the error file (used
by the Compiler or Assembler).

Possible format specifiers are:

• '%n': Substitute with the filename, without the path.

• '%p': Substitute with the path of the source file.

• '%f': Substitute with the full filename, i.e., with the path and name (the same as
'%p%n').

In case of an improper error filename, a notification box is shown.

Examples

Listing 3.13 on page 127 lists all errors into the MyErrors.err file in the
current directory.

Listing 3.13 Naming an error file

ERRORFILE=MyErrors.err

Listing 3.14 on page 128 lists all errors into the errors file in the \tmp
directory.
127HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details
Listing 3.14 Naming an error file in a specific directory

ERRORFILE=\tmp\errors

Listing 3.15 on page 128 lists all errors into a file with the same name as the source
file, but with extension *.err, into the same directory as the source file, e.g., if
we compile a file \sources\test.c, an error list file \sources\test.err
will be generated.

Listing 3.15 Naming an error file as source filename

ERRORFILE=%f.err

For a test.c source file, a \dir1\test.err error list file will be generated
(Listing 3.16 on page 128).

Listing 3.16 Naming an error file as source filename in a specific directory

ERRORFILE=\dir1\%n.err

For a \dir1\dir2\test.c source file, a \dir1\dir2\errors.txt error
list file will be generated (Listing 3.17 on page 128).

Listing 3.17 Naming an error file as a source filename with full path

ERRORFILE=%p\errors.txt

If the ERRORFILE environment variable is not set, errors are written to the default
error file. The default error filename depends on the way the Assembler is started.

If a filename is provided on the assembler command line, the errors are written to
the EDOUT file in the project directory.

If no filename is provided on the assembler command line, the errors are written to
the err.txt file in the project directory.

Another example (Listing 3.18 on page 129) shows the usage of this variable to
support correct error feedback with the WinEdit Editor which looks for an error file
called EDOUT:
128 HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details
Listing 3.18 Configuring error feedback with WinEdit

Installation directory: E:\INSTALL\prog
Project sources: D:\SRC
Common Sources for projects: E:\CLIB

Entry in default.env (D:\SRC\default.env):
ERRORFILE=E:\INSTALL\prog\EDOUT

Entry in WinEdit.ini (in Windows directory):
OUTPUT=E:\INSTALL\prog\EDOUT

NOTE Be careful to set this variable if the WinEdit Editor is used, otherwise the editor
cannot find the EDOUT file.
129HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details
GENPATH: Search path for input file

Tools

Compiler, Assembler, Linker, Decoder, or Debugger

Synonym

HIPATH

Syntax

GENPATH={<path>}

Arguments

<path>: Paths separated by semicolons, without spaces.

Description

The Macro Assembler will look for the sources and included files first in the
project directory, then in the directories listed in the GENPATH environment
variable.

NOTE If a directory specification in this environment variables starts with an asterisk
(*), the whole directory tree is searched recursive depth first, i.e., all
subdirectories and their subdirectories and so on are searched. Within one level
in the tree, the search order of the subdirectories is indeterminate.

Example

GENPATH=\sources\include;..\..\headers;\usr\local\lib
130 HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details
INCLUDETIME: Creation time in the object file

Tools

Compiler, Assembler, Linker, or Librarian

Syntax

INCLUDETIME=(ON|OFF)

Arguments

ON: Include time information into the object file.

OFF: Do not include time information into the object file.

Default

ON
-

Description

Normally each object file created contains a time stamp indicating the creation
time and data as strings. So whenever a new file is created by one of the tools, the
new file gets a new time stamp entry.

This behavior may be undesired if for SQA reasons a binary file compare has to be
performed. Even if the information in two object files is the same, the files do not
match exactly because the time stamps are not the same. To avoid such problems
this variable may be set to OFF. In this case the time stamp strings in the object file
for date and time are “none” in the object file.

The time stamp may be retrieved from the object files using the Decoder.

Example

INCLUDETIME=OFF

See also

Environment variables:

• COPYRIGHT: Copyright entry in object file on page 124

• USERNAME: User Name in object file on page 136
131HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details
OBJPATH: Object file path

Tools

Compiler, Assembler, Linker, or Decoder

Syntax

OBJPATH={<path>}

Arguments

<path>: Paths separated by semicolons, without spaces

Description

This environment variable is only relevant when object files are generated by the
Macro Assembler. When this environment variable is defined, the Assembler will
store the object files it produces in the first directory specified in path. If
OBJPATH is not set, the generated object files will be stored in the directory the
source file was found.

Example

OBJPATH=\sources\bin;..\..\headers;\usr\local\bin
132 HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details
SRECORD: S-Record type

Tools

Assembler, Linker, or Burner

Syntax

SRECORD=<RecordType>

Arguments

<RecordType>: Forces the type for the S-Record File which must be generated.
This parameter may take the value ‘S1’, ‘S2’, or ‘S3’.

Description

This environment variable is only relevant when absolute files are directly
generated by the Macro Assembler instead of object files. When this environment
variable is defined, the Assembler will generate an S-Record File containing
records from the specified type (S1 records when S1 is specified, S2 records when
S2 is specified, and S3 records when S3 is specified).

NOTE If the SRECORD environment variable is set, it is the user’s responsibility to
specify the appropriate type of S-Record File. If you specify S1 while your
code is loaded above 0xFFFF, the S-Record File generated will not be correct
because the addresses will all be truncated to 2-byte values.

When this variable is not set, the type of S-Record File generated will depend on
the size of the address, which must be loaded there. If the address can be coded on
2 bytes, an S1 record is generated. If the address is coded on 3 bytes, an S2 record
is generated. Otherwise, an S3 record is generated.

Example

SRECORD=S2
133HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details
TEXTPATH: Text file path

Tools

Compiler, Assembler, Linker, or Decoder

Syntax

TEXTPATH={<path>}

Arguments

<path>: Paths separated by semicolons, without spaces.

Description

When this environment variable is defined, the Assembler will store the listing
files it produces in the first directory specified in path. If TEXTPATH is not set,
the generated listing files will be stored in the directory the source file was found.

Example

TEXTPATH=\sources\txt;..\..\headers;\usr\local\txt
134 HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details
TMP: Temporary directory

Tools

Compiler, Assembler, Linker, Debugger, or Librarian

Syntax

TMP=<directory>

Arguments

<directory>: Directory to be used for temporary files

Description

If a temporary file has to be created, normally the ANSI function tmpnam() is
used. This library function stores the temporary files created in the directory
specified by this environment variable. If the variable is empty or does not exist,
the current directory is used. Check this variable if you get an error message
“Cannot create temporary file”.

NOTE TMP is an environment variable on the system level (global environment
variable). It CANNOT be specified in a default environment file (default.env
or .hidefaults).

Example

TMP=C:\TEMP

See also

Current directory on page 116 section
135HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details
USERNAME: User Name in object file

Tools

Compiler, Assembler, Linker, or Librarian

Syntax

USERNAME=<user>

Arguments

<user>: Name of user

Description

Each object file contains an entry identifying the user who created the object file.
This information may be retrieved from the object files using the decoder.

Example

USERNAME=PowerUser

See also

Environment variables:

• COPYRIGHT: Copyright entry in object file on page 124

• INCLUDETIME: Creation time in the object file on page 131
136 HC(S)08 / RS08 Assembler Manual

4
Files

This chapter covers these topics:

• Input files on page 137

• Output files on page 137

• Output files on page 137

Input files
Input files to the Assembler:

• Source files on page 137

• Object files on page 138

Source files
The Macro Assembler takes any file as input. It does not require the filename to have a
special extension. However, we suggest that all your source filenames have the *.asm
extension and all included files have the *.inc.extension. Source files will be searched
first in the project directory and then in the directories enumerated in GENPATH: Search
path for input file

Include files
The search for include files is governed by the GENPATH environment variable. Include
files are searched for first in the project directory, then in the directories given in the
GENPATH environment variable. The project directory is set via the Shell, the Program
Manager, or the DEFAULTDIR: Default current directory environment variable.

Output files
Output files from the Assembler:

• Object files on page 138

• Absolute files on page 138

• S-Record Files on page 138
137HC(S)08 / RS08 Assembler Manual

Files
Output files
• Listing files on page 139

• Debug listing files on page 139

• Error listing file on page 139

Object files
After a successful assembling session, the Macro Assembler generates an object file
containing the target code as well as some debugging information. This file is written to
the directory given in the OBJPATH: Object file path environment variable. If that
variable contains more than one path, the object file is written in the first directory given;
if this variable is not set at all, the object file is written in the directory the source file was
found. Object files always get the *.o extension.

Absolute files
When an application is encoded in a single module and all the sections are absolute
sections, the user can decide to generate directly an absolute file instead of an object file.
This file is written to the directory given in the ABSPATH: Absolute file path
environment variable. If that variable contains more than one path, the absolute file is
written in the first directory given; if this variable is not set at all, the absolute file is
written in the directory the source file was found. Absolute files always get the *.abs
extension.

S-Record Files
When an application is encoded in a single module and all the sections are absolute
sections, the user can decide to generate directly an ELF absolute file instead of an object
file. In that case an S-Record File is generated at the same time. This file can be burnt into
an EPROM. It contains information stored in all the READ_ONLY sections in the
application. The extension for the generated S-Record File depends on the setting from the
SRECORD: S-Record type environment variable.

• If SRECORD = S1, the S-Record File gets the *.s1 extension.

• If SRECORD = S2, the S-Record File gets the *.s2 extension.

• If SRECORD = S3, the S-Record File gets the *.s3 extension.

• If SRECORD is not set, the S-Record File gets the *.sx extension.

This file is written to the directory given in the ABSPATH environment variable. If that
variable contains more than one path, the S-Record File is written in the first directory
given; if this variable is not set at all, the S-Record File is written in the directory the
source file was found.
138 HC(S)08 / RS08 Assembler Manual

Files
Output files
Listing files
After successful assembling session, the Macro Assembler generates a listing file
containing each assembly instruction with their associated hexadecimal code. This
file is always generated when the -L: Generate a listing file assembler option is
activated (even when the Macro Assembler generates directly an absolute file).
This file is written to the directory given in the TEXTPATH: Text file
path.environment variable. If that variable contains more than one path, the listing
file is written in the first directory given; if this variable is not set at all, the listing
file is written in the directory the source file was found. Listing files always get the
*.lst extension. The format of the listing file is described in the Assembler
Listing File chapter.

Debug listing files
After successful assembling session, the Macro Assembler generates a debug listing file,
which will be used to debug the application. This file is always generated, even when the
Macro Assembler directly generates an absolute file. The debug listing file is a duplicate
from the source, where all the macros are expanded and the include files merged. This file
is written to the directory given in the OBJPATH: Object file path environment variable.
If that variable contains more than one path, the debug listing file is written in the first
directory given; if this variable is not set at all, the debug listing file is written in the
directory the source file was found. Debug listing files always get the *.dbg extension.

Error listing file
If the Macro Assembler detects any errors, it does not create an object file but does create
an error listing file. This file is generated in the directory the source file was found (see
ERRORFILE: Filename specification error.

If the Assembler’s window is open, it displays the full path of all include files read. After
successful assembling, the number of code bytes generated is displayed, too. In case of an
error, the position and filename where the error occurs is displayed in the assembler
window.

If the Assembler is started from the IDE (with '%f' given on the command line) or
CodeWright (with '%b%e' given on the command line), this error file is not produced.
Instead, it writes the error messages in a special Microsoft default format in a file called
EDOUT. Use WinEdit’s Next Error or CodeWright’s Find Next Error command to see
both error positions and the error messages.
139HC(S)08 / RS08 Assembler Manual

Files
File Processing
Interactive mode (Assembler window open)
If ERRORFILE is set, the Assembler creates a message file named as specified in this
environment variable.

If ERRORFILE is not set, a default file named err.txt is generated in the current
directory.

Batch mode (Assembler window not open)
If ERRORFILE is set, the Assembler creates a message file named as specified in this
environment variable.

If ERRORFILE is not set, a default file named EDOUT is generated in the current
directory.

File Processing
Figure 4.1 on page 140 shows the priority levels for the various files used by the
Assembler.

Figure 4.1 Files used with the Assembler
140 HC(S)08 / RS08 Assembler Manual

Files
File Processing
141HC(S)08 / RS08 Assembler Manual

Files
File Processing
142 HC(S)08 / RS08 Assembler Manual

5
Assembler Options

Types of assembler options
The Assembler offers a number of assembler options that you can use to control the
Assembler’s operation. Options are composed of a dash/minus(-) followed by one or
more letters or digits. Anything not starting with a dash/minus is supposed to be the name
of a source file to be assembled. Assembler options may be specified on the command line
or in the ASMOPTIONS: Default assembler options (Table 5.1 on page 143) environment
variable. Typically, each Assembler option is specified only once per assembling session.

Command-line options are not case-sensitive. For example, "-Li" is the same as
"-li". It is possible to coalescing options in the same group, i.e., one might also write
"-Lci" instead of "-Lc -Li". However such a usage is not recommended as it make
the command line less readable and it does also create the danger of name conflicts. For
example "-Li -Lc" is not the same as "-Lic" because this is recognized as a separate,
independent option on its own.

NOTE It is not possible to coalesce options in different groups, e.g.,
"-Lc -W1" cannot be abbreviated by the terms "-LC1" or "-LCW1".

Table 5.1 ASMOPTIONS environment variable

ASMOPTIONS If this environment variable is set, the Assembler appends its
contents to its command line each time a file is assembled. It can
be used to globally specify certain options that should always be
set, so you do not have to specify them each time a file is assem-
bled.
143HC(S)08 / RS08 Assembler Manual

Assembler Options
Types of assembler options
Assembler options (Table 5.2 on page 144) are grouped by:

Output, Input, Language, Host, Code Generation, Messages, and Various.

The group corresponds to the property sheets of the graphical option settings.

Each option has also a scope (Table 5.3 on page 144)

The options available are arranged into different groups, and a tab selection is available
for each of these groups. The content of the list box depends upon the tab that is selected.

Table 5.2 Assembler option categories

Group Description

Output Lists options related to the output files generation (which kind of
file should be generated).

Input Lists options related to the input files.

Language Lists options related to the programming language (ANSI-C,
C++, ...)

Host Lists options related to the host.

Code Generation Lists options related to code generation (memory models, ...).

Messages Lists options controlling the generation of error messages.

Various Lists various options.

Table 5.3 Scopes for assembler options

Scope Description

Application This option has to be set for all files (assembly units) of an
application. A typical example is an option to set the memory model.
Mixing object files will have unpredictable results.

Assembly Unit This option can be set for each assembling unit for an application
differently. Mixing objects in an application is possible.

None The scope option is not related to a specific code part. A typical
example are options for the message management.
144 HC(S)08 / RS08 Assembler Manual

Assembler Options
Assembler Option details
Assembler Option details
The remainder of this section is devoted to describing each of the assembler options
available for the Assembler. The options are listed in alphabetical order and each is
divided into several sections (Table 5.4 on page 145).

Using special modifiers
With some options it is possible to use special modifiers. However, some modifiers may
not make sense for all options. This section describes those modifiers.

The following modifiers are supported (Table 5.5 on page 145)

Table 5.4 Assembler option details

Topic Description

Group Output, Input, Language, Host, Code Generation, Messages, or Various.

Scope Application, Assembly Unit, Function, or None.

Syntax Specifies the syntax of the option in an EBNF format.

Arguments Describes and lists optional and required arguments for the option.

Default Shows the default setting for the option.

Description Provides a detailed description of the option and how to use it.

Example Gives an example of usage, and effects of the option where possible.
Assembler settings, source code and/or Linker PRM files are displayed
where applicable. The examples shows an entry in the default.env
for the PC or in the .hidefaults for UNIX.

See also (if
needed)

Names related options.

Table 5.5 Special modifiers for assembler options

Modifier Description

%p Path including file separator

%N Filename in strict 8.3 format
145HC(S)08 / RS08 Assembler Manual

Assembler Options
Assembler Option details
Examples using special modifiers
The assumed path and filename (filename base for the modifiers) used for the examples
Listing 5.2 through Listing 5.13 is displayed in Listing 5.1 on page 146.

Listing 5.1 Example filename and path used for the following examples

C:\Freescale\my demo\TheWholeThing.myExt

Using the %p modifier as in Listing 5.2 on page 146 displays the path with a file separator
but without the filename.

Listing 5.2 %p gives the path only with the final file separator

C:\Freescale\my demo\

Using the %N modifier only displays the filename in 8.3 format but without the file
extension (Listing 5.3 on page 147).

%n Filename without its extension

%E Extension in strict 8.3 format

%e Extension

%f Path + filename without its extension

%” A double quote (“) if the filename, the path or the extension contains a
space

%’ A single quote (‘) if the filename, the path, or the extension contains a
space

%(ENV) Replaces it with the contents of an environment variable

%% Generates a single ‘%’

Table 5.5 Special modifiers for assembler options (continued)

Modifier Description
146 HC(S)08 / RS08 Assembler Manual

Assembler Options
Assembler Option details
Listing 5.3 %N results in the filename in 8.3 format (only the first 8 characters)

TheWhole

The %n modifier returns the entire filename but with no file extension (Listing 5.4 on
page 147.

Listing 5.4 %n returns just the filename without the file extension

TheWholeThing

Using %E as a modifier returns the first three characters in the file extension (Listing
5.5 on page 147).

Listing 5.5 %E gives the file extension in 8.3 format (only the first 3 characters)

myE

If you want the entire file extension, use the %e modifier (Listing 5.6 on page 147).

Listing 5.6 %e is used for returning the whole extension

myExt

The %f modifier returns the path and the filename but without the file extension
(Listing 5.7 on page 147).

Listing 5.7 %f gives the path plus the filename (no file extension)

C:\Freescale\my demo\TheWholeThing
147HC(S)08 / RS08 Assembler Manual

Assembler Options
Assembler Option details
The path in Listing 5.1 on page 146 contains a space, therefore using %” or %’ is
recommended
(Listing 5.8 on page 148 or Listing 5.9 on page 148).

Listing 5.8 Use %”%f%” in case there is a space in its path, filename, or extension

“C:\Freescale\my demo\TheWholeThing”

Listing 5.9 Use %’%f%’ where there is a space in its path, filename, or extension

‘C:\Freescale\my demo\TheWholeThing’

Using %(envVariable) an environment variable may be used. A file separator
following %(envVariable) is ignored if the environment variable is empty or does not
exist. If TEXTPATH is set as in Listing 5.10 on page 148, then $(TEXTPATH)\myfile.txt
is expressed as in Listing 5.11 on page 148.

Listing 5.10 Example for setting TEXTPATH

TEXTPATH=C:\Freescale\txt

Listing 5.11 $(TEXTPATH)\myfile.txt where TEXTPATH is defined

C:\Freescale\txt\myfile.txt

However, if TEXTPATH does not exist or is empty, then $(TEXTPATH)\myfile.txt is
expressed as in Listing 5.12 on page 148).

Listing 5.12 $(TEXTPATH)\myfile.txt where TEXTPATH does not exist

myfile.txt
148 HC(S)08 / RS08 Assembler Manual

Assembler Options
List of Assembler options
It is also possible to display the percent sign by using %%. %e%% allows the expression
of a percent sign after the extension as in Listing 5.13 on page 149.

Listing 5.13 %% allows a percent sign to be expressed

myExt%

List of Assembler options
The following table lists each command line option you can use with the Assembler
(Table 5.6 on page 149).

Table 5.6 Assembler options

Assembler option

-Ci: Switch case sensitivity on label names OFF on page 152

-CMacAngBrack: Angle brackets for grouping Macro Arguments on page 154

-CMacBrackets: Square brackets for macro arguments grouping on page 155

-Compat: Compatibility modes on page 156

-CS08/-C08/-CRS08: Derivative family on page 159

-D: Define Label on page 161

-Env: Set environment variable on page 163

-F (-Fh, -F2o, -FA2o, -F2, -FA2): Output-file format on page 164

-H: Short Help on page 166

-I: Include file path on page 167

-L: Generate a listing file on page 168

-Lasmc: Configure listing file on page 171

-Lasms: Configure the address size in the listing file on page 173

-Lc: No Macro call in listing file on page 175

-Ld: No macro definition in listing file on page 178
149HC(S)08 / RS08 Assembler Manual

Assembler Options
List of Assembler options
-Le: No Macro expansion in listing file on page 181

-Li: No included file in listing file on page 184

-Lic: License information on page 186

-LicA: License information about every feature in directory on page 187

-LicBorrow: Borrow license feature on page 188

-LicWait: Wait until floating license is available from floating License Server on page 190

-Ll: Show label statistics on page 191

-M (-Ms, -Mt): Memory model on page 193

-MacroNest: Configure maximum macro nesting on page 195

-MCUasm: Switch compatibility with MCUasm ON on page 196

-N: Display notify box on page 197

-NoBeep: No beep in case of an error on page 198

-NoDebugInfo: No debug information for ELF/DWARF files on page 199

-NoEnv: Do not use environment on page 200

-ObjN: Object filename specification on page 201

-Prod: Specify project file at startup on page 203

-Struct: Support for structured types on page 204

-V: Prints the Assembler version on page 205

-View: Application standard occurrence on page 206

-W1: No information messages on page 208

-W2: No information and warning messages on page 209

-WErrFile: Create "err.log" error file on page 210

-Wmsg8x3: Cut filenames in Microsoft format to 8.3 on page 211

-WmsgCE: RGB color for error messages on page 212

-WmsgCF: RGB color for fatal messages on page 213

Table 5.6 Assembler options (continued)

Assembler option
150 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
Detailed listing of all assembler options
The remainder of the chapter is a detailed listing of all assembler options arranged in
alphabetical order.

-WmsgCI: RGB color for information messages on page 214

-WmsgCU: RGB color for user messages on page 215

-WmsgCW: RGB color for warning messages on page 216

-WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode on
page 217

-WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode on
page 219

-WmsgFob: Message format for batch mode on page 221

-WmsgFoi: Message format for interactive mode on page 223

-WmsgFonf: Message format for no file information on page 225

-WmsgFonp: Message format for no position information on page 227

-WmsgNe: Number of error messages on page 229

-WmsgNi: Number of Information messages on page 230

-WmsgNu: Disable user messages on page 231

-WmsgNw: Number of Warning messages on page 233

-WmsgSd: Setting a message to disable on page 234

-WmsgSe: Setting a message to Error on page 235

-WmsgSi: Setting a message to Information on page 236

-WmsgSw: Setting a Message to Warning on page 237

-WOutFile: Create error listing file on page 238

-WStdout: Write to standard output on page 239

Table 5.6 Assembler options (continued)

Assembler option
151HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-Ci: Switch case sensitivity on label names OFF

Group

Input

Scope

Assembly Unit

Syntax

-Ci

Arguments

None

Default

None

Description

This option turns off case sensitivity on label names. When this option is activated,
the Assembler ignores case sensitivity for label names. If the Assembler generates
object files but not absolute files directly (-FA2 assembler option), the case of
exported or imported labels must still match. Or, the -Ci assembler option should
be specified in the linker as well.
152 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
Example

When case sensitivity on label names is switched off, the Assembler will not
generate an error message for the assembly source code in Listing 5.14 on
page 153.

Listing 5.14 Example assembly source code

ORG $200
entry: NOP

BRA Entry

The instruction ‘BRA Entry’ branches on the ‘entry’ label. The default
setting for case sensitivity is ON, which means that the Assembler interprets the
labels ‘Entry’ and ‘entry’ as two distinct labels.

See also

-F (-Fh, -F2o, -FA2o, -F2, -FA2): Output-file format on page 164 assembler option
153HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-CMacAngBrack: Angle brackets for grouping Macro Ar-

guments

Group

Language

Scope

Application

Syntax

-CMacAngBrack(ON|OFF)

Arguments

ON or OFF

Default

None

Description

This option controls whether the < > syntax for macro invocation argument
grouping is available. When it is disabled, the Assembler does not recognize the
special meaning for < in the macro invocation context. There are cases where the
angle brackets are ambiguous. New code should use the [? ?] syntax instead.

See also

Macro argument grouping

-CMacBrackets: Square brackets for macro arguments grouping on page 155
option
154 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-CMacBrackets: Square brackets for macro arguments grouping

Group

Language

Scope

Application

Syntax

-CMacBrackets(ON|OFF)

Arguments

ON or OFF

Default

ON

Description

This option control whether the [? ?] syntax for macro invocation argument
grouping is available. When it is disabled, the Assembler does not recognize the
special meaning for [? in the macro invocation context.

See also

Macro argument grouping

-CMacAngBrack: Angle brackets for grouping Macro Arguments on page 154
option
155HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-Compat: Compatibility modes

Group

Language

Scope

Application

Syntax

-Compat[={!|=|c|s|f|$|a|b}

Arguments

See below.

Default

None

Description

This option controls some compatibility enhancements of the Assembler. The goal
is not to provide 100% compatibility with any other Assembler but to make it
possible to reuse as much as possible. The various suboptions control different
parts of the assembly:

• =: Operator != means equal

The Assembler takes the default value of the != operator as not equal, as it is in
the C language. For compatibility, this behavior can be changed to equal with
this option. Because the danger of this option for existing code, a message is
issued for every != which is treated as equal.

• !: Support additional ! operators

The following additional operators are defined when this option is used:

– !^: exponentiation

– !m: modulo

– !@: signed greater or equal

– !g: signed greater
156 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
– !%: signed less or equal

– !t: signed less than

– !$: unsigned greater or equal

– !S: unsigned greater

– !&: unsigned less or equal

– !l: unsigned less

– !n: one complement

– !w: low operator

– !h: high operator

NOTE The default values for the following ! operators are defined:
!.: binary AND
!x: exclusive OR
!+: binary OR

• c: Alternate comment rules

With this suboption, comments implicitly start when a space is present after the
argument list. A special character is not necessary. Be careful with spaces when
this option is given because part of the intended arguments may be taken as a
comment. However, to avoid accidental comments, the Assembler does issue a
warning if such a comment does not start with a "*" or a ";".

Examples

Listing 5.15 on page 157 demonstrates that when -Compat=c, comments can
start with a *.

Listing 5.15 Comments starting with an asterisk (*)

NOP * Anything following an asterisk is a comment.

When the -Compat=c assembler option is used, the first DC.B directive in
Listing 5.16 on page 158 has "+ 1 , 1" as a comment . A warning is issued
because the "comment" does not start with a ";" or a "*". With -Compat=c,
this code generates a warning and three bytes with constant values 1, 2, and 1.
Without it, this code generates four 8-bit constants of 2, 1, 2, and 1.
157HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
Listing 5.16 Implicit comment start after a space

DC.B 1 + 1 , 1
DC.B 1+1,1

• s: Symbol prefixes

With this suboption, some compatibility prefixes for symbols are supported.
With this option, the Assembler accepts “pgz:” and “byte:” prefixed for
symbols in XDEFs and XREFs. They correspond to XREF.B or XDEF.B with
the same symbols without the prefix.

• f: Ignore FF character at line start

With this suboption, an otherwise improper character recognized from feed
character is ignored.

• $: Support the $ character in symbols

With this suboption, the Assembler supports to start identifiers with a $ sign.

• a: Add some additional directives

With this suboption, some additional directives are added for enhanced
compatibility.

The Assembler actually supports a SECT directive as an alias of the usual
SECTION - Declare Relocatable Section assembly directive. The SECT
directive takes the section name as its first argument.

• b: support the FOR directive

With this suboption, the Assembler supports a FOR - Repeat assembly block
assembly directive to generate repeated patterns more easily without having to
use recursive macros.
158 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-CS08/-C08/-CRS08: Derivative family

Group

Code Generation

Scope

Application

Syntax

-C08|-CS08|-CRS08

Arguments

none

Default

-C08

Description

The Assembler supports 3 different HC08 derived cores. The HC08 itself (-C08),
the enhanced HCS08 (-CS08) and the reduced RS08 (-CRS08).

The HCS08 family supports additional addressing modes for the CPHX, LDHX, and
STHX instructions and also a new BGND instruction. All these enhancements are
allowed when the -CS08 option is specified. All instructions and addressing modes
available for the HC08 are also available for the HCS08 so that this core remains
binary compatible with its predecessor.

The RS08 family does not support all instructions and addressing modes of the
HC08. Also, the encoding of the supported instructions is not binary compatible.
159HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

Table 5.7 Table of new instructions or addressing modes for the HCS08

Instruction Addr. mode Description

LDHX EXT
IX
IX1
IX2
SP1

load from a 16-bit absolute address
load HX via 0,X
load HX via 1,X...255,X
load HX via old HX+ any offset
load HX from stack

STHX EXT
SP1

store HX to a 16-bit absolute address
store HX to stack

CPHX EXT
SP1

compare HX with a 16-bit address
compare HX with the stack

BGND enter the Background Debug Mode
160 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-D: Define Label

Group

Input

Scope

Assembly Unit

Syntax

-D<LabelName>[=<Value>]

Arguments

<LabelName>: Name of label.
<Value>: Value for label. 0 if not present.

Default

0 for Value.

Description

This option behaves as if a “Label: EQU Value” would be at the start of the
main source file. When no explicit value is given, 0 is used as the default.

This option can be used to build different versions with one common source file.

Example

Conditional inclusion of a copyright notice. See Listing 5.17 on page 161 and
Listing 5.18 on page 162.

Listing 5.17 Source code that conditionally includes a copyright notice

YearAsString: MACRO
DC.B $30+(\1 /1000)%10
DC.B $30+(\1 / 100)%10
DC.B $30+(\1 / 10)%10
DC.B $30+(\1 / 1)%10

ENDM
161HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
ifdef ADD_COPYRIGHT
ORG $1000
DC.B "Copyright by "
DC.B "John Doe"

ifdef YEAR
DC.B " 1999-"
YearAsString YEAR

endif
DC.B 0

endif

When assembled with the option "-dADD_COPYRIGHT -dYEAR=2005",
Listing 5.18 on page 162 is generated:

Listing 5.18 Generated list file

 1 1 YearAsString: MACRO
 2 2 DC.B $30+(\1 /1000)%10
 3 3 DC.B $30+(\1 / 100)%10
 4 4 DC.B $30+(\1 / 10)%10
 5 5 DC.B $30+(\1 / 1)%10
 6 6 ENDM
 7 7
 8 8 0000 0001 ifdef ADD_COPYRIGHT
 9 9 ORG $1000
10 10 a001000 436F 7079 DC.B "Copyright by "

001004 7269 6768
001008 7420 6279
00100C 20

11 11 a00100D 4A6F 686E DC.B "John Doe"
001011 2044 6F65

12 12 0000 0001 ifdef YEAR
13 13 a001015 2031 3939 DC.B " 1999-"

001019 392D
14 14 YearAsString YEAR
15 2m a00101B 32 + DC.B $30+(YEAR /1000)%10
16 3m a00101C 30 + DC.B $30+(YEAR / 100)%10
17 4m a00101D 30 + DC.B $30+(YEAR / 10)%10
18 5m a00101E 31 + DC.B $30+(YEAR / 1)%10
19 15 endif
20 16 a00101F 00 DC.B 0
21 17 endif
162 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-Env: Set environment variable

Group

Host

Scope

Assembly Unit

Syntax

-Env<EnvironmentVariable>=<VariableSetting>

Arguments

<EnvironmentVariable>: Environment variable to be set
<VariableSetting>: Setting of the environment variable

Default

None

Description

This option sets an environment variable.

Example

ASMOPTIONS=-EnvOBJPATH=\sources\obj

This is the same as:

OBJPATH=\sources\obj

in the default.env file.

See also

“Environment variables details” on page 121
163HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-F (-Fh, -F2o, -FA2o, -F2, -FA2): Output-file format

Group

Output

Scope

Application

Syntax

-F(h|2o|A2o|2|A2)

Arguments

h: HIWARE object-file format; this is the default

2o: Compatible ELF/DWARF 2.0 object-file format

A2o: Compatible ELF/DWARF 2.0 absolute-file format

2: ELF/DWARF 2.0 object-file format

A2: ELF/DWARF 2.0 absolute-file format

Default

-F2

Description

Defines the format for the output file generated by the Assembler:

• With the -Fh option set, the Assembler uses a proprietary (HIWARE) object-
file format.

• With the -F2 option set, the Assembler produces an ELF/DWARF object file.
This object-file format may also be supported by other Compiler or Assembler
vendors.

• With the -FA2 option set, the Assembler produces an ELF/DWARF absolute
file. This file format may also be supported by other Compiler or Assembler
vendors.

Note that the ELF/DWARF 2.0 file format has been updated in the current version
of the Assembler. If you are using HI-WAVE version 5.2 (or an earlier version),
164 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-F2o or -FA2o must be used to generate the ELF/DWARF 2.0 object files which
can be loaded in the debugger.

Example

ASMOPTIONS=-F2

NOTE For the RS08 the HIWARE object file format is not available.
165HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-H: Short Help

Group

Various

Scope

None

Syntax

-H

Arguments

None

Default

None

Description

The -H option causes the Assembler to display a short list (i.e., help list) of
available options within the assembler window. Options are grouped into Output,
Input, Language, Host, Code Generation, Messages, and Various.

No other option or source files should be specified when the -H option is invoked.

Example

Listing 5.19 on page 166 is a portion of the list produced by the -H option:

Listing 5.19 Example Help listing

...
MESSAGE:
-N Show notification box in case of errors
-NoBeep No beep in case of an error
-W1 Do not print INFORMATION messages
-W2 Do not print INFORMATION or WARNING messages
-WErrFile Create "err.log" Error File
...
166 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-I: Include file path

Group

Input

Scope

None

Syntax

-I<path>

Arguments

<path>: File path to be used for includes

Default

None

Description

With the -I option it is possible to specify a file path used for include files.

Example

-Id:\mySources\include
167HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-L: Generate a listing file

Group

Output

Scope

Assembly unit

Syntax

-L[=<dest>]

Arguments

<dest>: the name of the listing file to be generated.

It may contain special modifiers (see “Using special modifiers” on page 145).

Default

No generated listing file

Description

Switches on the generation of the listing file. If dest is not specified, the listing
file will have the same name as the source file, but with extension *.lst. The
listing file contains macro definition, invocation, and expansion lines as well as
expanded include files.

Example

ASMOPTIONS=-L

In the following example of assembly code (Listing 5.20 on page 169), the cpChar
macro accepts two parameters. The macro copies the value of the first parameter to
the second one.

When the -L option is specified, the portion of assembly source code in
Listing 5.20 on page 169, together with the code from an include file (Listing
5.21 on page 169) generates the output listing in Listing 5.22 on page 169.
168 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
Listing 5.20 Example assembly source code

XDEF Start
MyData: SECTION
char1: DS.B 1
char2: DS.B 1

INCLUDE "macro.inc"
CodeSec: SECTION
Start:

cpChar char1, char2
NOP

Listing 5.21 Example source code from an include file

cpChar: MACRO
LDA \1
STA \2
ENDM

Listing 5.22 Assembly output listing

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

1 1 XDEF Start
2 2 MyData: SECTION
3 3 000000 char1: DS.B 1
4 4 000001 char2: DS.B 1
5 5 INCLUDE "macro.inc"
6 1i cpChar: MACRO
7 2i LDA \1
8 3i STA \2
9 4i ENDM

10 6 CodeSec: SECTION
11 7 Start:
12 8 cpChar char1, char2
13 2m 000000 C6 xxxx + LDA char1
14 3m 000003 C7 xxxx + STA char2
15 9 000006 9D NOP

The Assembler stores the content of included files in the listing file. The
Assembler also stores macro definitions, invocations, and expansions in the listing
file.
169HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
For a detailed description of the listing file, see the Assembler Listing File chapter.

See also

Assembler options:

• -Lasmc: Configure listing file on page 171

• -Lasms: Configure the address size in the listing file on page 173

• -Lc: No Macro call in listing file on page 175

• -Ld: No macro definition in listing file on page 178

• -Le: No Macro expansion in listing file on page 181

• -Li: No included file in listing file on page 184
170 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-Lasmc: Configure listing file

Group

Output

Scope

Assembly unit

Syntax

-Lasmc={s|r|m|l|k|i|c|a}

Arguments

s - Do not write the source column

r - Do not write the relative column (Rel.)

m - Do not write the macro mark

l - Do not write the address (Loc)

k - Do not write the location type

i - Do not write the include mark column

c - Do not write the object code

a - Do not write the absolute column (Abs.)

Default

Write all columns.

Description

The default-configured listing file shows a lot of information. With this option, the
output can be reduced to columns which are of interest. This option configures
which columns are printed in a listing file. To configure which lines to print, see
the following assembler options: -Lc: No Macro call in listing file on page 175, -
Ld: No macro definition in listing file on page 178, -Le: No Macro expansion in
listing file on page 181, and -Li: No included file in listing file on page 184.
171HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
Example

For the following assembly source code, the Assembler generates the default-
configured output listing (Listing 5.23 on page 172):

DC.B "Hello World"
DC.B 0

Listing 5.23 Example assembler output listing

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

1 1 000000 4865 6C6C DC.B "Hello World"
000004 6F20 576F
000008 726C 64

2 2 00000B 00 DC.B 0

In order to get this output without the source file line numbers and other irrelevant
parts for this simple DC.B example, the following option is added:
"-Lasmc=ramki". This generates the output listing in Listing 5.24 on page 172:

Listing 5.24 Example output listing

Loc Obj. code Source line
------ --------- -----------
000000 4865 6C6C DC.B "Hello World"
000004 6F20 576F
000008 726C 64
00000B 00 DC.B 0

For a detailed description of the listing file, see the Assembler Listing File chapter.

See also

Assembler options:

• -L: Generate a listing file on page 168

• -Lc: No Macro call in listing file on page 175

• -Ld: No macro definition in listing file on page 178

• -Le: No Macro expansion in listing file on page 181

• -Li: No included file in listing file on page 184

• -Lasms: Configure the address size in the listing file on page 173
172 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-Lasms: Configure the address size in the listing file

Group

Output

Scope

Assembly unit

Syntax

-Lasms{1|2|3|4}

Arguments

1 - The address size is xx

2 - The address size is xxxx

3 - The address size is xxxxxx

4 - The address size is xxxxxxxx

Default

-Lasms3

Description

The default-configured listing file shows a lot of information. With this option, the
size of the address column can be reduced to the size of interest. To configure
which columns are printed, see the -Lasmc: Configure listing file on page 171
option. To configure which lines to print, see the -Lc: No Macro call in listing
file on page 175, -Ld: No macro definition in listing file on page 178, -Le: No
Macro expansion in listing file on page 181, and
-Li: No included file in listing file on page 184 assembler options.

Example

For the following instruction:

NOP
173HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
the Assembler generates this default-configured output listing (Listing 5.25 on
page 174):

Listing 5.25 Example assembler output listing

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

1 1 000000 XX NOP

In order to change the size of the address column the following option is added:
"-Lasms1". This changes the address size to two digits.

Listing 5.26 Example assembler output listing configured with -Lasms1

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

1 1 00 XX NOP

See also

Assembler Listing File chapter

Assembler options:

• -Lasmc: Configure listing file on page 171

• -L: Generate a listing file on page 168

• -Lc: No Macro call in listing file on page 175

• -Ld: No macro definition in listing file on page 178

• -Le: No Macro expansion in listing file on page 181

• -Li: No included file in listing file on page 184
174 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-Lc: No Macro call in listing file

Group

Output

Scope

Assembly unit

Syntax

-Lc

Arguments

none

Default

none

Description

Switches on the generation of the listing file, but macro invocations are not present
in the listing file. The listing file contains macro definition and expansion lines as
well as expanded include files.

Example

ASMOPTIONS=-Lc

In the following example of assembly code, the cpChar macro accept two
parameters. The macro copies the value of the first parameter to the second one.

When the -Lc option is specified, the following portion of assembly source code in
Listing 5.27 on page 175:

Listing 5.27 Example assembly source code

XDEF Start
MyData: SECTION
char1: DS.B 1
char2: DS.B 1
175HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
INCLUDE "macro.inc"
CodeSec: SECTION
Start:

cpChar char1, char2
NOP

along with additional source code (Listing 5.28 on page 176) from the
macro.inc include file generates the following output in the assembly listing file
(Listing 5.29 on page 176):

Listing 5.28 Example source code from the macro.inc file

cpChar: MACRO
LDA \1
STA \2
ENDM

Listing 5.29 Output assembly listing

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

1 1 XDEF Start
2 2 MyData: SECTION
3 3 000000 char1: DS.B 1
4 4 000001 char2: DS.B 1
5 5 INCLUDE "macro.inc"
6 1i cpChar: MACRO
7 2i LDA \1
8 3i STA \2
9 4i ENDM

10 6 CodeSec: SECTION
11 7 Start:
13 2m 000000 C6 xxxx + LDA char1
14 3m 000003 C7 xxxx + STA char2
15 9 000006 9D NOP

The Assembler stores the content of included files in the listing file. The
Assembler also stores macro definitions, invocations, and expansions in the listing
file.

The listing file does not contain the line of source code that invoked the macro.

For a detailed description of the listing file, see the Assembler Listing File chapter.
176 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
See also

Assembler options:

• -L: Generate a listing file on page 168

• -Ld: No macro definition in listing file on page 178

• -Le: No Macro expansion in listing file on page 181

• -Li: No included file in listing file on page 184
177HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-Ld: No macro definition in listing file

Group

Output

Scope

Assembly unit

Syntax

-Ld

Arguments

None

Default

None

Description

Instructs the Assembler to generate a listing file but not including any macro
definitions. The listing file contains macro invocation and expansion lines as well
as expanded include files.

Example

ASMOPTIONS=-Ld

In the following example of assembly code, the cpChar macro accepts two
parameters. The macro copies the value of the first parameter to the second one.

When the -Ld option is specified, the assembly source code in Listing 5.30 on
page 178 along with additional source code (Listing 5.31 on page 179) from the
macro.inc file generates an assembler output listing (Listing 5.32 on page 179)
file:

Listing 5.30 Example assembly source code

XDEF Start
MyData: SECTION
char1: DS.B 1
char2: DS.B 1
178 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
INCLUDE "macro.inc"
CodeSec: SECTION
Start:

cpChar char1, char2
NOP

Listing 5.31 Example source code from an include file

cpChar: MACRO
LDA \1
STA \2

ENDM

Listing 5.32 Example assembler output listing

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

1 1 XDEF Start
2 2 MyData: SECTION
3 3 000000 char1: DS.B 1
4 4 000001 char2: DS.B 1
5 5 INCLUDE "macro.inc"
6 1i cpChar: MACRO

10 6 CodeSec: SECTION
11 7 Start:
12 8 cpChar char1, char2
13 2m 000000 C6 xxxx + LDA char1
14 3m 000003 C7 xxxx + STA char2
15 9 000006 9D NOP

The Assembler stores that content of included files in the listing file. The
Assembler also stores macro invocation and expansion in the listing file.

The listing file does not contain the source code from the macro definition.

For a detailed description of the listing file, see the Assembler Listing File chapter.

See also

Assembler options:

• -L: Generate a listing file on page 168

• -Lc: No Macro call in listing file on page 175

• -Le: No Macro expansion in listing file on page 181
179HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
• -Li: No included file in listing file on page 184
180 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-Le: No Macro expansion in listing file

Group

Output

Scope

Assembly unit

Syntax

-Le

Arguments

None

Default

None

Description

Switches on the generation of the listing file, but macro expansions are not present
in the listing file. The listing file contains macro definition and invocation lines as
well as expanded include files.

Example

ASMOPTIONS=-Le

In the following example of assembly code, the cpChar macro accepts two
parameters. The macro copies the value of the first parameter to the second one.

When the -Le option is specified, the assembly code in Listing 5.33 on page 181
along with additional source code (Listing 5.34 on page 182) from the
macro.inc file generates an assembly output listing file (Listing 5.35 on
page 182):

Listing 5.33 Example assembly source code

XDEF Start
MyData: SECTION
char1: DS.B 1
181HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
char2: DS.B 1
INCLUDE "macro.inc"

CodeSec: SECTION
Start:

cpChar char1, char2
NOP

Listing 5.34 Example source code from an included file

cpChar: MACRO
LDA \1
STA \2

ENDM

Listing 5.35 Example assembler output listing

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

1 1 XDEF Start
2 2 MyData: SECTION
3 3 000000 char1: DS.B 1
4 4 000001 char2: DS.B 1
5 5 INCLUDE "macro.inc"
6 1i cpChar: MACRO
7 2i LDA \1
8 3i STA \2
9 4i ENDM

10 6 CodeSec: SECTION
11 7 Start:
12 8 cpChar char1, char2
15 9 000006 9D NOP

The Assembler stores the content of included files in the listing file. The
Assembler also stores the macro definition and invocation in the listing file.

The Assembler does not store the macro expansion lines in the listing file.

For a detailed description of the listing file, see the Assembler Listing File chapter.

See also

-L: Generate a listing file on page 168

-Lc: No Macro call in listing file on page 175
182 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-Ld: No macro definition in listing file on page 178-Li: No included file in listing
file on page 184
183HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-Li: No included file in listing file

Group

Output

Scope

Assembly unit

Syntax

-Li

Arguments

None

Default

None

Description

Switches on the generation of the listing file, but include files are not expanded in
the listing file. The listing file contains macro definition, invocation, and expansion
lines.

Example

ASMOPTIONS=-Li

In the following example of assembly code, the cpChar macro accepts two
parameters. The macro copies the value of the first parameter to the second one.

When -Li option is specified, the assembly source code in Listing 5.36 on
page 184 along with additional source code (Listing 5.37 on page 185) from the
macro.inc file generates the following output in the assembly listing file:

Listing 5.36 Example assembly source code

XDEF Start
MyData: SECTION
char1: DS.B 1
char2: DS.B 1

INCLUDE "macro.inc"
184 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
CodeSec: SECTION
Start:

cpChar char1, char2
NOP

Listing 5.37 Example source code in an include file

cpChar: MACRO
LDA \1
STA \2
ENDM

Listing 5.38 Example assembler output listing

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

1 1 XDEF Start
2 2 MyData: SECTION
3 3 000000 char1: DS.B 1
4 4 000001 char2: DS.B 1
5 5 INCLUDE "macro.inc"

10 6 CodeSec: SECTION
11 7 Start:
12 8 cpChar char1, char2
13 2m 000000 C6 xxxx + LDA char1
14 3m 000003 C7 xxxx + STA char2
15 9 000006 9D NOP

The Assembler stores the macro definition, invocation, and expansion in the listing
file.

The Assembler does not store the content of included files in the listing file.

For a detailed description of the listing file, see the Assembler Listing File chapter.

See also

Assembler options:

• -L: Generate a listing file on page 168

• -Lc: No Macro call in listing file on page 175

• -Ld: No macro definition in listing file on page 178

• -Le: No Macro expansion in listing file on page 181
185HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-Lic: License information

Group

Various

Scope

None

Syntax

-Lic

Arguments

None

Default

None

Description

The -Lic option prints the current license information (e.g., if it is a demo
version or a full version). This information is also displayed in the About... box.

Example

ASMOPTIONS=-Lic

See also

Assembler options:

• -LicA: License information about every feature in directory on page 187

• -LicBorrow: Borrow license feature on page 188

• -LicWait: Wait until floating license is available from floating License
Server on page 190
186 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-LicA: License information about every feature in directo-

ry

Group

Various

Scope

None

Syntax

-LicA

Arguments

None

Default

None

Description

The -LicA option prints the license information of every tool or DLL in the
directory where the executable is (e.g., if tool or feature is a demo version or a full
version). Because the option has to analyze every single file in the directory, this
may take a long time.

Example

ASMOPTIONS=-LicA

See also

Assembler options:

• -Lic: License information on page 186

• -LicBorrow: Borrow license feature on page 188

• -LicWait: Wait until floating license is available from floating License
Server on page 190
187HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-LicBorrow: Borrow license feature

Group

Host

Scope

None

Syntax

-LicBorrow<feature>[;<version>]:<Date>

Arguments

<feature>: the feature name to be borrowed (e.g., HI100100).
<version>: optional version of the feature to be borrowed (e.g., 3.000).
<date>: date with optional time until when the feature shall be borrowed (e.g.,
15-Mar-2005:18:35).

Default

None

Defines

None

Pragmas

None

Description

This option lets you borrow a license feature until a given date/time. Borrowing
allows you to use a floating license even if disconnected from the floating license
server.

You need to specify the feature name and the date until you want to borrow the
feature. If the feature you want to borrow is a feature belonging to the tool where
you use this option, then you do not need to specify the version of the feature
(because the tool is aware of the version). However, if you want to borrow any
feature, you need to specify the feature’s version number.
188 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
You can check the status of currently borrowed features in the tool’s About...
box.

NOTE You only can borrow features if you have a floating license and if your floating
license is enabled for borrowing. See the provided FLEXlm documentation
about details on borrowing.

Example

-LicBorrowHI100100;3.000:12-Mar-2005:18:25

See also

Assembler options:

• -Lic: License information on page 186

• -LicA: License information about every feature in directory on page 187

• -LicWait: Wait until floating license is available from floating License
Server on page 190
189HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-LicWait: Wait until floating license is available from floating

License Server

Group

Host

Scope

None

Syntax

-LicWait

Arguments

None

Default

None

Description

If a license is not available from the floating license server, then the default
condition is that the application will immediately return. With the -LicWait
assembler option set, the application will wait (blocking) until a license is available
from the floating license server.

Example

ASMOPTIONS=-LicWait

See also

Assembler options:

• -Lic: License information on page 186

• -LicA: License information about every feature in directory on page 187

• -LicBorrow: Borrow license feature on page 188
190 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-Ll: Show label statistics

Group

OUTPUT

Scope

Assembly unit

Syntax

"-Ll"

Arguments

None

Default

No label statistics

Description

Appends a section to the listing file that shows how much space would be gained if
a certain label were in the short (or tiny) memory area. The statistics take into
consideration the relocatable symbols only (labels defined by an EQU directive are
not taken into consideration). This option has no effect if no listing file is generated
(i.e. -L is not active too). This is an RS08 specific option, and is not supported for
any other HC08 derivative.

Example:

 XREF label_a, label_b

MY_CODE_SECTION: SECTION

label_c:

 LDA label_a

 STA label_b

 INCA

 ADD label_b

 LDA label_c
191HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
Assembling the code above (with -L -Ll) results in the following listing file:

Freescale HC08-Assembler
(c) Copyright Freescale 1987-2006

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------
 1 1 XREF label_a, label_b
 2 2 MY_CODE_SECTION: SECTION
 3 3 label_c:
 4 4 000000 B6 xx LDA label_a
 5 5 000002 B7 xx STA label_b
 6 6 000004 4C INCA
 7 7 000005 BB xx ADD label_b
 8 8 000007 B6 xx LDA label_c
 9 9

Freescale Assembler
 Ind. Name tiny short
 ---- ---- ---- -----
 1 label_a 1 1
 2 label_b 2 1
 3 label_c 1 1

The table at the end of the listing file shows that:

1) If label_a one were either in the tiny or short memory area, one byte would be
gained in terms of code size (since the LDA at line 4 would use the short
addressing mode in either of the two cases).

2) If label_b were in the tiny memory area, two bytes would be gained since the
STA at line 5 would use the short addressing mode and the ADD at line 7 would
use the tiny addressing mode.

3) If label_c were in the short (or tiny) memory area one byte would be gained
since the LDA at line 8 would use the short addressing mode.

192 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-M (-Ms, -Mt): Memory model

Group

Code Generation

Scope

Application

Syntax

-M(s|b|t)

Arguments

s: small memory model

t: tiny memory model

Default

-Ms

Description

The Assembler for the MC68HC(S)08 supports two different memory models. The
default is the small memory model, which corresponds to the normal setup, i.e., a
64kB code-address space. The tiny memory model corresponds to the situation
where the default RAM is in the zero page.

NOTE For the Assembler, the memory model does not matter at all. The memory
model is used by the compiler to specify the default allocation of variable and
functions. The Assembler has this option only to generate “compatible” object
files for the memory model consistency check of the linker.

NOTE In the tiny memory model, the default for the compiler is to use zero-page
addressing. The default for the Assembler is to still use extended-addressing
modes. See the Using the direct addressing mode to access symbols section to
see how to generate zero-page accesses.
193HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
Example

ASMOPTIONS=-Mt
194 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-MacroNest: Configure maximum macro nesting

Group

Language

Scope

Assembly Unit

Syntax

-MacroNest<Value>

Arguments

<Value>: max. allowed nesting level

Default

3000

Description

This option controls how deep macros calls can be nested. Its main purpose is to
avoid endless recursive macro invocations.

Example

See the description of message A1004 for an example.

See also

Message A1004 (available in the Online Help)
195HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-MCUasm: Switch compatibility with MCUasm ON

Group

Various

Scope

Assembly Unit

Syntax

-MCUasm

Arguments

None

Default

None

Description

This switches ON compatibility mode with the MCUasm Assembler. Additional
features supported, when this option is activated are enumerated in the
MCUasm Compatibility chapter in the Appendices.

Example

ASMOPTIONS=-MCUasm
196 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-N: Display notify box

Group

Messages

Scope

Assembly Unit

Syntax

-N

Arguments

None

Default

None

Description

Makes the Assembler display an alert box if there was an error during assembling.
This is useful when running a makefile (please see the manual about Build Tools)
because the Assembler waits for the user to acknowledge the message, thus
suspending makefile processing. (The 'N' stands for “Notify”.)

This feature is useful for halting and aborting a build using the Make Utility.

Example

ASMOPTIONS=-N

If an error occurs during assembling, an alert dialog box will be opened.
197HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-NoBeep: No beep in case of an error

Group

Messages

Scope

Assembly Unit

Syntax

-NoBeep

Arguments

None

Default

None

Description

Normally there is a ‘beep’ notification at the end of processing if there was an
error. To have a silent error behavior, this ‘beep’ may be switched off using this
option.

Example

ASMOPTIONS=-NoBeep
198 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-NoDebugInfo: No debug information for ELF/DWARF files

Group

Language

Scope

Assembly Unit

Syntax

-NoDebugInfo

Arguments

None

Default

None

Description

By default, the Assembler produces debugging info for the produced
ELF/DWARF files. This can be switched off with this option.

Example

ASMOPTIONS=-NoDebugInfo
199HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-NoEnv: Do not use environment

Group

Startup (This option cannot be specified interactively.)

Scope

Assembly Unit

Syntax

-NoEnv

Arguments

None

Default

None

Description

This option can only be specified at the command line while starting the
application. It cannot be specified in any other circumstances, including the
default.env file, the command line or whatever.

When this option is given, the application does not use any environment
(default.env, project.ini or tips file).

Example

xx.exe -NoEnv

(Use the actual executable name instead of “xx”)

See also

Environment chapter
200 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-ObjN: Object filename specification

Group

Output

Scope

Assembly Unit

Syntax

-ObjN<FileName>

Arguments

<FileName>: Name of the binary output file generated.

Default

-ObjN%n.o when generating a relocatable file or
-ObjN%n.abs when generating an absolute file file.

Description

Normally, the object file has the same name than the processed source file, but with
the “.o” extension when relocatable code is generated or the “.abs” extension
when absolute code is generated. This option allows a flexible way to define the
output filename. The modifier “%n” can also be used. It is replaced with the source
filename. If <file> in this option contains a path (absolute or relative), the
OBJPATH environment variable is ignored.

Example

For ASMOPTIONS=-ObjNa.out, the resulting object file will be “a.out”. If
the OBJPATH environment variable is set to “\src\obj”, the object file will be
“\src\obj\a.out”.

For fibo.c -ObjN%n.obj, the resulting object file will be “fibo.obj”.

For myfile.c -ObjN..\objects_%n.obj, the object file will be named
relative to the current directory to “..\objects_myfile.obj. Note that the
environment variable OBJPATH is ignored, because <file> contains a path.
201HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
See also

OBJPATH: Object file path environment variable
202 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-Prod: Specify project file at startup

Group

None (This option cannot be specified interactively.)

Scope

None

Syntax

-Prod=<file>

Arguments

<file>: name of a project or project directory

Default

None

Description

This option can only be specified at the command line while starting the
application. It cannot be specified in any other circumstances, including the
default.env file, the command line or whatever.

When this option is given, the application opens the file as configuration file.
When the filename does only contain a directory, the default name
project.ini is appended. When the loading fails, a message box appears.

Example

assembler.exe -Prod=project.ini

(Use the Assembler’s executable name instead of “assembler”.)

See also

Environment chapter
203HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-Struct: Support for structured types

Group

Input

Scope

Assembly Unit

Syntax

-Struct

Arguments

None

Default

None

Description

When this option is activated, the Macro Assembler also support the definition and
usage of structured types. This is interesting for application containing both
ANSI-C and Assembly modules.

Example

ASMOPTIONS=-Struct

See also

Mixed C and Assembler Applications chapter
204 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-V: Prints the Assembler version

Group

Various

Scope

None

Syntax

-V

Arguments

None

Default

None

Description

Prints the Assembler version and the current directory.

NOTE Use this option to determine the current directory of the Assembler.

Example

-V produces the following listing (Listing 5.39 on page 205):

Listing 5.39 Example of a version listing

Command Line '-v'
Assembler V-5.0.8, Jul 7 2005
Directory: C:\Freescale\demo

Common Module V-5.0.7, Date Jul 7 2005
User Interface Module, V-5.0.17, Date Jul 7 2005
Assembler Kernel, V-5.0.13, Date Jul 7 2005
Assembler Target, V-5.0.8, Date Jul 7 2005
205HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-View: Application standard occurrence

Group

Host

Scope

Assembly Unit

Syntax

-View<kind>

Arguments

<kind> is one of the following:

• “Window”: Application window has the default window size.

• “Min”: Application window is minimized.

• “Max”: Application window is maximized.

• “Hidden”: Application window is not visible (only if there are arguments).

Default

Application is started with arguments: Minimized.

Application is started without arguments: Window.

Description

Normally, the application (e.g., Assembler, Linker, Compiler, ...) is started with a
normal window if no arguments are given. If the application is started with
arguments (e.g., from the Maker to assemble, compile, or link a file), then the
application is running minimized to allow for batch processing. However, the
application’s window behavior may be specified with the View option.

Using -ViewWindow, the application is visible with its normal window. Using
-ViewMin the application is visible iconified (in the task bar). Using -ViewMax,
the application is visible maximized (filling the whole screen). Using
-ViewHidden, the application processes arguments (e.g., files to be compiled or
linked) completely invisible in the background (no window or icon visible in the
task bar). However, for example, if you are using the -N: Display notify box on
page 197 assembler option, a dialog box is still possible.
206 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
Example

C:\Freescale\prog\linker.exe -ViewHidden fibo.prm
207HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-W1: No information messages

Group

Messages

Scope

Assembly Unit

Syntax

-W1

Arguments

None

Default

None

Description

Inhibits the Assembler’s printing INFORMATION messages. Only WARNING
and ERROR messages are written to the error listing file and to the assembler
window.

Example

ASMOPTIONS=-W1
208 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-W2: No information and warning messages

Group

Messages

Scope

Assembly Unit

Syntax

-W2

Arguments

None

Default

None

Description

Suppresses all messages of INFORMATION or WARNING types. Only ERROR
messages are written to the error listing file and to the assembler window.

Example

ASMOPTIONS=-W2
209HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WErrFile: Create "err.log" error file

Group

Messages

Scope

Assembly Unit

Syntax

-WErrFile(On|Off)
Arguments

None

Default

An err.log file is created or deleted.

Description

The error feedback from the Assembler to called tools is now done with a return
code. In 16-bit Windows environments this was not possible. So in case of an error,
an “err.log” file with the numbers of written errors was used to signal any errors.
To indicate no errors, the “err.log”file would be deleted. Using UNIX or WIN32, a
return code is now available. Therefore, this file is no longer needed when only
UNIX or WIN32 applications are involved. To use a 16-bit Maker with this tool, an
error file must be created in order to signal any error.

Example

• -WErrFileOn

err.log is created or deleted when the application is finished.

• -WErrFileOff

existing err.log is not modified.

See also

-WStdout: Write to standard output on page 239

-WOutFile: Create error listing file on page 238
210 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-Wmsg8x3: Cut filenames in Microsoft format to 8.3

Group

Messages

Scope

Assembly Unit

Syntax

-Wmsg8x3

Default

None

Description

Some editors (e.g., early versions of WinEdit) are expecting the filename in the
Microsoft message format in a strict 8.3 format. That means the filename can have
at most 8 characters with not more than a 3-character extension. Using Win95,
WinNT, or a newer Windows O/S, longer file names are possible. With this option
the filename in the Microsoft message is truncated to the 8.3 format.

Example

x:\mysourcefile.c(3): INFORMATION C2901: Unrolling loop

With the -Wmsg8x3 option set, the above message will be
x:\mysource.c(3): INFORMATION C2901: Unrolling loop

See also

• -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode on
page 217

• -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive
mode on page 219

• -WmsgFoi: Message format for interactive mode on page 223

• -WmsgFob: Message format for batch mode on page 221 Option
211HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
• --WmsgFonp: Message format for no position information on page 227
212 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WmsgCE: RGB color for error messages

Group

Messages

Scope

Compilation Unit

Syntax

-WmsgCE<RGB>

Arguments

<RGB>: 24-bit RGB (red green blue) value.

Default

-WmsgCE16711680 (rFF g00 b00, red)

Description

It is possible to change the error message color with this option. The value to be
specified has to be an RGB (Red-Green-Blue) value and has to be specified in
decimal.

Example

-WmsgCE255 changes the error messages to blue.
213HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WmsgCF: RGB color for fatal messages

Group

Messages

Scope

Compilation Unit

Syntax

-WmsgCF<RGB>

Arguments

<RGB>: 24-bit RGB (red green blue) value.

Default

-WmsgCF8388608 (r80 g00 b00, dark red)

Description

It is possible to change the fatal message color with this option. The value to be
specified has to be an RGB (Red-Green-Blue) value and has to be specified in
decimal.

Example

-WmsgCF255 changes the fatal messages to blue.
214 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WmsgCI: RGB color for information messages

Group

Messages

Scope

Compilation Unit

Syntax

-WmsgCI<RGB>

Arguments

<RGB>: 24-bit RGB (red green blue) value.

Default

-WmsgCI32768 (r00 g80 b00, green)

Description

It is possible to change the information message color with this option. The value
to be specified has to be an RGB (Red-Green-Blue) value and has to be specified in
decimal.

Example

-WmsgCI255 changes the information messages to blue.
215HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WmsgCU: RGB color for user messages

Group

Messages

Scope

Compilation Unit

Syntax

-WmsgCU<RGB>

Arguments

<RGB>: 24-bit RGB (red green blue) value.

Default

-WmsgCU0 (r00 g00 b00, black)

Description

It is possible to change the user message color with this option. The value to be
specified has to be an RGB (Red-Green-Blue) value and has to be specified in
decimal.

Example

-WmsgCU255 changes the user messages to blue.
216 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WmsgCW: RGB color for warning messages

Group

Messages

Scope

Compilation Unit

Syntax

-WmsgCW<RGB>

Arguments

<RGB>: 24-bit RGB (red green blue) value.

Default

-WmsgCW255 (r00 g00 bFF, blue)

Description

It is possible to change the warning message color with this option. The value to be
specified has to be an RGB (Red-Green-Blue) value and has to be specified in
decimal.

Example

-WmsgCW0 changes the warning messages to black.
217HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WmsgFb (-WmsgFbv, -WmsgFbm): Set message file for-

mat for batch mode

Group

Messages

Scope

Assembly Unit

Syntax

-WmsgFb[v|m]

Arguments

v: Verbose format.

m: Microsoft format.

Default

-WmsgFbm

Description

The Assembler can be started with additional arguments (e.g., files to be assembled
together with assembler options). If the Assembler has been started with arguments
(e.g., from the Make tool), the Assembler works in the batch mode. That is, no
assembler window is visible and the Assembler terminates after job completion.

If the Assembler is in batch mode, the Assembler messages are written to a file and
are not visible on the screen. This file only contains assembler messages (see
examples below).

The Assembler uses a Microsoft message format as the default to write the
assembler messages (errors, warnings, or information messages) if the Assembler
is in the batch mode.

With this option, the default format may be changed from the Microsoft format
(with only line information) to a more verbose error format with line, column, and
source information.
218 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
Example

Assume that the assembly source code in Listing 5.40 on page 218 is to be
assembled in the batch mode.

Listing 5.40 Example assembly source code

var1: equ 5
var2: equ 5

if (var1=var2)
NOP

endif
endif

The Assembler generates the error output (Listing 5.41 on page 218) in the
assembler window if it is running in batch mode:

Listing 5.41 Example error listing in the Microsoft (default) format for batch mode

X:\TW2.ASM(12):ERROR: Conditional else not allowed here.

If the format is set to verbose, more information is stored in the file:

Listing 5.42 Example error listing in the verbose format for batch mode

ASMOPTIONS=-WmsgFbv
>> in "C:\tw2.asm", line 6, col 0, pos 81

endif
^
ERROR A1001: Conditional else not allowed here

See also

ERRORFILE: Filename specification error

-WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive
mode on page 219

-WmsgFob: Message format for batch mode on page 221

-WmsgFoi: Message format for interactive mode on page 223

-WmsgFonf: Message format for no file information on page 225

-WmsgFonp: Message format for no position information on page 227
219HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WmsgFi (-WmsgFiv, -WmsgFim): Set message file for-

mat for interactive mode

Group

Messages

Scope

Assembly Unit

Syntax

-WmsgFi[v|m]

Arguments

v: Verbose format.

m: Microsoft format.

Default

-WmsgFiv

Description

If the Assembler is started without additional arguments (e.g., files to be assembled
together with Assembler options), the Assembler is in the interactive mode (that is,
a window is visible).

While in interactive mode, the Assembler uses the default verbose error file format
to write the assembler messages (errors, warnings, information messages).

Using this option, the default format may be changed from verbose (with source,
line and column information) to the Microsoft format (which displays only line
information).

NOTE Using the Microsoft format may speed up the assembly process because the
Assembler has to write less information to the screen.
220 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
Example
If the Assembler is running in interactive mode, the default error output is shown in
the assembler window as in Listing 5.44 on page 220.

Listing 5.43 Example error listing in the default mode for interactive mode

>> in "X:\TWE.ASM", line 12, col 0, pos 215
endif
endif

^
ERROR A1001: Conditional else not allowed here

Setting the format to Microsoft, less information is displayed:

Listing 5.44 Example error listing in MIcrosoft format for interactive mode

ASMOPTIONS=-WmsgFim
X:\TWE.ASM(12): ERROR: conditional else not allowed here

See also
ERRORFILE: Filename specification error environment variable

Assembler options:

• -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode on
page 217

• -WmsgFob: Message format for batch mode on page 221

• -WmsgFoi: Message format for interactive mode on page 223

• -WmsgFonf: Message format for no file information on page 225

• -WmsgFonp: Message format for no position information on page 227
221HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WmsgFob: Message format for batch mode

Group

Messages

Scope

Assembly Unit

Syntax

-WmsgFob<string>

Arguments

<string>: format string (see below).

Default

-WmsgFob"%f%e(%l): %K %d: %m\n”

Description

With this option it is possible to modify the default message format in the batch
mode. The formats in Listing 5.45 on page 221 are supported (assumed that the
source file is x:\Freescale\sourcefile.asmx).

Listing 5.45 Supported formats for messages in the batch node

Format Description Example

--
%s Source Extract
%p Path x:\Freescale\
%f Path and name x:\Freescale\sourcefile
%n Filename sourcefile
%e Extension .asmx
%N File (8 chars) sourcefi
%E Extension (3 chars) .asm
%l Line 3
%c Column 47
%o Pos 1234
%K Uppercase kind ERROR
%k Lowercase kind error
222 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
%d Number A1051
%m Message text
%% Percent %
\n New line

Example

ASMOPTIONS=-WmsgFob”%f%e(%l): %k %d: %m\n”

produces a message displayed in Listing 5.46 on page 222 using the
format in Listing 5.45 on page 221. The options are set for producing the path of a
file with its filename , extension, and line

Listing 5.46 Error message

x:\Freescale\sourcefile.asmx(3): error A1051: Right parenthesis
expected

See also

Assembler options:

• -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode on
page 217

• -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive
mode on page 219

• -WmsgFoi: Message format for interactive mode on page 223

• -WmsgFonf: Message format for no file information on page 225

• -WmsgFonp: Message format for no position information on page 227
223HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WmsgFoi: Message format for interactive mode

Group

Messages

Scope

Assembly Unit

Syntax

-WmsgFoi<string>

Arguments

<string>: format string (see below)

Default

-WmsgFoi"\n>> in \"%f%e\", line %l, col %c, pos %o\n%s\n%K %d: %m\n"

Description

With this option it is possible modify the default message format in interactive
mode. The following formats are supported (supposed that the source file is
x:\Freescale\sourcefile.asmx):

Listing 5.47 Supported message formats - interactive mode

Format Description Example
--
%s Source Extract
%p Path x:\Freescale\
%f Path and name x:\Freescale\sourcefile
%n Filename sourcefile
%e Extension .asmx
%N File (8 chars) sourcefi
%E Extension (3 chars) .asm
%l Line 3
%c Column 47
%o Pos 1234
%K Uppercase kind ERROR
224 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
%k Lowercase kind error
%d Number A1051
%m Message text
%% Percent %
\n New line

Example

ASMOPTIONS=-WmsgFoi”%f%e(%l): %k %d: %m\n”

produces a message in following format (Listing 5.48 on page 224):

Listing 5.48 Error message resulting from the statement above

x:\Freescale\sourcefile.asmx(3): error A1051: Right parenthesis
expected

See also

ERRORFILE: Filename specification error environment variable

Assembler options:

• -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode on
page 217

• -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive
mode on page 219

• -WmsgFob: Message format for batch mode on page 221

• -WmsgFonf: Message format for no file information on page 225

• -WmsgFonp: Message format for no position information on page 227
225HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WmsgFonf: Message format for no file information

Group

Messages

Scope

Assembly Unit

Syntax

-WmsgFonf<string>

Arguments

<string>: format string (see below)

Default

-WmsgFonf"%K %d: %m\n"

Description

Sometimes there is no file information available for a message (e.g., if a message
not related to a specific file). Then this message format string is used. The
following formats are supported:

Listing 5.49

Format Description Example

%K Uppercase kind ERROR
%k Lowercase kind error
%d Number L10324
%m Message text
%% Percent %
\n New line
226 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
Example

ASMOPTIONS=-WmsgFonf”%k %d: %m\n”

produces a message in following format:

information L10324: Linking successful

See also

ERRORFILE: Filename specification error environment variable

Assembler options:

• -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode on
page 217

• -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive
mode on page 219

• -WmsgFob: Message format for batch mode on page 221

• -WmsgFoi: Message format for interactive mode on page 223

• -WmsgFonp: Message format for no position information on page 227
227HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WmsgFonp: Message format for no position information

Group

Messages

Scope

Assembly Unit

Syntax

-WmsgFonp<string>

Arguments

<string>: format string (see below)

Default

-WmsgFonp"%f%e: %K %d: %m\n"

Description

Sometimes there is no position information available for a message (e.g., if a
message not related to a certain position). Then this message format string is used.
The following formats are supported (supposed that the source file is
x:\Freescale\sourcefile.asmx)

Listing 5.50 Supported message formats for when there is no position information

Format Description Example
--
%p Path x:\Freescale\
%f Path and name x:\Freescale\sourcefile
%n Filename sourcefile
%e Extension .asmx
%N File (8 chars) sourcefi
%E Extension (3 chars) .asm
%K Uppercase kind ERROR
%k Lowercase kind error
%d Number L10324
%m Message text
228 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
%% Percent %
\n New line

Example

ASMOPTIONS=-WmsgFonf”%k %d: %m\n”
produces a message in following format:

information L10324: Linking successful

See also
ERRORFILE: Filename specification error environment variable

Assembler options:

• -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode on
page 217

• -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive
mode on page 219

• -WmsgFob: Message format for batch mode on page 221

• -WmsgFoi: Message format for interactive mode on page 223

• -WmsgFonf: Message format for no file information on page 225
229HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WmsgNe: Number of error messages

Group

Messages

Scope

Assembly Unit

Syntax

-WmsgNe<number>

Arguments

<number>: Maximum number of error messages.

Default

50

Description

With this option the amount of error messages can be reported until the Assembler
stops assembling. Note that subsequent error messages which depends on a
previous one may be confusing.

Example

ASMOPTIONS=-WmsgNe2

The Assembler stops assembling after two error messages.

See also

Assembler options:

• -WmsgNi: Number of Information messages on page 230

• -WmsgNw: Number of Warning messages on page 233
230 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WmsgNi: Number of Information messages

Group

Messages

Scope

Assembly Unit

Syntax

-WmsgNi<number>

Arguments

<number>: Maximum number of information messages.

Default

50

Description

With this option the maximum number of information messages can be set.

Example

ASMOPTIONS=-WmsgNi10

Only ten information messages are logged.

See also

Assembler options:

• -WmsgNe: Number of error messages on page 229

• -WmsgNw: Number of Warning messages on page 233
231HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WmsgNu: Disable user messages

Group

Messages

Scope

None

Syntax

-WmsgNu[={a|b|c|d}]

Arguments

a: Disable messages about include files

b: Disable messages about reading files

c: Disable messages about generated files

d: Disable messages about processing statistics

e: Disable informal messages

Default

None

Description

The application produces some messages which are not in the normal message
categories (WARNING, INFORMATION, ERROR, or FATAL). With this option
such messages can be disabled. The purpose for this option is to reduce the amount
of messages and to simplify the error parsing of other tools:

• a: The application provides information about all included files. With this
suboption this option can be disabled.

• b: With this suboption messages about reading files e.g., the files used as input
can be disabled.

• c: Disables messages informing about generated files.

• d: At the end of the assembly, the application may provide information about
statistics, e.g., code size, RAM/ROM usage, and so on. With this suboption this
option can be disabled.
232 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
• e: With this option, informal messages (e.g., memory model, floating point
format, ...) can be disabled.

NOTE Depending on the application, not all suboptions may make sense. In this case
they are just ignored for compatibility.

Example

-WmsgNu=c
233HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WmsgNw: Number of Warning messages

Group

Messages

Scope

Assembly Unit

Syntax

-WmsgNw<number>

Arguments

<number>: Maximum number of warning messages.

Default

50

Description

With this option the maximum number of warning messages can be set.

Example

ASMOPTIONS=-WmsgNw15

Only 15 warning messages are logged.

See also

Assembler options:

• -WmsgNe: Number of error messages on page 229

• -WmsgNi: Number of Information messages on page 230
234 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WmsgSd: Setting a message to disable

Group

Messages

Scope

Assembly Unit

Syntax

-WmsgSd<number>

Arguments

<number>: Message number to be disabled, e.g., 1801

Default

None

Description

With this option a message can be disabled so it does not appear in the error output.

Example

-WmsgSd1801

See also

Assembler options:

• -WmsgSe: Setting a message to Error on page 235

• -WmsgSi: Setting a message to Information on page 236

• -WmsgSw: Setting a Message to Warning on page 237
235HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WmsgSe: Setting a message to Error

Group

Messages

Scope

Assembly Unit

Syntax

-WmsgSe<number>

Arguments

<number>: Message number to be an error, e.g., 1853

Default

None

Description

Allows changing a message to an error message.

Example

-WmsgSe1853

See also

Assembler options:

• -WmsgSd: Setting a message to disable on page 234

• -WmsgSi: Setting a message to Information on page 236

• -WmsgSw: Setting a Message to Warning on page 237
236 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WmsgSi: Setting a message to Information

Group

Messages

Scope

Assembly Unit

Syntax

-WmsgSi<number>

Arguments

<number>: Message number to be an information, e.g., 1853

Default

None

Description

With this option a message can be set to an information message.

Example

-WmsgSi1853

See also

Assembler options:

• -WmsgSd: Setting a message to disable on page 234

• -WmsgSe: Setting a message to Error on page 235

• -WmsgSw: Setting a Message to Warning on page 237
237HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WmsgSw: Setting a Message to Warning

Group

Messages

Scope

Assembly Unit

Syntax

-WmsgSw<number>

Arguments

<number>: Error number to be a warning, e.g., 2901

Default

None

Description

With this option a message can be set to a warning message.

Example

-WmsgSw2901

See also

Assembler options:

• -WmsgSd: Setting a message to disable on page 234

• -WmsgSe: Setting a message to Error on page 235

• -WmsgSi: Setting a message to Information on page 236
238 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WOutFile: Create error listing file

Group

Messages

Scope

Assembly Unit

Syntax

-WOutFile(On|Off)

Arguments

None

Default

Error listing file is created.

Description

This option controls if a error listing file should be created at all. The error listing
file contains a list of all messages and errors which are created during a assembly
process. Since the text error feedback can now also be handled with pipes to the
calling application, it is possible to obtain this feedback without an explicit file.
The name of the listing file is controlled by the environment variable
ERRORFILE: Filename specification error.

Example

-WOutFileOn

The error file is created as specified with ERRORFILE.

-WErrFileOff

No error file is created.

See also

Assembler options:

• -WErrFile: Create "err.log" error file on page 210

• -WStdout: Write to standard output on page 239
239HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
-WStdout: Write to standard output

Group

Messages

Scope

Assembly Unit

Syntax

-WStdout(On|Off)

Arguments

None

Default

output is written to stdout

Description

With Windows applications, the usual standard streams are available. But text
written into them does not appear anywhere unless explicitly requested by the
calling application. With this option is can be controlled if the text to error file
should also be written into stdout.

Example

-WStdoutOn

All messages are written to stdout.

-WErrFileOff

Nothing is written to stdout.

See also

Assembler options:

• -WErrFile: Create "err.log" error file on page 210

• -WOutFile: Create error listing file on page 238
240 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
241HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options
242 HC(S)08 / RS08 Assembler Manual

6
Sections

Sections are portions of code or data that cannot be split into smaller elements. Each
section has a name, a type, and some attributes.

Each assembly source file contains at least one section. The number of sections in an
assembly source file is only limited by the amount of memory available on the system at
assembly time. If several sections with the same name are detected inside of a single
source file, the code is concatenated into one large section.

Sections from different modules, but with the same name, will be combined into a single
section at linking time.

Sections are defined through Section attributes on page 241 and Section types on
page 242. The last part of the chapter deals with the merits of using relocatable sections.
(See “Relocatable vs. absolute sections” on page 247.)

Section attributes
An attribute is associated with each section according to its content. A section may be:

• a data section,

• a constant data section, or

• a code section.

Code sections
A section containing at least one instruction is considered to be a code section. Code
sections are always allocated in the target processor’s ROM area.

Code sections should not contain any variable definitions (variables defined using the DS
directive). You do not have any write access on variables defined in a code section. In
addition, variables in code sections cannot be displayed in the debugger as data.

Constant sections
A section containing only constant data definition (variables defined using the DC or DCB
directives) is considered to be a constant section. Constant sections should be allocated in
the target processor’s ROM area, otherwise they cannot be initialized at application loading
time.
241HC(S)08 / RS08 Assembler Manual

Sections
Section types
Data sections
A section containing only variables (variables defined using the DS directive) is
considered to be a data section. Data sections are always allocated in the target processor’s
RAM area.

NOTE A section containing variables (DS) and constants (DC) or code is not a data
section. The default for such a section with mixed DC and code content is to
put that content into ROM.

We strongly recommend that you use separate sections for the definition of variables and
constant variables. This will prevent problems in the initialization of constant variables.

Section types
First of all, you should decide whether to use relocatable or absolute code in your
application. The Assembler allows the mixing of absolute and relocatable sections in a
single application and also in a single source file. The main difference between absolute
and relocatable sections is the way symbol addresses are determined.

This section covers these two types of sections:

• Absolute sections on page 242

• Relocatable sections on page 244

Absolute sections
The starting address of an absolute section is known at assembly time. An absolute section
is defined through the ORG - Set Location Counter assembler directive. The operand
specified in the ORG directive determines the start address of the absolute section. See
Listing 6.1 on page 242 for an example of constructing absolute sections using the ORG
assembler directive.

Listing 6.1 Example source code using ORG for absolute sections

XDEF entry
ORG $8000 ; Absolute constant data section.

cst1: DC.B $26
cst2: DC.B $BC
...

ORG $080 ; Absolute data section.
var: DS.B 1

ORG $8010 ; Absolute code section.
242 HC(S)08 / RS08 Assembler Manual

Sections
Section types
entry:
LDA cst1 ; Loads value in cst1
ADD cst2 ; Adds value in cst2
STA var ; Stores result into var
BRA entry

In the previous example, two bytes of storage are allocated starting at address $A00. The
constant variable - cst1 - will be allocated one byte at address $8000 and another
constant - cst2 - will be allocated one byte at address $8001. All subsequent
instructions or data allocation directives will be located in this absolute section until
another section is specified using the ORG or SECTION directives.

When using absolute sections, it is the user’s responsibility to ensure that there is no
overlap between the different absolute sections defined in the application. In the previous
example, the programmer should ensure that the size of the section starting at address
$8000 is not bigger than $10 bytes, otherwise the section starting at $8000 and the
section starting at $8010 will overlap.

Even applications containing only absolute sections must be linked. In that case, there
should not be any overlap between the address ranges from the absolute sections defined
in the assembly file and the address ranges defined in the linker parameter (PRM) file.

The PRM file used to link the example above, can be defined as in Listing 6.2 on page 243.

Listing 6.2 Example PRM file for Listing 6.1 on page 242

LINK test.abs /* Name of the executable file generated. */
NAMES test.o /* Name of the object file in the application */
END
SECTIONS
/* READ_ONLY memory area. There should be no overlap between this

memory area and the absolute sections defined in the assembly
source file. */

MY_ROM = READ_ONLY 0x8000 TO 0xFDFF;
/* READ_WRITE memory area. There should be no overlap between this

memory area and the absolute sections defined in the assembly
source file. */

MY_RAM = READ_WRITE 0x0100 TO 0x023F;
END

PLACEMENT
/* Relocatable variable sections are allocated in MY_RAM. */

DEFAULT_RAM, SSTACK INTO MY_RAM;
/* Relocatable code and constant sections are allocated in MY_ROM. */

DEFAULT_ROM INTO MY_ROM;
END
243HC(S)08 / RS08 Assembler Manual

Sections
Section types
STACKSTOP $014F /* Initializes the stack pointer */
INIT entry /* entry is the entry point to the application. */
VECTOR ADDRESS 0xFFFE entry /* Initialization for Reset vector.*/

The linker PRM file contains at least:

• The name of the absolute file (LINK command).

• The name of the object file which should be linked (NAMES command).

• The specification of a memory area where the sections containing variables must be
allocated. At least the predefined DEFAULT_RAM (or its ELF alias ‘.data’)
section must be placed there. For applications containing only absolute sections,
nothing will be allocated (SECTIONS and PLACEMENT commands).

• The specification of a memory area where the sections containing code or constants
must be allocated. At least the predefined section DEFAULT_ROM (or its ELF alias
‘.data’) must be placed there. For applications containing only absolute
sections, nothing will be allocated (SECTIONS and PLACEMENT commands).

• The specification of the application entry point (INIT command)

• The definition of the reset vector (VECTOR ADDRESS command)

Relocatable sections
The starting address of a relocatable section is evaluated at linking time according to the
information stored in the linker parameter file. A relocatable section is defined through the
SECTION - Declare Relocatable Section assembler directive. See Listing 6.3 on page 244
for an example using the SECTION directive.

Listing 6.3 Example source code using SECTION for relocatable sections

XDEF entry
constSec: SECTION ; Relocatable constant data section.
cst1: DC.B $A6
cst2: DC.B $BC

dataSec: SECTION ; Relocatable data section.
var: DS.B 1

codeSec: SECTION ; Relocatable code section.
entry:

LDA cst1 ; Load value into cst1
ADD cst2 ; Add value in cst2
STA var ; Store into var
BRA entry
244 HC(S)08 / RS08 Assembler Manual

Sections
Section types
In the previous example, two bytes of storage are allocated in the constSec section. The
constant cst1 is allocated at the start of the section at address $A00 and another constant
cst2 is allocated at an offset of 1 byte from the beginning of the section. All subsequent
instructions or data allocation directives will be located in the relocatable constSec
section until another section is specified using the ORG or SECTION directives.

When using relocatable sections, the user does not need to care about overlapping
sections. The linker will assign a start address to each section according to the input from
the linker parameter file.

The user can decide to define only one memory area for the code and constant sections and
another one for the variable sections or to split the sections over several memory areas.

Example: Defining one RAM and one ROM area.
When all constant and code sections as well as data sections can be allocated
consecutively, the PRM file used to assemble the example above can be defined as in
Listing 6.4 on page 245.

Listing 6.4 PRM file for Listing 6.3 on page 244 defining one RAM area and one ROM area

LINK test.abs/* Name of the executable file generated. */
NAMES test.o /* Name of the object file in the application */
END

SECTIONS
/* READ_ONLY memory area. */

MY_ROM = READ_ONLY 0x8000 TO 0xFDFF;
/* READ_WRITE memory area. */

MY_RAM = READ_WRITE 0x0100 TO 0x023F;
END

PLACEMENT
/* Relocatable variable sections are allocated in MY_RAM. */

DEFAULT_RAM, dataSec , SSTACK INTO MY_RAM;
/* Relocatable code and constant sections are allocated in MY_ROM. */

DEFAULT_ROM, constSec INTO MY_ROM;
END
INIT entry /* entry is the entry point to the application. */
VECTOR ADDRESS 0xFFFE entry /* Initialization for Reset vector.*/

The linker PRM file contains at least:

• The name of the absolute file (LINK command).

• The name of the object files which should be linked (NAMES command).
245HC(S)08 / RS08 Assembler Manual

Sections
Section types
• The specification of a memory area where the sections containing variables must be
allocated. At least the predefined DEFAULT_RAM section (or its ELF alias
‘.data’) must be placed there (SECTIONS and PLACEMENT commands).

• The specification of a memory area where the sections containing code or constants
must be allocated. At least, the predefined DEFAULT_ROM section (or its ELF alias
‘.text’) must be placed there (SECTIONS and PLACEMENT commands).

• Constants sections should be defined in the ROM memory area in the PLACEMENT
section (otherwise, they are allocated in RAM).

• The specification of the application entry point (INIT command).

• The definition of the reset vector (VECTOR ADDRESS command).

According to the PRM file above:

• the dataSec section will be allocated starting at 0x0080.

• the codeSec section will be allocated starting at 0x0B00.

• the constSec section will be allocated next to the codeSec section.

Example: Defining multiple RAM and ROM areas
When all constant and code sections as well as data sections cannot be allocated
consecutively, the PRM file used to link the example above can be defined as in
Listing 6.5 on page 246:

Listing 6.5 PRM file for Listing 6.3 on page 244 defining multiple RAM and ROM areas

LINK test.abs /* Name of the executable file generated. */
NAMES

test.o /* Name of the object file in the application. */
END
SECTIONS
 /* Two READ_ONLY memory areas */

ROM_AREA_1= READ_ONLY 0x8000 TO 0x800F;
ROM_AREA_2= READ_ONLY 0x8010 TO 0xFDFF;

/* Three READ_WRITE memory areas */
RAM_AREA_1= READ_WRITE 0x0040 TO 0x00FF; /* zero-page memory area */
RAM_AREA_2= READ_WRITE 0x0100 TO 0x01FF;
MY_STK = READ_WRITE 0x0200 TO 0x023F; /* Stack memory area */

END
PLACEMENT
/* Relocatable variable sections are allocated in MY_RAM. */

dataSec INTO RAM_AREA_2;
DEFAULT_RAM INTO RAM_AREA_1;
SSTACK INTO MY_STK; /* Stack allocated in MY_STK */

/* Relocatable code and constant sections are allocated in MY_ROM. */
constSec INTO ROM_AREA_2;
codeSec, DEFAULT_ROM INTO ROM_AREA_1;
246 HC(S)08 / RS08 Assembler Manual

Sections
Relocatable vs. absolute sections
END
INIT entry /* Application’s entry point. */
VECTOR 0 entry /* Initialization of the reset vector. */

The linker PRM file contains at least:

• The name of the absolute file (LINK command).

• The name of the object files which should be linked (NAMES command).

• The specification of memory areas where the sections containing variables must be
allocated. At least, the predefined DEFAULT_RAM section (or its ELF alias
‘.data’) must be placed there (SECTIONS and PLACEMENT commands).

• The specification of memory areas where the sections containing code or constants
must be allocated. At least the predefined DEFAULT_ROM section (or its ELF alias
‘.text’) must be placed there (SECTIONS and PLACEMENT commands).

• Constants sections should be defined in the ROM memory area in the PLACEMENT
section (otherwise, they are allocated in RAM).

• The specification of the application entry point (INIT command)

• The definition of the reset vector (VECTOR command)

According to the PRM file in Listing 6.5 on page 246,

• the dataSec section is allocated starting at 0x0100.

• the constSec section is allocated starting at 0x8000.

• the codeSec section is allocated starting at 0x8010.

• 64 bytes of RAM are allocated in the stack starting at 0x0200.

Relocatable vs. absolute sections
Generally, we recommend developing applications using relocatable sections. Relocatable
sections offer several advantages.

Modularity
An application is more modular when programming can be divided into smaller units
called sections. The sections themselves can be distributed among different source files.

Multiple developers
When an application is split over different files, multiple developers can be involved in the
development of the application. To avoid major problems when merging the different
files, attention must be paid to the following items:
247HC(S)08 / RS08 Assembler Manual

Sections
Relocatable vs. absolute sections
• An include file must be available for each assembly source file, containing XREF
directives for each exported variable, constant and function. In addition, the
interface to the function should be described there (parameter passing rules as well
as the function return value).

• When accessing variables, constants, or functions from another module, the
corresponding include file must be included.

• Variables or constants defined by another developer must always be referenced by
their names.

• Before invoking a function implemented in another file, the developer should
respect the function interface, i.e., the parameters are passed as expected and the
return value is retrieved correctly.

Early development
The application can be developed before the application memory map is known. Often the
application’s definitive memory map can only be determined once the size required for
code and data can be evaluated. The size required for code or data can only be quantified
once the major part of the application is implemented. When absolute sections are used,
defining the definitive memory map is an iterative process of mapping and remapping the
code. The assembly files must be edited, assembled, and linked several times. When
relocatable sections are used, this can be achieved by editing the PRM file and linking the
application.

Enhanced portability
As the memory map is not the same for each derivative (MCU), using relocatable sections
allow easy porting of the code for another MCU. When porting relocatable code to another
target you only need to link the application again with the appropriate memory map.

Tracking overlaps
When using absolute sections, the programmer must ensure that there is no overlap
between the sections. When using relocatable sections, the programmer does not need to
be concerned about any section overlapping another. The labels’ offsets are all evaluated
relatively to the beginning of the section. Absolute addresses are determined and assigned
by the linker.

Reusability
When using relocatable sections, code implemented to handle a specific I/O device (serial
communication device), can be reused in another application without any modification.
248 HC(S)08 / RS08 Assembler Manual

7
Assembler Syntax

An assembler source program is a sequence of source statements. Each source statement is
coded on one line of text and can be either a:

• Comment line on page 249 or a

• Source line on page 249.

Comment line
A comment can occupy an entire line to explain the purpose and usage of a block of
statements or to describe an algorithm. A comment line contains a semicolon followed by
a text (Listing 7.1 on page 249). Comments are included in the assembly listing, but are
not significant to the Assembler.

An empty line is also considered to be a comment line.

Listing 7.1 Examples of comments

; This is a comment line followed by an empty line and non comments

... (non comments)

Source line
Each source statement includes one or more of the following four fields:

• a Label field on page 250,

• an Operation field on page 250,

• one or several operands, or

• a comment.

Characters on the source line may be either upper or lower case. Directives and
instructions are case-insensitive, whereas symbols are case-sensitive unless the assembler
option for case insensitivity on label names (-Ci: Switch case sensitivity on label names
OFF) is activated.
249HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
Label field
The label field is the first field in a source line. A label is a symbol followed by a colon.
Labels can include letters (‘A’.. ‘Z’ or ‘a’.. ‘z’), underscores, periods and numbers. The
first character must not be a number.

NOTE For compatibility with other Assembler vendors, an identifier starting on
column 1 is considered to be a label, even when it is not terminated by a colon.
When the -MCUasm: Switch compatibility with MCUasm ON assembler
option is activated, you MUST terminate labels with a colon. The Assembler
produces an error message when a label is not followed by a colon.

Labels are required on assembler directives that define the value of a symbol (SET or
EQU). For these directives, labels are assigned the value corresponding to the expression
in the operand field.

Labels specified in front of another directive, instruction or comment are assigned the
value of the location counter in the current section.

NOTE When the Macro Assembler expands a macro it generates internal symbols
starting with an underscore ‘_’. Therefore, to avoid potential conflicts, user
defined symbols should not begin with an underscore

NOTE For the Macro Assembler, a .B or .W at the end of a label has a specific
meaning. Therefore, to avoid potential conflicts, user- defined symbols should
not end with .B or .W.

Operation field
The operation field follows the label field and is separated from it by a white space. The
operation field must not begin in the first column. An entry in the operation field is one of
the following:

• an instruction’s mnemonic - an abbreviated, case-insensitive name for a member in
the Instruction sets on page 250

• a Directive on page 265 name, or

• a Macro on page 265 name.

Instruction sets
Executable instructions for the M68HC08 processor are defined in the “CPU08 Reference
Manual”.
250 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
HC08 instruction set
Table 7.2 on page 259 presents an overview of the instructions available for the HC08:

Table 7.1 HC08 instruction set

Instruction Addressing modes Description

ADC #<expression>
<expression>
<expression>,X
,X
<expression>,SP

Add with Carry

ADD #<expression>
<expression>
<expression>,X
,X
<expression>,SP

Add without carry

AIS #<expression> Add Immediate value (signed) to
Stack Pointer

AIX #<expression> Add Immediate value (signed) to
Index register H:X

AND #<expression>
<expression>
<expression>,X
,X
<expression>,SP

Logical AND

ASL <expression>
<expression>,X
,X
<expression>,SP

Arithmetic Shift Left

ASLA Arithmetic Shift Left Accumulator

ASLX Arithmetic Shift Left register X

ASR <expression>
<expression>,X
,X
<expression>,SP

Arithmetic Shift Right

ASRA Arithmetic Shift Right Accumulator

ASRX Arithmetic Shift Right register X
251HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
BCC <label> Branch if Carry bit Clear

BCLR BitNumber, <expression> Clear one Bit in memory

BCS <label> Branch if Carry bit Set

BEQ <label> Branch if Equal

BGE <label> Branch if Greater Than or Equal to

BGND Enter Background Debug Mode.
only available for HCS08 (-CS08
option)

BGT <label> Branch if Greater Than

BHCC <label> Branch if Half Carry bit Clear

BHCS <label> Branch if Half Carry bit Set

BHI <label> Branch if Higher

BHS <label> Branch if Higher or Same

BIH <label> Branch if /IRQ Pin High

BIL <label> Branch if /IRQ Pin Low

BIT #<expression>
<expression>
<expression>,X
,X
<expression>,SP

Bit Test

BLE <label> Branch if Less Than or Equal To

BLO <label> Branch if Lower (same as BCS)

BLS <label> Branch if Lower or Same

BLT <label> Branch if Less Than

BMC <label> Branch if interrupt Mask Clear

BMI <label> Branch if Minus

BMS <label> Branch If interrupt Mask Set

Table 7.1 HC08 instruction set (continued)

Instruction Addressing modes Description
252 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
BNE <label> Branch if Not Equal

BPL <label> Branch if Plus

BRA <label> Branch Always

BRCLR BitNumber, <expression>, <label> Branch if Bit is Clear

BRN <label> Branch Never

BRSET BitNumber, <expression>, <label> Branch if Bit Set

BSET BitNumber,<expression> Set Bit in memory

BSR <label> Branch to Subroutine

CBEQ <expression>,<label>
<expression>,X+,<label>
X+,<label>
<expression>,SP,<label>

Compare and Branch if Equal

CBEQA #<expression>,<label>

CBEQX #<expression>,<label>

CLC Clear Carry bit

CLI Clear Interrupt mask bit

CLR <expression>
<expression>,X
,X
<expression>,SP

Clear memory

CLRA Clear Accumulator A

CLRH Clear index Register H

CLRX Clear index Register X

CMP #<expression>
<expression>
<expression>,X
,X
<expression>,SP

Compare accumulator with
memory

Table 7.1 HC08 instruction set (continued)

Instruction Addressing modes Description
253HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
COM <expression>
<expression>,X
,X
<expression>,SP

One’s complement on memory
location

COMA One’s complement on
accumulator A

COMX One’s complement on register X

CPHX #<expression>
<expression>
<expression>,SP

Compare index register H:X with
memory
Stack pointer and Extended
addressing modes only available
for HCS08 (-CS08 option)

CPX #<expression>
<expression>
<expression>,X
,X
<expression>,SP

Compare index register X with
memory

DAA Decimal Adjust Accumulator

DBNZ <expression>,<label>
<expression>,X,<label>
X,<label>
<expression>,SP,<label>

Decrement counter and Branch if
Not Zero

DBNZA <label>

DBNZX <label>

DEC <expression>
<expression>,X
,X
<expression>,SP

Decrement memory location

DECA Decrement Accumulator

DECX Decrement Index register

DIV Divide

Table 7.1 HC08 instruction set (continued)

Instruction Addressing modes Description
254 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
EOR #<expression>
<expression>
<expression>,X
,X
<expression>,SP

Exclusive OR Memory with
accumulator

INC <expression>
,X
<expression>,X
<expression>,SP

Increment memory location

INCA Increment Accumulator

INCX Increment register X

JMP <expression>
<expression>,X
,X

Jump to label

JSR <expression>
<expression>,X
,X

Jump to Subroutine

LDA #<expression>
<expression>
<expression>,X
,X
<expression>,SP

Load Accumulator

LDHX #<expression>
<expression>
<expression>,X
,X
<expression>,SP

Load Index register H:X from
memory
Indexed, Stack pointer and
extended addressing modes are
only available for HCS08 (-CS08
option).

LDX #<expression>
<expression>
<expression>,X
,X
<expression>,SP

Load index Register X from
memory

LSL <expression>
<expression>,X
,X
<expression>,SP

Logical Shift Left in memory

Table 7.1 HC08 instruction set (continued)

Instruction Addressing modes Description
255HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
LSLA Logical Shift Left Accumulator

LSLX Logical Shift Left register X

LSR <expression>
<expression>,X
,X
<expression>,SP

Logical Shift Right in memory

LSRA Logical Shift Right Accumulator

LSRX Logical Shift Right register X

MOV <expression>,<expression>
<expression>,X+
#<expression>,<expression>
X+,<expression>

Memory-to-memory byte Move

MUL Unsigned multiply

NEG <expression>
<expression>,X
,X
<expression>,SP

Two’s complement in memory

NEGA Two’s complement on
Accumulator

NEGX Two’s complement on register X

NOP No operation

NSA Nibble Swap Accumulator

ORA #<expression>
<expression>
<expression>,X
,X
<expression>,SP

Inclusive OR between
Accumulator and memory

PSHA Push Accumulator onto stack

PSHH Push index register H onto stack

PSHX Push index register X onto stack

PULA Pull Accumulator from stack

Table 7.1 HC08 instruction set (continued)

Instruction Addressing modes Description
256 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
PULH Pull index register H from stack

PULX Pull index register X from stack

ROL <expression>
<expression>,X
,X
<expression>,SP

Rotate memory Left

ROLA Rotate Accumulator Left

ROLX Rotate register X Left

ROR <expression>
<expression>,X
,X
<expression>,SP

Rotate memory Right

RORA Rotate Accumulator Right

RORX Rotate register X Right

RSP Reset Stack Pointer

RTI Return from Interrupt

RTS Return from Subroutine

SBC #<expression>
<expression>
<expression>,X
,X
<expression>,SP

Subtract with Carry

SEC Set Carry bit

SEI Set Interrupt mask bit

STA <expression>
<expression>,X
,X
<expression>,SP

Store Accumulator in Memory

Table 7.1 HC08 instruction set (continued)

Instruction Addressing modes Description
257HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
STHX <expression>
<expression>,SP

Store Index register H:X
Stack pointer and extended
addressing modes are only
available for HCS08 (-CS08
option)

STOP Enable /IRQ pin and Stop
oscillator

STX <expression>
<expression>,X
,X
<expression>,SP

Store index register X in memory

SUB #<expression>
<expression>
<expression>,X
,X
<expression>,SP

Subtract

SWI Software Interrupt

TAP Transfer Accumulator to CCR

TAX Transfer Accumulator to index
Register X

TPA Transfer CCR to Accumulator

TST <expression>
<expression>,X
,X
<expression>,SP

Test memory for negative or zero

TSTA Test Accumulator for negative or
zero

TSTX Test register X for negative or
zero

TSX Transfer SP to index register H:X

TXA Transfer index register X to
Accumulator

Table 7.1 HC08 instruction set (continued)

Instruction Addressing modes Description
258 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
Special HCS08 instructions
The HCS08 core provides the following instructions in addition to the HC08 core
instructions (Table 7.4 on page 265):

RS08 instruction set
Table 7.3 on page 260 presents an overview of the instructions available for the RS08.

TXS Transfer index register X to SP

WAIT Enable interrupts; stop processor

Table 7.2 Special HC(S)08 instructions

Instruction Addressing modes Description

BGND Enter Background Debug Mode.
only available with the -CS08/-
C08/-CRS08: Derivative family
assembler options.

CPHX #<expression>
<expression>
<expression>,SP

Compare index register H:X with
memory
Stack pointer and extended
addressing modes are only
available with the -CS08, -C08, or
-CRS08 assembler options.

LDHX #<expression>
<expression>
<expression>,X
,X
<expression>,SP

Load index register H:X from
memory
Indexed, stack pointer, and
extended addressing modes are
only available with the -CS08
option

STHX <expression>
<expression>,SP

Store index register H:X
Stack pointer and extended
addressing modes are only
available with the -CS08 option.

Table 7.1 HC08 instruction set (continued)

Instruction Addressing modes Description
259HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
Table 7.3 RS08 instructions

Instruction Addressing Modes Description

ADC #<expression>
<expression>
,X
D[X]
X

Add with Carry

ADCX Alias for ADC X

ADD #<expression>
<expression>
,X
D[X]
X

Add without Carry

ADDX Alias for ADD X

AND #<expression>
<expression>
,X
D[X]
X

Logical AND

ANDX Alias for AND X

ASLA Arithmetic Shift Left Accumulator
(alias for LSLA)

BCC <label> Branch if Carry Bit Clear

BCLR BitNumber, <expression>
BitNumber,D[X]
BitNumber,X

Clear one Bit in Memory

BCS <label> Branch if Carry Bit Set

BEQ <label> Branch if Equal

BGND Background

BHS <label> Branch if Higher or Same

BLO <label> Branch if Lower

BNE <label> Branch if Not Equal

BRN <label> Branch Never (Alias for BRA *+$2)
260 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
BRCLR BitNumber, <expression>,
<label>
BitNumber,D[X],<label>
BitNumber,X,<label>

Branch if Bit is Clear

BRSET BitNumber, <expression>,
<label>
BitNumber,D[X],<label>
BitNumber,X,<label>

Branch if Bit Set

BSET BitNumber,<expression>
BitNumber,D[X]
BitNumber,X

Set Bit in Memory

BSR <label> Branch to Subroutine

CBEQ <expression>,<label>
#<expression>,<label>
,X,<label>
D[X],<label>
X,<label>

Compare and Branch if Equal

CBEQA <label>

CBEQX <label>

CLC Clear Carry Bit

CLR <expression>
,X
D[X]
X

Clear Memory

CLRX Clear Index Register X

CMP #<expression>
<expression>
,X
D[X]
X

Compare Accumulator with Memory

COMA Complement (One’s Complement)

Table 7.3 RS08 instructions (continued)

Instruction Addressing Modes Description
261HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
DBNZ <expression>,<label>
,X,<label>
D[X],<label>
X,<label>

Decrement Counter and Branch if
Not Zero

DBNZA <label>

DBNZX <label>

DEC <expression>
,X
D[X]
X

Decrement Memory Location

DEC <$13 Force tiny addressing (will use $03)

DECA Decrement Accumulator

DECX Decrement Index Register

EOR #<expression>
<expression>
D[X]
,X
X

Exclusive OR Memory with
Accumulator

EORX Exclusive OR (index register and
accumulator)

INC <expression>
,X
D[X]
X

Increment Memory Location

INC >$01 Force direct addressing

INCA Increment Accumulator

INCX Increment Register X

JMP <label> Jump to Label

JSR <label> Jump to Subroutine

Table 7.3 RS08 instructions (continued)

Instruction Addressing Modes Description
262 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
LDA #<expression>
<expression>
,X
D[X]
X

Load Accumulator indexed

LDA <$0FF Force short addressing (will use $1F)

LDX #<expression>
<expression>
,X
D[X]
X

Load Index Register X from Memory

LDX $OFF Load Direct

LSLA Logical Shift Left Accumulator

LSRA Logical Shift Right Accumulator

MOV <expression>,<expression>
#<expression>,<expression>
D[X],<expression>
<expression>,D[X]
#<expression>,D[X]

Memory to Memory Byte Move

NOP No Operation

ORA #<expression>
<expression>
,X
D[X]
X

Inclusive OR between Accumulator
and Memory

ORAX Inclusive OR between Accumulator
and Index Register

ROLA Rotate Accumulator Left

RORA Rotate Accumulator Right

RTS Return from Subroutine

Table 7.3 RS08 instructions (continued)

Instruction Addressing Modes Description
263HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
SBC #<expression>
<expression>
,X
D[X]
X

Subtract with Carry

SBCX Substract with Carry (Index Register
content from Accumulator)

SEC Set Carry Bit

SHA Swap Shadow PC High with A

SLA Swap Shadow PC Low with A

STA <expression>
,X
D[X]
X

Store Accumulator in Memory

STOP Stop Processing

STX <expression> Store Index Register X in Memory

SUB #<expression>
<expression>
,X
D[X]

Subtract

SUBX

TAX Transfer Accumulator to Index
Register X

TST #<expression>
<expression>
,X
D[X]

Test for zero (alias for MOV
<expression>,<expression>)

TSTA Test Accumulator (alias for ORA #0)

TSTX Test Index Register X (alias for MOV
X,X)

Table 7.3 RS08 instructions (continued)

Instruction Addressing Modes Description
264 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
NOTE For RS08 both D[X] and ,X notations refer to the memory location $000E. The
,X notation is supported for compatibility reasons with HC(S)08. Wherever ,X
is supported, D[X] is also supported. In situations where the use of ,X would
lead to double commas (e.g. BCLR 0,,X) the use of ,X is not allowed.

Directive
Assembler directives are described in the “Assembler Directives” chapter of this manual.

Macro
A user-defined macro can be invoked in the assembler source program. This results in the
expansion of the code defined in the macro. Defining and using macros are described in
the “Macros” chapter in this manual.

Operand field: Addressing modes (HC08 /
HCS08)
The operand fields, when present, follow the operation field and are separated from it by a
white space. When two or more operand subfields appear within a statement, a comma
must separate them.

The following addressing mode notations are allowed in the operand field (Table 7.4 on
page 265):

TXA Transfer Index Register X to
Accumulator

WAIT Enable Interrupts; Stop Processor

Table 7.4 HC(S)08 addressing mode notation

Addressing Mode Notation Example

Inherent on page 266 No operands RSP

Immediate on page 267 #<expression> ADC #$01

Table 7.3 RS08 instructions (continued)

Instruction Addressing Modes Description
265HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
Inherent
Instructions using this addressing mode do not have any associated instruction fetch
(Listing 7.2 on page 266). Some of them are acting on data in the CPU registers.

Direct on page 267 <expression> ADC byte

Extended on page 268 <expression> ADC word

Indexed, no offset on
page 268

,X ADC ,X

IIndexed, 8-bit offset on
page 269t

<expression>,X ADC Offset,X

Indexed, 16-bit offset on
page 270

<expression>,X ADC Offset,X

Relative on page 270 <label> BRA Label

Stack Pointer, 8-bit offset on
page 271

<expression>,SP ADC Offset,SP

Stack Pointer, 16-bit offset on
page 271

<expression>,SP ADC Offset,SP

Memory-to-memory
immediate-to-direct on
page 272

#<expression>,<expressio
n>

MOV #$05,MyDataByte

Memory-to-memory direct-to-
direct on page 272

<expression>,<expression
>

MOV DatLoc1,DatLoc2

Memory-to-memory indexed-
to-direct with post-
increment on page 273t

X+,<expression> MOV X+,<expression>

Memory-to-memory direct-to-
indexed with post-
increment on page 274

<expression>,X+ MOV <expression>,X+

Indexed with post-
increment on page 274

X+ CBEQ X+, Data

Indexed, 8-bit offset, with
post-increment on page 275

#<expression>,X+ CBEQ #offset,X+,Data

Table 7.4 HC(S)08 addressing mode notation (continued)

Addressing Mode Notation Example
266 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
Listing 7.2 Inherent addressing-mode instructions

CLRA
DAA

Immediate
The opcode contains the value to use with the instruction rather than the address of this
value.

The effective address of the instruction is specified using the # character as in the
Listing 7.3 on page 267.

Listing 7.3 Immediate addressing mode

XDEF Entry
initStack: EQU $0400

MyData: SECTION
data: DS.B 1

MyCode: SECTION
Entry:

LDHX #initStack ; init Stack Pointer
TXS ; with value $400-1 = $03FF

main: LDA #100 ; load register A with (decimal) 100
BRA main

In this example, the hexadecimal value $0400 is loaded in value in the register HX and
the decimal value 100 is loaded into register A.

Direct
The direct addressing mode is used to address operands in the direct page of the memory
(location $0000 to $00FF).

For most of the direct instructions, only two bytes are required: the first byte is the opcode
and the second byte is the operand address located in page zero. See Listing 7.4 on
page 267 for an example of the direct addressing mode.
267HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
Listing 7.4 Direct addressing mode

XDEF Entry
initStack: EQU $0400
MyData: SECTION SHORT
data: DS.B 1
MyCode: SECTION
Entry:

LDHX #initStack ; init Stack Pointer
TXS ; with value $400 - 1 = $03FF

main: LDA #$55
STA data
BRA main

In this example, the value $55 is stored in the variable data, which is located on the direct

page. The MyData section must be defined in the direct page in the linker parameter file.

The opcode generated for the STA data instruction is two bytes long.

Extended
The extended addressing mode is used to access memory location located above the direct
page in a 64-kiloByte memory map.

For the extended instructions, three bytes are required: the first byte is the opcode and the
second and the third bytes are the most and least significant bytes of the operand address.
See Listing 7.5 on page 268 for an example of the extended addressing mode.

Listing 7.5 Extended addressing mode

XDEF Entry
initStack: EQU $0400

ORG $B00
data: DS.B 1
MyCode: SECTION
Entry:

LDHX #initStack ; init Stack Pointer
TXS ; with value $400-1 = $03FF

main: LDA #$55
STA data
BRA main
268 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
In this example, the value $55 is stored in the variable data. This variable is located at
address $0B00 in the memory map. The opcode of the STA data instruction is then
three bytes long.

Indexed, no offset
This addressing mode is used to access data with variable addresses through the HX index
register of the HC08 controller. The X index register contains the least significant byte of
the operand while the H index register contains the most significant byte.

Indexed, no offset instructions are one byte long. See Listing 7.6 on page 269 for an
example of using the indexed (no offset) addressing mode.

Listing 7.6 Indexed (no offset) addressing mode

...
Entry:

...

LDHX #$0FFE
LDA ,X
...
JMP ,X
...

The value stored in memory location $0FFE is loaded into accumulator A. The JMP
instruction causes the program to jump to the address pointed to by the HX register.

Indexed, 8-bit offset
This addressing mode is useful when selecting the k-th element in an n-element table. The
size of the table is limited to 256 bytes.

Indexed, 8-bit offset instructions are two byte long. The first byte is the opcode and the
second byte contains the index register offset byte. See Listing 7.7 on page 269 for an
example of using the indexed (8-bit offset) addressing mode.

Listing 7.7 Index (8-bit offset) addressing mode

XDEF Entry
initStack: EQU $0400
MyData: SECTION SHORT
data: DS.B 8
MyCode: SECTION
Entry:
269HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
LDHX #initStack ; init Stack Pointer
TXS ; with value $400-1 = $03FF

main:
LDHX #data
LDA 5 ,X
...
JMP $FF,X

...

The value contained in the memory at the location calculated using the address of data
(pointed to by the HX register) + 5 is loaded in accumulator A. The JMP instruction causes
the program to jump to the address pointed to by the HX register + $FF.

Indexed, 16-bit offset
This addressing mode is useful when selecting the k-th element in an n-element table. The
size of the table is limited to $FFFF bytes.

Indexed,16-bit offset instructions are three byte long. The first byte contains the opcode
and the second and the third the high and low index register offset bytes. See Listing
7.8 on page 270 for an example of using the indexed (16-bit offset) addressing mode.

Listing 7.8 Indexed (16-bit offset) addressing mode

XDEF Entry
initStack: EQU $0400
MyData: SECTION
data: DS.B 8
MyCode: SECTION
Entry:

LDHX #initStack ; init Stack Pointer
TXS ; with value $400-1 = $03FF

main:
LDHX #table
STA $500 ,X
...
JMP $1000,X

...

The value contained in the memory at the location calculated using the address of data
(pointed to by register HX) + $500 is loaded in accumulator A. The JMP instruction causes
the program to jump to the address pointed to by the HX register + $1000.
270 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
Relative
This addressing mode is used by all branch instructions to determine the destination
address. The signed byte following the opcode is added to the contents of the program
counter.

As the offset is coded on a signed byte, the branching range is -127 to +128. The
destination address of the branch instruction must be in this range. See Listing 7.9 on
page 271 for an example of using the relative addressing mode.

Listing 7.9 Relative addressing mode

main:
NOP
NOP
BRA main

Stack Pointer, 8-bit offset
Stack Pointer, 8-bit offset instructions behave the same way than Indexed 8-bit offset
instructions, except that the offset is added to the Stack Pointer SP in place of the HX
Index register.

This addressing mode allow easy access of the data on the stack. If the interrupts are
disabled, the Stack pointer can also be used as a second Index register. See Listing 7.10 on
page 271 for an example of using the Stack Pointer *8-bit offset) addressing mode.

Listing 7.10 Stack Pointer (8-bit offset) addressing mode

entry:
LDHX #$0500 ; init Stack Pointer to 04FF
TXS

LDA #$40
STA $50, SP ; Location $54F = $40

In this example, stack pointer, 8-bit offset mode is used to store the value $40 in memory
location $54F.
271HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
Stack Pointer, 16-bit offset
Stack Pointer, 16-bit offset instructions behave the same way than Indexed, 16-bit offset
instructions, except that the offset is added to the Stack Pointer (SP) in place of the HX
Index register.

This addressing mode allow easy access of the data on the stack. If the interrupts are
disabled, the Stack pointer can also be used as a second Index register. See Listing 7.11 on
page 271 for an example of using the Stack Pointer (16-bit offset) addressing mode.

Listing 7.11 Stack Pointer (16-bit offset) addressing mode

entry:
LDHX #$0100 ; init Stack Pointer to 00FF
TXS

LDA $0500, SP ; Content of memory location $5FF is loaded in A

In this example, stack pointer, 16-bit offset mode is used to store the value in memory
location $5FF in accumulator A.

Memory-to-memory immediate-to-direct
This addressing mode is generally used to initialize variables and registers in page zero.
The register A is not affected. See Listing 7.12 on page 272 for an example for using the
memory-to- memory immediate-to-direct addressing mode.

Listing 7.12 Memory-to-memory immediate-to-direct addressing mode

MyData: EQU $50
entry:

MOV #$20, MyData

The MOV #$20,MyData instruction stores the value $20 in memory location $50
‘MyData’.

Memory-to-memory direct-to-direct
This addressing mode is generally used to transfer variables and registers in page zero.
The A register is not affected. See Listing 7.13 on page 272 for an example of using the
memory-to- memory direct-to-direct addressing mode.
272 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
Listing 7.13 Memory-to-memory direct-to-direct addressing mode

MyData1: EQU $50
MyData2: EQU $51
entry:

MOV #$10, MyData1
MOV MyData1, MyData2

The MOV #$10,MyData1 instruction stores the value $10 in memory location $50
‘MyData1’ using the memory-to-memory Immediate-to-Direct addressing mode. The
MOV MyData1,MyData2 instruction moves the content of MyData1 into MyData2
using memory to memory Direct-to-Direct addressing mode. The content of MyData2
(memory location $51) is then $10.

Memory-to-memory indexed-to-direct with post-
increment
This addressing mode is generally used to transfer tables addressed by the index register to
a register in page zero.

The operand addressed by the HX index register is stored in the direct page location
addressed by the byte following the opcode. The HX index register is automatically
incremented. The A register is not affected. See Listing 7.14 on page 273 for an example
of using the memory-to-memory indexed to direct with post-increment addressing mode.

Listing 7.14 Memory-to-memory indexed-to-direct with post increment addressing
mode.

XDEF Entry

ConstSCT: SECTION
Const: DC.B 1,11,21,31,192,12,0

DataSCT: SECTION SHORT
MyReg: DS.B 1

CodeSCT: SECTION
Entry: LDHX #$00FF

TXS
main:

LDHX #Const
LOOP: MOV X+, MyReg

BEQ main
273HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
BRA LOOP

In this example, the table Const contains seven bytes defined in a constant section in
ROM. The last value of this table is zero.

The HX register is initialized with the address of Const. All the values of this table are
stored one after another in page-zero memory location MyReg using the MOV X+,
MyReg instruction. When the value 0 is encountered, the HX register is reset with the
address of the first element of the #Const table.

Memory-to-memory direct-to-indexed with post-
increment
This addressing mode is generally used to fill tables addressed by the index register from
registers in page zero.

The operand in the direct page location addressed by the byte following the opcode is
stored in the memory location pointed to by the HX index register. The HX index register
is automatically incremented. The A register is not affected. See Listing 7.15 on page 274
for an example of using the memory-to-memory direct-to-indexed with post-increment
addressing mode.

Listing 7.15 Memory-to-memory direct-to-indirect with post-increment addressing mode

XDEF entry
MyData: SECTION SHORT
MyReg1: DS.B 1
MyReg2: DS.B 1
MyCode: SECTION
entry:

LDA #$02
STA MyReg1
INCA
STA MyReg2

LDHX #$1000
MOV MyReg1,X+
MOV MyReg2,X+

main: BRA main

The page-zero memory locations MyReg1 and MyReg2 are first respectively initialized
with $02 and $03. The contents of those data are then written in memory location
$1000 and $1001. The HX register points to memory location $1002.
274 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
Indexed with post-increment
The operand is addressed then the HX register is incremented.

This addressing mode is useful for searches in tables. It is only used with the CBEQ
instruction. See Listing 7.16 on page 275 for an example of an example of using the
indexed with post-increment addressing mode.

Listing 7.16 Example of the indexed with post-increment addressing mode

XDEF Entry
ORG $F000

data: DC.B 1,11,21,31,$C0,12
CodeSCT: SECTION
Entry: LDHX #$00FF

TXS
main:

LDA #$C0

LDHX #data
LOOP: CBEQ X+,IS_EQUAL

BRA LOOP
IS_EQUAL: ...

Using this addressing mode, it is possible to scan the memory to find a location containing
a specific value.

The value located at the memory location pointed to by HX is compared to the value in the
A register. If the two values match, the program branches to IS_EQUAL. HX points to the
memory location next to the one containing the searched value.

In this example, the value $C0 is searched starting at memory location $F000. This value
is found at the memory location $F004, the program branches to IS_EQUAL, and the HX
register contains $F005.

Indexed, 8-bit offset, with post-increment
The address of the operand is the sum of the 8-bit offset added to the value in register HX.

The operand is addressed, then the HX register is incremented.

This addressing mode is useful for searches in tables. It is only used with the CBEQ
instruction. See Listing 7.17 on page 275 for an example of the indexed (8-bit offset) with
post-increment addressing mode.
275HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
Listing 7.17 Indexed (8-bit offset) with post-increment addressing mode

XDEF Entry
ORG $F000

data: DCB.B $40,$00
DC.B 1,11,21,31,$C0,12 ; $C0 is located at $F000+$40+4

CodeSCT: SECTION
Entry: LDHX #$00FF

TXS
main:

LDA #$C0

LDHX #data
LOOP: CBEQ $30,X+,IS_EQUAL

BRA LOOP
IS_EQUAL: ...

Using this addressing mode, it is possible to scan the memory to find a location containing
a specific value starting at a specified location to which is added an offset.

The value located at memory location pointed to by HX + $30 is compared to the value
in the A register. If the two values match, program branch to IS_EQUAL. HX points to
memory location next to the one containing the searched value.

In this example, the value $C0 is searched starting at memory location
$F000+$30=$F030. This value is found at memory location $F044, the program
branches to IS_EQUAL. The HX register contains the memory location of the searched
value minus the offset, incremented by one: $F044-$30+1=$F015.

Operand Field: Addressing Modes (RS08)
The following addressing mode notations are allowed in the operand field for the RS08:

Table 7.5 Operand Field RS08 Addressing Modes

Inherent No operands RTS

Tiny <expression> ADD fourbits

Short <expression> CLR fivebits

Direct <expression> ADC byte

Extended <expression> JSR word
276 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
Inherent (RS08)
Instructions using this addressing mode don’t have any instruction fetch associated. Some
of them are acting on data in the CPU registers.

Example:

 CLRA
 INCA
 NOP

Tiny
The tiny addressing mode is used to access only the first 16 bytes of the memory map
(addresses from $0000 to $000F). The instructions using this addressing mode are
encoded using one byte only. This addressing mode is available for INC, DEC, ADD and
SUB instructions.

Example:

 XDEF Entry
MyData: SECTION RS08_TINY
data: DS.B 1
MyCode: SECTION
Entry:
main: ADD data
 BRA main

In this example, the value of the variable data is added to the accumulator. The data is
located in the tiny memory area, so the encoding of the ADD instruction will be one byte
long. Note that the tiny section has to be placed into the tiny memory area at link time.

Short
The RS08 short addressing mode is used to access only the first 32 bytes of the memory
map (addresses from $0000 to $001F). The instructions using this addressing mode are

Relative <label> BRA Label

Immediate #<expression> ADC #$01

Indexed D[X] or ,X ADC D[X] or ADC ,X

Table 7.5 Operand Field RS08 Addressing Modes (continued)
277HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
encoded using one byte only. This addressing mode is available for CLR, LDA and STA
instructions.

Example:

 XDEF Entry
MyData: SECTION RS08_SHORT
data: DS.B 1
MyCode: SECTION
Entry:
main: LDA data
 BRA main

In this example, the value of the variable data is loaded into the accumulator. The data is
located in the short memory area, so the encoding of the LDA instruction will be one byte
long. Note that the short section has to be placed into the tiny memory area at linktime.

Direct
The direct addressing mode is used to address operands in the direct page of the memory
(location $0000 to $00FF).

Example:

 XDEF Entry
MyData: SECTION
data: DS.B 1
MyCode: SECTION
Entry:
main: LDA #$55
 STA data
 BRA main

In this example, the value $55 is stored in the variable data. The opcode generated for the
instruction STA data is two bytes long.

Extended
The extended addressing mode is used only for JSR and JMP instructions. The 14-bit
address is located in the lowest 14 bits of the encoding after the two-bit opcode.

Example:

 XDEF Entry
 XREF target
data: DS.B 1
278 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line
MyCode: SECTION
Entry:
main: LDA #$55
 JMP target

In this example a jump is executed at an address defined by the external symbol target.

Relative
This addressing mode is used by all branch instructions to determine the destination
address. The signed byte following the opcode is added to the contents of the program
counter.

As the offset is coded on a signed byte, the branching range is -127 to +128. The
destination address of the branch instruction must be in this range.

Example:

main:
 NOP
 NOP
 BRA main

Immediate
The opcode contains the value to use with the instruction rather than the address of this
value. The effective address of the instruction is specified using the # character as in the
example below.

Example:

 XDEF Entry
MyData: SECTION
data: DS.B 1

MyCode: SECTION
Entry:
main: LDA #100
 BRA main

In this example, the decimal value 100 is loaded in register A.
279HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Symbols
Indexed
When using the indexed addressing mode, an index register is used as reference to access
the instruction’s operand. For the RS08, the index registers are located at $000F (register
X) and $000E (register D[X]). The D[X] register is called the index data register, and can
be designated by either one of the D[X] or ,X notations. As a restriction, when the use of
,X would lead to double commas in the assembly source, the use of ,X is not allowed.

Example:

 XDEF Entry
MyData: SECTION
data: DS.B 1

MyCode: SECTION
Entry:
main: CLR D[X] ; equivalent to CLR ,X
 CLR X

In this example the contents of both X and D[X] registers are replaced by zeros.

Comment Field
The last field in a source statement is an optional comment field. A semicolon (;) is the
first character in the comment field.

Example:

 NOP ; Comment following an instruction

Symbols
The following types of symbols are the topics of this section:

• User-defined symbols on page 280

• External symbols on page 281

• Undefined symbols on page 282

• Reserved symbols on page 282

User-defined symbols
Symbols identify memory locations in program or data sections in an assembly module. A
symbol has two attributes:
280 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Symbols
• The section, in which the memory location is defined

• The offset from the beginning of that section.

Symbols can be defined with an absolute or relocatable value, depending on the section in
which the labeled memory location is found. If the memory location is located within a
relocatable section (defined with the SECTION - Declare Relocatable Section assembler
directive), the label has a relocatable value relative to the section start address.

Symbols can be defined relocatable in the label field of an instruction or data definition
source line (Listing 7.18 on page 281).

Listing 7.18 Example of a user-defined relocatable SECTION

Sec: SECTION
label1: DC.B 2 ; label1 is assigned offset 0 within Sec.
label2: DC.B 5 ; label2 is assigned offset 2 within Sec.
label3: DC.B 1 ; label3 is assigned offset 7 within Sec.

It is also possible to define a label with either an absolute or a previously defined
relocatable value, using the SET - Set Symbol Value or EQU - Equate symbol value
assembler directives.

Symbols with absolute values must be defined with constant expressions.

Listing 7.19 Example of a user-defined absolute and relocatable SECTION

Sec: SECTION
label1: DC.B 2 ; label1 is assigned offset 0 within Sec.
label2: EQU 5 ; label2 is assigned value 5.
label3: EQU label1 ; label3 is assigned the address of label1.

External symbols
A symbol may be made external using the XDEF - External Symbol Definition assembler
directive. In another source file, an XREF - External Symbol Reference assembler
directive must reference it. Since its address is unknown in the referencing file, it is
considered to be relocatable. See Listing 7.20 on page 281 for an example of using XDEF
and XREF.

Listing 7.20 Examples of external symbols

XREF extLabel ; symbol defined in an other module.
; extLabel is imported in the current module

XDEF label ; symbol is made external for other modules
281HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Symbols
; label is exported from the current module
constSec: SECTION
label: DC.W 1, extLabel

Undefined symbols
If a label is neither defined in the source file nor declared external using XREF, the
Assembler considers it to be undefined and generates an error message. Listing 7.21 on
page 282 shows an example of an undeclared label.

Listing 7.21 Example of an undeclared label

codeSec: SECTION
entry:

NOP
BNE entry
NOP
JMP end
JMP label ; <- Undeclared user-defined symbol: label

end:RTS
END

Reserved symbols
Reserved symbols cannot be used for user-defined symbols.

Register names are reserved identifiers.

For the HC08 processor the reserved identifiers are listed in Listing 7.22 on page 282.

Listing 7.22 Reserved identifiers for an HC(S)08 derivative

A, CCR, H, X, SP

The keywords LOW and HIGH are also reserved identifiers. They are used to refer to the
low byte and the high byte of a memory location. Also, PAGE is a reserved identifier.

Also, the keywords MAP_ADDR_6 and HIGH_6_13 are reserved identifiers.
HIGH_6_13 returns the higher byte for a given 14 bit address (used to load the PAGE
register for the RS08). MAP_ADDR_6 will return the lower 6 bits in a 14-bit address (used
to determine the offset in the paging window for the RS08).
282 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Constants
Constants
The Assembler supports integer and ASCII string constants:

Integer constants
The Assembler supports four representations of integer constants:

• A decimal constant is defined by a sequence of decimal digits (0-9).

Example: 5, 512, 1024

• A hexadecimal constant is defined by a dollar character ($) followed by a sequence
of hexadecimal digits (0-9, a-f, A-F).

Example: $5, $200, $400

• An octal constant is defined by the commercial at character (@) followed by a
sequence of octal digits (0-7).

Example: @5, @1000, @2000

• A binary constant is defined by a percent character followed by a sequence of
binary digits (0-1)

Example:

%101, %1000000000, %10000000000

The default base for integer constant is initially decimal, but it can be changed using the
BASE - Set number base assembler directive. When the default base is not decimal,
decimal values cannot be represented, because they do not have a prefix character.

String constants
A string constant is a series of printable characters enclosed in single (‘) or double quote
(“). Double quotes are only allowed within strings delimited by single quotes. Single
quotes are only allowed within strings delimited by double quotes. See Listing 7.23 on
page 283 for a variety of string constants.

Listing 7.23 String constants

'ABCD', "ABCD", 'A', "'B", "A'B", 'A"B'

Floating-Point constants
The Macro Assembler does not support floating-point constants.
283HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Operators
Operators
Operators recognized by the Assembler in expressions are:

• Addition and subtraction operators (binary) on page 284

• Multiplication, division and modulo operators (binary) on page 285

• Sign operators (unary) on page 285

• Shift operators (binary) on page 286

• Bitwise operators (binary) on page 287

• Logical operators (unary) on page 288

• Relational operators (binary) on page 289

• HIGH operator on page 289

• on page 290HIGH_6_13 Operator on page 290

• LOW operator on page 290

• MAP_ADDR_6 Operator on page 291

• PAGE operator on page 292

• Force operator (unary) on page 292

Addition and subtraction operators
(binary)
The addition and subtraction operators are + and -, respectively.

Syntax
Addition: <operand> + <operand>
Subtraction: <operand> – <operand>

Description
The + operator adds two operands, whereas the – operator subtracts them. The operands
can be any expression evaluating to an absolute or relocatable expression.

Addition between two relocatable operands is not allowed.

Example
See Listing 7.24 on page 285 for an example of addition and subtraction operators.
284 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Operators
Listing 7.24 Addition and subtraction operators

$A3216 + $42 ; Addition of two absolute operands (= $A3258)
labelB - $10 ; Subtraction with value of ‘labelB’

Multiplication, division and modulo
operators (binary)
The multiplication, division, and modulo operators are *, /, and %, respectively.

Syntax
Multiplication: <operand> * <operand>
Division: <operand> / <operand>
Modulo: <operand> % <operand>

Description
The * operator multiplies two operands, the / operator performs an integer division of
the two operands and returns the quotient of the operation. The % operator performs an
integer division of the two operands and returns the remainder of the operation

The operands can be any expression evaluating to an absolute expression. The second
operand in a division or modulo operation cannot be zero.

Example
See Listing 7.25 on page 285 for an example of the multiplication, division, and modulo
operators.

Listing 7.25 Multiplication, division, and modulo operators

23 * 4 ; multiplication (= 92)
23 / 4 ; division (= 5)
23 % 4 ; remainder(= 3)

Sign operators (unary)
The (unary) sign operators are + and -.
285HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Operators
Syntax
Plus: +<operand>
Minus: -<operand>

Description
The + operator does not change the operand, whereas the – operator changes the operand
to its two’s complement. These operators are valid for absolute expression operands.

Example
See Listing 7.26 on page 286 for an example of the unary sign operators.

Listing 7.26 Unary sign operators

+$32 ; (= $32)
-$32 ; (= $CE = -$32)

Shift operators (binary)
The binary shift operators are << and >>.

Syntax
Shift left: <operand> << <count>
Shift right: <operand> >> <count>

Description
The << operator shifts its left operand left by the number of bits specified in the right
operand.

The >> operator shifts its left operand right by the number of bits specified in the right
operand.

The operands can be any expression evaluating to an absolute expression.
286 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Operators
Example
See Listing 7.27 on page 287 for an example of the binary shift operators.

Listing 7.27 Binary shift operators

$25 << 2 ; shift left (= $94)
$A5 >> 3 ; shift right(= $14)

Bitwise operators (binary)
The binary bitwise operators are &, |, and ^.

Syntax
Bitwise AND: <operand> & <operand>
Bitwise OR: <operand> | <operand>
Bitwise XOR: <operand> ^ <operand>

Description
The & operator performs an AND between the two operands on the bit level.

The | operator performs an OR between the two operands on the bit level.

The ^ operator performs an XOR between the two operands on the bit level.

The operands can be any expression evaluating to an absolute expression.

Example
See Listing 7.28 on page 287 for an example of the binary bitwise operators

Listing 7.28 Binary bitwise operators

$E & 3 ; = $2 (%1110 & %0011 = %0010)
$E | 3 ; = $F (%1110 | %0011 = %1111)
$E ^ 3 ; = $D (%1110 ^ %0011 = %1101)
287HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Operators
Bitwise operators (unary)
The unary bitwise operator is ~.

Syntax
One’s complement: ~<operand>

Description
The ~ operator evaluates the one’s complement of the operand.

The operand can be any expression evaluating to an absolute expression.

Example
See Listing 7.29 on page 288 for an example of the unary bitwise operator.

Listing 7.29 Unary bitwise operator

~$C ; = $FFFFFFF3 (~%00000000 00000000 00000000 00001100
=%11111111 11111111 11111111 11110011)

Logical operators (unary)
The unary logical operator is !.

Syntax
Logical NOT: !<operand>

Description
The ! operator returns 1 (true) if the operand is 0, otherwise it returns 0 (false).

The operand can be any expression evaluating to an absolute expression.

Example
See Listing 7.30 on page 289 for an example of the unary logical operator.
288 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Operators
Listing 7.30 Unary logical operator

!(8<5) ; = $1 (TRUE)

Relational operators (binary)
The binary relational operators are =, ==, !=, <>, <, <=, >, and >=.

Syntax

Equal: <operand> = <operand>
<operand> == <operand>

Not equal: <operand> != <operand>
<operand> <> <operand>

Less than: <operand> < <operand>
Less than or equal: <operand> <= <operand>
Greater than: <operand> > <operand>
Greater than or equal: <operand> >= <operand>

Description
These operators compare two operands and return 1 if the condition is ‘true’ or 0 if the
condition is ‘false’.

The operands can be any expression evaluating to an absolute expression.

Example
See Listing 7.31 on page 289 for an example of the binary relational operators

Listing 7.31 Binary relational operators

3 >= 4 ; = 0 (FALSE)
label = 4 ; = 1 (TRUE) if label is 4, 0 or (FALSE) otherwise.
9 < $B ; = 1 (TRUE)

HIGH operator
The HIGH operator is HIGH.
289HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Operators
Syntax
High Byte: HIGH(<operand>)

Description
This operator returns the high byte of the address of a memory location.

Example
Assume data1 is a word located at address $1050 in the memory.

LDA #HIGH(data1)

This instruction will load the immediate value of the high byte of the address of data1
($10) in register A.

LDA HIGH(data1)

This instruction will load the direct value at memory location of the higher byte of the
address of data1 (i.e., the value in memory location $10) in register A.

HIGH_6_13 Operator

Syntax
High Byte: HIGH_6_13(<operand>)

Description
This operator returns the high byte of a 14-bit address of a memory location.

Example
Assume data1 is a word located at address $1010 in the memory.

LDA #HIGH_6_13(data1)

This instruction will load the value $40 in the accumulator.

LOW operator
The LOW operator is LOW.
290 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Operators
Syntax
LOW Byte: LOW(<operand>)

Description
This operator returns the low byte of the address of a memory location.

Example
Assume data1 is a word located at address $1050 in the memory.

LDA #LOW(data1)

This instruction will load the immediate value of the lower byte of the address of data1
($50) in register A.

LDA LOW(data1)

This instruction will load the direct value at memory location of the lower byte of the
address of data1 (i.e., the value in memory location $50) in register A.

MAP_ADDR_6 Operator

Syntax
MAP_ADDR_6(<operand>)

Description
This operator returns the lower 6 bits for a memory location. It should be used to
determine the offset in the paging window for a certain memory address.Note that the
operator automatically adds the offset of the baseof the paging window ($C0).

Example
MOV #HIGH_6_13(data), $001F

STA MAP_ADDR_6(data)

In this example, the RS08 PAGE register (mapped at $001F) is loaded with the memory
page corresponding to data and then the value contained in the accumulator is stored at the
address pointed by data.
291HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Operators
PAGE operator
The PAGE operator is PAGE.

Syntax
PAGE Byte: PAGE(<operand>)

Description
This operator returns the page byte of the address of a memory location.

Example
Assume data1 is a word located at address $28050 in the memory.

LDA #PAGE(data1)

This instruction will load the immediate value of the page byte of the address of data1
($2).

LDA PAGE(data1)

This instruction will load the direct value at memory location of the page byte of the
address of data1 (i.e., the value in memory location $2).

NOTE The PAGE keyword does not refer to the RS08 PAGE register but to the PAGE
operator described above.

Force operator (unary)

Syntax
8-bit address: <<operand> or <operand>.B
16-bit address: ><operand> or <operand>.W
292 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Operators
Description
The < or .B operators force the operand to be an 8-bit operand, whereas the > or .W
operators force the operand to be a 16-bit operand.

The < operator may be useful to force the 8-bit immediate, 8-bit indexed, or direct
addressing mode for an instruction.

> operator may be useful to force the 16-bit immediate, 16-bit indexed, or extended
addressing mode for an instruction.

The operand can be any expression evaluating to an absolute or relocatable expression.

Example
<label ; label is a 8-bit address.

label.B ; label is a 8-bit address.

>label ; label is a 16-bit address.

label.W ; label is a 16-bit address.

For the RS08 the < operand forces the operand to short or tiny addressing mode
(depending on the instruction where it is used). The same result can be obtained by adding
.S or .T to the reffered symbol. The > operator may be used to force an address to 8 bits,
even if it would fit in 4 or 5 bits (so short or tiny addressing modes could be used).

 Operator precedence
Operator precedence follows the rules for ANSI - C operators (Table 7.6 on page 293)

.

Table 7.6 Operator precedence priorities

Operator Description Associativity

() Parenthesis Right to Left

~
+
-

One’s complement
Unary Plus
Unary minus

Left to Right

*
/
%

Integer multiplication
Integer division
Integer modulo

Left to Right

+
-

Integer addition
Integer subtraction

Left to Right
293HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Expression
Expression
An expression is composed of one or more symbols or constants, which are combined
with unary or binary operators. Valid symbols in expressions are:

• User defined symbols

• External symbols

• The special symbol ‘*’ represents the value of the location counter at the beginning
of the instruction or directive, even when several arguments are specified. In the
following example, the asterisk represents the location counter at the beginning of
the DC directive:

DC.W 1, 2, *-2

Once a valid expression has been fully evaluated by the Assembler, it is reduced as one of
the following type of expressions:

• Absolute expression on page 295: The expression has been reduced to an absolute
value, which is independent of the start address of any relocatable section. Thus it is
a constant. Simple relocatable expression on page 296: The expression evaluates to
an absolute offset from the start of a single relocatable section.

• Complex relocatable expression: The expression neither evaluates to an absolute
expression nor to a simple relocatable expression. The Assembler does not support
such expressions.

<<
>>

Shift Left
Shift Right

Left to Right

<
<=
>
>=

Less than
Less or equal to
Greater than
Greater or equal to

Left to Right

=, ==
!=, <>

Equal to
Not Equal to

Left to Right

& Bitwise AND Left to Right

^ Bitwise Exclusive OR Left to Right

| Bitwise OR Left to Right

Table 7.6 Operator precedence priorities (continued)

Operator Description Associativity
294 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Expression
All valid user defined symbols representing memory locations are simple relocatable
expressions. This includes labels specified in XREF directives, which are assumed to be
relocatable symbols.

Absolute expression
An absolute expression is an expression involving constants or known absolute labels or
expressions. An expression containing an operation between an absolute expression and a
constant value is also an absolute expression.

See Listing 7.32 on page 295 for an example of an absolute expression.

Listing 7.32 Absolute expression

Base: SET $100
Label: EQU Base * $5 + 3

Expressions involving the difference between two relocatable symbols defined in the same
file and in the same section evaluate to an absolute expression. An expression as
“label2-label1” can be translated as:

Listing 7.33 Interpretation of label2-label1: difference between two relocatable symbols

(<offset label2> + <start section address >) –
(<offset label1> + <start section address >)

This can be simplified to (Listing 7.34 on page 295):

Listing 7.34 Simplified result for the difference between two relocatable symbols

<offset label2> + <start section address > –
<offset label1> - <start section address>
= <offset label2> - <offset label1>

Example
In the example in Listing 7.35 on page 296, the expression “tabEnd-tabBegin”
evaluates to an absolute expression and is assigned the value of the difference between the
offset of tabEnd and tabBegin in the section DataSec.
295HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Expression
Listing 7.35 Absolute expression relating the difference between two relocatable
symbols

DataSec: SECTION
tabBegin: DS.B 5
tabEnd: DS.B 1

ConstSec: SECTION
label: EQU tabEnd-tabBegin ; Absolute expression

CodeSec: SECTION
entry: NOP

Simple relocatable expression
A simple relocatable expression results from an operation such as one of the following:

• <relocatable expression> + <absolute expression>

• <relocatable expression> - <absolute expression>

• < absolute expression> + < relocatable expression>

Listing 7.36 Example of relocatable expression

XREF XtrnLabel
DataSec: SECTION
tabBegin: DS.B 5
tabEnd: DS.B 1
CodeSec: SECTION
entry:

LDA tabBegin+2 ; Simple relocatable expression
BRA *-3 ; Simple relocatable expression
LDA XtrnLabel+6 ; Simple relocatable expression

Unary operation result
Table 7.7 on page 297 describes the type of an expression according to the operator in an
unary operation:
296 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Expression
Binary operations result
Table 7.8 on page 297 describes the type of an expression according to the left and right
operators in a binary operation:

Table 7.7 Expression type resulting from operator and operand type

Operator Operand Expression

-, !, ~ absolute absolute

-, !, ~ relocatable complex

+ absolute absolute

+ relocatable relocatable

Table 7.8 Expression type resulting from operator and their operands

Operator Left Operand Right
Operand

Expression

- absolute absolute absolute

- relocatable absolute relocatable

- absolute relocatable complex

- relocatable relocatable absolute

+ absolute absolute absolute

+ relocatable absolute relocatable

+ absolute relocatable relocatable

+ relocatable relocatable complex

*, /, %, <<, >>, |, &, ^ absolute absolute absolute

*, /, %, <<, >>, |, &, ^ relocatable absolute complex

*, /, %, <<, >>, |, &, ^ absolute relocatable complex

*, /, %, <<, >>, |, &, ^ relocatable relocatable complex
297HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Translation limits
Translation limits
The following limitations apply to the Macro Assembler:

• Floating-point constants are not supported.

• Complex relocatable expressions are not supported.

• Lists of operands or symbols must be separated with a comma.

• Include may be nested up to 50.

• The maximum line length is 1023.
298 HC(S)08 / RS08 Assembler Manual

8
Assembler Directives

There are different class of assembler directives. The following tables gives you an
overview over the different directives and their class:

Directive overview

Section-Definition directives
The directives in Table 8.1 on page 299 are used to define new sections.

Constant-Definition directives
The directives in Table 8.2 on page 299 are used to define assembly constants.

Table 8.1 Directives for defining sections

Directive Description

ORG - Set Location Counter on page 353 Define an absolute section

SECTION - Declare Relocatable Section on
page 361

Define a relocatable section

OFFSET - Create absolute symbols on
page 351

Define an offset section

Table 8.2 Directives for defining constants

Directive Description

EQU - Equate symbol value on page 322 Assign a name to an expression (cannot
be redefined)

SET - Set Symbol Value on page 363 Assign a name to an expression (can be
redefined)
299HC(S)08 / RS08 Assembler Manual

Assembler Directives
Directive overview
Data-Allocation directives
The directives in Table 8.3 on page 300 are used to allocate variables.

Symbol-Linkage directives
Symbol-linkage directives (Table 8.4 on page 300) are used to export or import global
symbols.

Assembly-Control directives
Assembly-control directives (Table 8.5 on page 300) are general purpose directives used
to control the assembly process.

Table 8.3 Directives for allocating variables

Directive Description

DC - Define Constant on page 311 Define a constant variable

DCB - Define Constant Block on
page 313

Define a constant block

DS - Define Space on page 314 Define storage for a variable

RAD50 - Rad50-encoded string
constants on page 358

RAD50 encoded string constants

Table 8.4 Symbol linkage directives

Directive Description

ABSENTRY - Application entry point on
page 304

Specify the application entry point when an
absolute file is generated

XDEF - External Symbol Definition on
page 367

Make a symbol public (visible from outside)

XREF - External Symbol Reference on
page 368

Import reference to an external symbol.

XREFB - External Reference for
Symbols located on the Direct Page on
page 369

Import reference to an external symbol
located on the direct page.
300 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Directive overview
Listing-File Control directives
Listing-file control directives (Table 8.6 on page 301) control the generation of the
assembler listing file.

Table 8.5 Assembly control directives

Directive Description

ALIGN - Align Location Counter on
page 306

Define Alignment Constraint

BASE - Set number base on page 307 Specify default base for constant definition

END - End assembly on page 318 End of assembly unit

ENDFOR - End of FOR block on
page 319

End of FOR block

EVEN - Force word alignment on
page 323

Define 2-byte alignment constraint

FAIL - Generate Error message on
page 325

Generate user defined error or warning
messages

FOR - Repeat assembly block on
page 329

Repeat assembly blocks

INCLUDE - Include text from another
file on page 335

Include text from another file.

LONGEVEN - Forcing Long-Word
alignment on page 340

Define 4 Byte alignment constraint

Table 8.6 Listing-file control directives

Directive Description

CLIST - List conditional assembly on
page 309

Specify if all instructions in a conditional
assembly block must be inserted in the
listing file or not.

LIST - Enable Listing on page 336 Specify that all subsequent instructions
must be inserted in the listing file.

LLEN - Set Line Length on page 338 Define line length in assembly listing file.
301HC(S)08 / RS08 Assembler Manual

Assembler Directives
Directive overview
Macro Control directives
Macro control directives (Table 8.7 on page 302) are used for the definition and expansion
of macros.

Conditional Assembly directives
Conditional assembly directives (Table 8.8 on page 302) are used for conditional
assembling.

MLIST - List macro expansions on
page 345

Specify if the macro expansions must be
inserted in the listing file.

NOLIST - Disable Listing on page 348 Specify that all subsequent instruction
must not be inserted in the listing file.

NOPAGE - Disable Paging on page 350 Disable paging in the assembly listing file.

PAGE - Insert Page break on page 355 Insert page break.

PLEN - Set Page Length on page 357 Define page length in the assembler listing
file.

SPC - Insert Blank Lines on page 364 Insert an empty line in the assembly listing
file.

TABS - Set Tab Length on page 365 Define number of character to insert in the
assembler listing file for a TAB character.

TITLE - Provide Listing Title on page 366 Define the user defined title for the
assembler listing file.

Table 8.7 Macro control directives

Directive Description

ENDM - End macro definition on page 321 End of user defined macro.

MACRO - Begin macro definition on
page 341

Start of user defined macro.

MEXIT - Terminate Macro Expansion on
page 342

Exit from macro expansion.

Table 8.6 Listing-file control directives (continued)

Directive Description
302 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
Detailed descriptions of all assembler
directives

The remainder of the chapter covers the detailed description of all available
assembler directives.

Table 8.8 Conditional assembly directives

Directive Description

ELSE - Conditional assembly on
page 316

alternate block

-Compat: Compatibility modes on
page 319

End of conditional block

IF - Conditional assembly on page 331 Start of conditional block. A boolean
expression follows this directive.

IFcc - Conditional assembly on page 333 Test if two string expressions are equal.

IFDEF Test if a symbol is defined.

IFEQ Test if an expression is null.

IFGE Test if an expression is greater or equal to
0.

IFGT Test if an expression is greater than 0.

IFLE Test if an expression is less or equal to 0.

IFLT Test if an expression is less than 0.

IFNC Test if two string expressions are different.

IFNDEF Test if a symbol is undefined

IFNE Test if an expression is not null.
303HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
ABSENTRY - Application entry point

Syntax
ABSENTRY <label>

Synonym
None

Description
This directive is used to specify the application Entry Point when the Assembler
directly generates an absolute file. The -FA2 assembly option - ELF/DWARF 2.0
Absolute File - must be enabled.

Using this directive, the entry point of the assembly application is written in the
header of the generated absolute file. When this file is loaded in the debugger, the
line where the entry point label is defined is highlighted in the source window.

This directive is ignored when the Assembler generates an object file.

NOTE This instruction only affects the loading on an application by a debugger. It
tells the debugger which initial PC should be used. In order to start the
application on a target - initialize the Reset vector.

If the example in Listing 8.1 on page 304 is assembled using the -FA2 assembler
option, an ELF/DWARF 2.0 Absolute file is generated.

Listing 8.1 Using ABSENTRY to specify an application entry point

ABSENTRY entry

ORG $fffe
Reset: DC.W entry

ORG $70
entry: NOP

NOP
main: RSP

NOP
BRA main
304 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
According to the ABSENTRY directive, the entry point will be set to the address of
entry in the header of the absolute file.
305HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
ALIGN - Align Location Counter

Syntax
ALIGN <n>

Synonym
None

Description
This directive forces the next instruction to a boundary that is a multiple of <n>,
relative to the start of the section. The value of <n> must be a positive number
between 1 and 32767. The ALIGN directive can force alignment to any size. The
filling bytes inserted for alignment purpose are initialized with ‘\0’.

ALIGN can be used in code or data sections.

Example
The example shown in Listing 8.2 on page 306 aligns the HEX label to a location,
which is a multiple of 16 (in this case, location 00010 (Hex))

Listing 8.2 Aligning the HEX Label to a Location

Assembler

Abs. Rel. Loc Obj. code Source line
---- ---- ------ --------- -----------

1 1
2 2 000000 6869 6768 DC.B "high"
3 3 000004 0000 0000 ALIGN 16

000008 0000 0000
00000C 0000 0000

4 4
5 5
6 6 000010 7F HEX: DC.B 127 ; HEX is allocated
7 7 ; on an address,
8 8 ; which is a
9 9 ; multiple of 16.
306 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
BASE - Set number base

Syntax
BASE <n>

Synonym
None

Description
The directive sets the default number base for constants to <n>. The operand <n>
may be prefixed to indicate its number base; otherwise, the operand is considered
to be in the current default base. Valid values of <n> are 2, 8, 10, 16. Unless a
default base is specified using the BASE directive, the default number base is
decimal.

Example
See Listing 8.3 on page 307 for examples of setting the number base.

Listing 8.3 Setting the number base

4 4 base 10 ; default base: decimal
5 5 000000 64 dc.b 100
6 6 base 16 ; default base: hex
7 7 000001 0A dc.b 0a
8 8 base 2 ; default base: binary
9 9 000002 04 dc.b 100

10 10 000003 04 dc.b %100
11 11 base @12 ; default base: decimal
12 12 000004 64 dc.b 100
13 13 base $a ; default base: decimal
14 14 000005 64 dc.b 100
15 15
16 16 base 8 ; default base: octal
17 17 000006 40 dc.b 100

Be careful. Even if the base value is set to 16, hexadecimal constants terminated by
a ‘D’ must be prefixed by the $ character, otherwise they are supposed to be
307HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
decimal constants in old style format. For example, constant 45D is interpreted as
decimal constant 45, not as hexadecimal constant 45D.
308 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
CLIST - List conditional assembly

Syntax
CLIST [ON|OFF]

Synonym
None

Description
The CLIST directive controls the listing of subsequent conditional assembly
blocks. It precedes the first directive of the conditional assembly block to which it
applies, and remains effective until the next CLIST directive is read.

When the ON keyword is specified in a CLIST directive, the listing file includes all
directives and instructions in the conditional assembly block, even those which do
not generate code (which are skipped).

When the OFF keyword is entered, only the directives and instructions that
generate code are listed.

A soon as the -L: Generate a listing file assembler option is activated, the
Assembler defaults to CLIST ON.

Example
Listing 8.4 on page 309 is an example where the CLIST OFF option is used.

Listing 8.4 Listing file with CLIST OFF

CLIST OFF
Try: EQU 0

IFEQ Try
LDA #103

ELSE
LDA #0

ENDIF
309HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
Listing 8.5 on page 310 is the corresponding listing file.

Listing 8.5 Example assembler listing where CLIST ON is used

Abs. Rel. Loc Obj. code Source line
---- ----- ------ --------- -----------

2 2 0000 0000 Try: EQU 0
3 3 0000 0000 IFEQ Try
4 4 000000 A667 LDA #103
5 5 ELSE
7 7 ENDIF

Listing 8.6 on page 310 is a listing file where CLIST ON is used.

Listing 8.6 CLIST ON is selected

CLIST ON
Try: EQU 0

IFEQ Try
LDA #103

ELSE
LDA #0

ENDIF

Listing 8.7 on page 310 is the corresponding listing file.

Listing 8.7 Example assembler listing where CLIST ON is used

Abs. Rel. Loc Obj. code Source line
---- ----- ------ --------- -----------

2 2 0000 0000 Try: EQU 0
3 3 0000 0000 IFEQ Try
4 4 000000 A667 LDA #103
5 5 ELSE
6 6 LDA #0
7 7 ENDIF
8 8
310 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
DC - Define Constant

Syntax
[<label>:] DC [.<size>] <expression> [,
<expression>]...

where <size> = B (default), W, or L.

Synonym
DCW (= 2 byte DCs), DCL (= 4 byte DCs),
FCB (= DC.B), FDB (= 2 byte DCs),
FQB (= 4 byte DCs)

Description
The DC directive defines constants in memory. It can have one or more
<expression> operands, which are separated by commas. The
<expression> can contain an actual value (binary, octal, decimal, hexadecimal,
or ASCII). Alternatively, the <expression> can be a symbol or expression that
can be evaluated by the Assembler as an absolute or simple relocatable expression.
One memory block is allocated and initialized for each expression.

The following rules apply to size specifications for DC directives:

• DC.B: One byte is allocated for numeric expressions. One byte is allocated per
ASCII character for strings (Listing 8.8 on page 311).

• DC.W: Two bytes are allocated for numeric expressions. ASCII strings are right
aligned on a two-byte boundary (Listing 8.9 on page 312).

• DC.L: Four bytes are allocated for numeric expressions. ASCII strings are right
aligned on a four byte boundary (Listing 8.10 on page 312).

Listing 8.8 Example for DC.B

000000 4142 4344 Label: DC.B "ABCDE"
000004 45
000005 0A0A 010A DC.B %1010, @12, 1,$A
311HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
Listing 8.9 Example for DC.W

000000 0041 4243 Label: DC.W "ABCDE"
000004 4445
000006 000A 000A DC.W %1010, @12, 1, $A
00000A 0001 000A
00000E xxxx DC.W Label

Listing 8.10 Example for DC.L

000000 0000 0041 Label: DC.L "ABCDE"
000004 4243 4445
000008 0000 000A DC.L %1010, @12, 1, $A
00000C 0000 000A
000010 0000 0001
000014 0000 000A
000018 xxxx xxxx DC.L Label

If the value in an operand expression exceeds the size of the operand, the value is
truncated and a warning message is generated.

See also
Assembler directives:

• DCB - Define Constant Block on page 313

• DS - Define Space on page 314

• ORG - Set Location Counter on page 353

• SECTION - Declare Relocatable Section on page 361
312 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
DCB - Define Constant Block

Syntax
[<label>:] DCB [.<size>] <count>, <value>
where <size> = B (default), W, or L.

Description
The DCB directive causes the Assembler to allocate a memory block initialized
with the specified <value>. The length of the block is <size> * <count>.

<count> may not contain undefined, forward, or external references. It may
range from 1 to 4096.

The value of each storage unit allocated is the sign-extended expression <value>,
which may contain forward references. The <count> cannot be relocatable. This
directive does not perform any alignment.

The following rules apply to size specifications for DCB directives:

• DCB.B: One byte is allocated for numeric expressions.

• DCB.W: Two bytes are allocated for numeric expressions.

• DCB.L: Four bytes are allocated for numeric expressions.

Listing 8.11 Examples of DCB directives

000000 FFFF FF Label: DCB.B 3, $FF
000003 FFFE FFFE DCB.W 3, $FFFE
000007 FFFE
000009 0000 FFFE DCB.L 3, $FFFE
00000D 0000 FFFE
000011 0000 FFFE

See also
Assembler directives:

• DC - Define Constant on page 311

• DS - Define Space on page 314

• ORG - Set Location Counter on page 353

• SECTION - Declare Relocatable Section on page 361
313HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
DS - Define Space

Syntax
[<label>:] DS[.<size>] <count>

where <size> = B (default), W, or L.

Synonym
RMB (= DS.B)
RMD (2 bytes)
RMQ (4 bytes)

Description
The DS directive is used to reserve memory for variables (Listing 8.12 on
page 314). The content of the memory reserved is not initialized. The length of the
block is
<size> * <count>.

<count> may not contain undefined, forward, or external references. It may
range from 1 to 4096.

Listing 8.12 Examples of DS directives

Counter: DS.B 2 ; 2 continuous bytes in memory
DS.B 2 ; 2 continuous bytes in memory

; can only be accessed through the label Counter
DS.W 5 ; 5 continuous words in memory

The label Counter references the lowest address of the defined storage area.

NOTE Storage allocated with a DS directive may end up in constant data section or
even in a code section, if the same section contains constants or code as well.
The Assembler allocates only a complete section at once.
314 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
Example
In Listing 8.13 on page 315 on page 315, a variable, a constant, and code were put
in the same section. Because code has to be in ROM, then all three elements must
be put into ROM. In order to allocate them separately, put them in different
sections (Listing 8.14 on page 315).

Listing 8.13 Poor memory allocation

; How it should NOT be done ...
Counter: DS 1 ; 1-byte used
InitialCounter: DC.B $f5 ; constant $f5
main: NOP ; NOP instruction

Listing 8.14 How it should be done...

DataSect: SECTION ; separate section for variables
Counter: DS 1 ; 1-byte used

ConstSect: SECTION ; separate section for constants
InitialCounter: DC.B $f5 ; constant $f5

CodeSect: SECTION ; section for code
main: NOP ; NOP instruction

An ORG directive also starts a new section.

See also
Assembler directives:

• DC - Define Constant on page 311

• ORG - Set Location Counter on page 353

• SECTION - Declare Relocatable Section on page 361
315HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
ELSE - Conditional assembly

Syntax
IF <condition>

[<assembly language statements>]
[ELSE]

[<assembly language statements>]
ENDIF

Synonym
ELSEC

Description
If <condition> is true, the statements between IF and the corresponding ELSE
directive are assembled (generate code).

If <condition> is false, the statements between ELSE and the corresponding
ENDIF directive are assembled. Nesting of conditional blocks is allowed. The
maximum level of nesting is limited by the available memory at assembly time.

Example
Listing 8.15 on page 316 is an example of the use of conditional assembly
directives:

Listing 8.15 Various conditional assembly directives

Try: EQU 1
IF Try != 0

LDA #103
ELSE

LDA #0
ENDIF

The value of Try determines the instruction to be assembled in the program. As
shown, the “lda #103” instruction is assembled. Changing the operand of the
“EQU” directive to 0 causes the “lda #0” instruction to be assembled instead.
316 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
Listing 8.16 Output listing of Listing 8.15 on page 316

 Abs. Rel. Loc Obj. code Source line
---- ---- ------ --------- ------------------

1 1 0000 0001 Try: EQU 1
2 2 0000 0001 IF Try != 0
3 3 000000 A667 LDA #103
4 4 ELSE
6 6 ENDIF
317HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
END - End assembly

Syntax
END

Synonym
None

Description
The END directive indicates the end of the source code. Subsequent source
statements in this file are ignored. The END directive in included files skips only
subsequent source statements in this include file. The assembly continues in the
including file in a regular way.

Example
The END statement in Listing 8.17 on page 318 causes any source code after the
END statement to be ignored, as in Listing 8.18 on page 318.

Listing 8.17 Source File

Label: DC.W $1234
DC.W $5678
END
DC.W $90AB ; no code generated
DC.W $CDEF ; no code generated

Listing 8.18 Generated listing file

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

1 1 000000 1234 Label: DC.W $1234
2 2 000002 5678 DC.W $5678
318 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
ENDFOR - End of FOR block

Syntax
ENDFOR

Synonym
None

Description
The ENDFOR directive indicates the end of a FOR block.

NOTE The FOR directive is only available when the -Compat=b assembler option is
used. Otherwise, the FOR directive is not supported.

Example
See Listing 8.28 on page 329 in the FOR.section.

See also
Assembler directives:

• FOR - Repeat assembly block on page 329

• -Compat: Compatibility modes
319HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
ENDIF - End conditional assembly

Syntax
ENDIF

Synonym
ENDC

Description
The ENDIF directive indicates the end of a conditional block. Nesting of
conditional blocks is allowed. The maximum level of nesting is limited by the
available memory at assembly time.

Example
See Listing 8.30 on page 331 in the IF section.

See also
IF - Conditional assembly on page 331 assembler directive
320 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
ENDM - End macro definition

Syntax
ENDM

Synonym
None

Description
The ENDM directive terminates the macro definition (Listing 8.19 on page 321).

Example
The ENDM statement in Listing 8.19 on page 321 terminates the cpChar macro.

Listing 8.19 Using ENDM to terminate a macro definition

cpChar: MACRO
LDA \1
STA \2

ENDM
CodeSec: SECTION
Start:

cpChar char1, char2
LDA char1
STA char2
321HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
 EQU - Equate symbol value

Syntax
<label>: EQU <expression>

Synonym
None

Description
The EQU directive assigns the value of the <expression> in the operand field to
<label>. The <label> and <expression> fields are both required, and the
<label> cannot be defined anywhere else in the program. The <expression>
cannot include a symbol that is undefined or not yet defined.

The EQU directive does not allow forward references.

Example
See Listing 8.20 on page 322 for examples of using the EQU directive.

Listing 8.20 Using EQU to set variables

0000 0014 MaxElement: EQU 20
0000 0050 MaxSize: EQU MaxElement * 4

Time: DS.B 3
0000 0000 Hour: EQU Time ; first byte addr.
0000 0002 Minute: EQU Time+1 ; second byte addr
0000 0004 Second: EQU Time+2 ; third byte addr
322 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
EVEN - Force word alignment

Syntax
EVEN

Synonym
None

Description
This directive forces the next instruction to the next even address relative to the
start of the section. EVEN is an abbreviation for ALIGN 2. Some processors require
word and long word operations to begin at even address boundaries. In such cases,
the use of the EVEN directive ensures correct alignment. Omission of this directive
can result in an error message.

Example
See Listing 8.21 on page 323 for instances where the EVEN directive causes
padding bytes to be inserted.

Listing 8.21 Using the Force Word Alignment Directive

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

1 1 000000 ds.b 4
2 2 ; location count has an even value
3 3 ; no padding byte inserted.
4 4 even
5 5 000004 ds.b 1
6 6 ; location count has an odd value
7 7 ; one padding byte inserted.
8 8 000005 even
9 9 000006 ds.b 3

10 10 ; location count has an odd value
11 11 ; one padding byte inserted.
12 12 000009 even
13 13 0000 000A aaa: equ 10
323HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
See also
ALIGN - Align Location Counter on page 306 assembly directive
324 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
FAIL - Generate Error message

Syntax
FAIL <arg>|<string>

Synonym
None

Description
There are three modes of the FAIL directive, depending upon the operand that is
specified:

• If <arg> is a number in the range [0–499], the Assembler generates an error
message, including the line number and argument of the directive. The
Assembler does not generate an object file.

• If <arg> is a number in the range [500–$FFFFFFFF], the Assembler
generates a warning message, including the line number and argument of the
directive.

• If a string is supplied as an operand, the Assembler generates an error message,
including the line number and the <string>. The Assembler does not
generate an object file.

• The FAIL directive is primarily intended for use with conditional assembly to
detect user-defined errors or warning conditions.

Examples
The assembly code in Listing 8.22 on page 325 generates the error messages in
Listing 8.23 on page 326. The value of the operand associated with the
‘FAIL 200’ or ‘FAIL 600’directives determines (1) the format of any
warning or error message and (2) whether the source code segment will be
assembled.

Listing 8.22 Example source code

cpChar: MACRO
IFC "\1", ""

FAIL 200
MEXIT
325HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
ELSE
LDA \1

ENDIF

IFC "\2", ""
FAIL 600

ELSE
STA \2

ENDIF
ENDM

codSec: SECTION
Start:

cpChar char1

Listing 8.23 Error messages resulting from assembling the source code in Listing
8.22 on page 325

>> in "C:\Freescale\demo\warnfail.asm", line 13, col 19, pos 226

IFC "\2", ""
FAIL 600

^
WARNING A2332: FAIL found
Macro Call : FAIL 600

Listing 8.24 on page 326 is another assembly code example which again incorporates the
‘FAIL 200’ and the ‘FAIL 600’ directives. Listing 8.25 on page 327 is the error
message that was generated as a result of assembling the source code in Listing 8.24 on
page 326.

Listing 8.24 Example source code

cpChar: MACRO
IFC "\1", ""

FAIL 200
MEXIT

ELSE
LDA \1

ENDIF

IFC "\2", ""
FAIL 600

ELSE
STA \2
326 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
ENDIF
ENDM

codeSec: SECTION
Start:

cpChar, char2

Listing 8.25 Error messages resulting from assembling the source code in Listing
8.24 on page 326

>> in "C:\Freescale\demo\errfail.asm", line 6, col 19, pos 96

IFC "\1", ""
FAIL 200

^
ERROR A2329: FAIL found
Macro Call : FAIL 200

Listing 8.26 on page 327 has additional uses of the FAIL directive. In this
example, the ‘FAIL string’ and ‘FAIL 600’ directives are used. Any error
messages generated from the assembly code as a result of the FAIL directive are
listed in Listing 8.27 on page 328.

Listing 8.26 Example source code

cpChar: MACRO
IFC "\1", ""

FAIL "A character must be specified as first parameter"
MEXIT

ELSE
LDA \1

ENDIF

IFC "\2", ""
FAIL 600

ELSE
STA \2

ENDIF
ENDM

codeSec: SECTION
Start:

cpChar, char2
327HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
Listing 8.27 Error messages resulting from assembling the source code in Listing
8.26 on page 327

>> in "C:\Freescale\demo\failmes.asm", line 7, col 17, pos 110

IFC "\1", ""
FAIL "A character must be specified as first parameter"

^
ERROR A2338: A character must be specified as first parameter
Macro Call : FAIL "A character must be specified as first parameter"
328 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
 FOR - Repeat assembly block

Syntax
FOR <label>=<num> TO <num>
ENDFOR

Synonym
None

Description
The FOR directive is an inline macro because it can generate multiple lines of
assembly code from only one line of input code.

FOR takes an absolute expression and assembles the portion of code following it,
the number of times represented by the expression. The FOR expression may be
either a constant or a label previously defined using EQU or SET.

NOTE The FOR directive is only available when the -Compat=b assembly option is
used. Otherwise, the FOR directive is not supported.

Example
Listing 8.28 on page 329 is an example of using FOR to create a 5-repetition loop.

Listing 8.28 Using the FOR directive in a loop

FOR label=2 TO 6
DC.B label*7

ENDFOR

Listing 8.29 Resulting output listing

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

1 1 FOR label=2 TO 6
2 2 DC.B label*7
3 3 ENDFOR
329HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
4 2 000000 0E DC.B label*7
5 3 ENDFOR
6 2 000001 15 DC.B label*7
7 3 ENDFOR
8 2 000002 1C DC.B label*7
9 3 ENDFOR

10 2 000003 23 DC.B label*7
11 3 ENDFOR
12 2 000004 2A DC.B label*7
13 3 ENDFOR

See also
on page 319ENDFOR - End of FOR block on page 319

-Compat: Compatibility modes assembler option
330 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
IF - Conditional assembly

Syntax
IF <condition>

[<assembly language statements>]
[ELSE]

[<assembly language statements>]
ENDIF

Synonym
None

Description
If <condition> is true, the statements immediately following the IF directive
are assembled. Assembly continues until the corresponding ELSE or ENDIF
directive is reached. Then all the statements until the corresponding ENDIF
directive are ignored. Nesting of conditional blocks is allowed. The maximum
level of nesting is limited by the available memory at assembly time.

The expected syntax for <condition> is:

<condition> := <expression> <relation> <expression>
<relation> := =|!=|>=|>|<=|<|<>

The <expression> must be absolute (It must be known at assembly time).

Example
Listing 8.30 on page 331 is an example of the use of conditional assembly
directives

Listing 8.30 IF and ENDIF

Try: EQU 0
IF Try != 0

LDA #103
ELSE

LDA #0
ENDIF
331HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
The value of Try determines the instruction to be assembled in the program. As
shown, the “lda #0” instruction is assembled. Changing the operand of the
“EQU” directive to one causes the “lda #103” instruction to be assembled
instead. The following shows the listing provided by the Assembler for these lines
of code:

Listing 8.31 Output listing after conditional assembly

1 1 0000 0000 Try: EQU 0
2 2 0000 0000 IF Try != 0
4 4 ELSE
5 5 000000 A600 LDA #0
6 6 ENDIF
332 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
IFcc - Conditional assembly

Syntax
IFcc <condition>

[<assembly language statements>]
[ELSE]

[<assembly language statements>]
ENDIF

Synonym
None

Description
These directives can be replaced by the IF directive Ifcc <condition> is
true, the statements immediately following the Ifcc directive are assembled.
Assembly continues until the corresponding ELSE or ENDIF directive is reached,
after which assembly moves to the statements following the ENDIF directive.
Nesting of conditional blocks is allowed. The maximum level of nesting is limited
by the available memory at assembly time.

Table 8.9 on page 333 lists the available conditional types:

Table 8.9 Conditional assembly types

Ifcc Condition Meaning

ifeq <expression> if <expression> == 0

ifne <expression> if <expression> != 0

iflt <expression> if <expression> < 0

ifle <expression> if <expression> <= 0

ifgt <expression> if <expression> > 0

ifge <expression> if <expression> >= 0

ifc <string1>, <string2> if <string1> == <string2>

ifnc <string1>, <string2> if <string1> != <string2>
333HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
Example
Listing 8.32 on page 334 is an example of the use of conditional assembler
directives:

Listing 8.32 Using the IFNE conditional assembler directive

Try: EQU 0
IFNE Try

LDA #103
ELSE

LDA #0
ENDIF

The value of Try determines the instruction to be assembled in the program. As
shown, the “lda #0” instruction is assembled. Changing the directive to
“IFEQ” causes the “lda #103” instruction to be assembled instead.

Listing 8.33 on page 334 shows the listing provided by the Assembler for these
lines of code

Listing 8.33 output listing for Listing 8.32 on page 334

1 1 0000 0000 Try: EQU 0
2 2 0000 0000 IFNE Try
4 4 ELSE
5 5 000000 A600 LDA #0
6 6 ENDIF

ifdef <label> if <label> was defined

ifndef <label> if <label> was not defined

Table 8.9 Conditional assembly types (continued)

Ifcc Condition Meaning
334 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
INCLUDE - Include text from another file

Syntax
INCLUDE <file specification>

Synonym
None

Description
This directive causes the included file to be inserted in the source input stream. The
<file specification> is not case-sensitive and must be enclosed in
quotation marks.

The Assembler attempts to open <file specification> relative to the
current working directory. If the file is not found there, then it is searched for
relative to each path specified in the GENPATH: Search path for input file
environment variable.

Example
INCLUDE "..\LIBRARY\macros.inc"
335HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
LIST - Enable Listing

Syntax
LIST

Synonym
None

Description
Specifies that instructions following this directive must be inserted into the listing
and into the debug file. This is a default option. The listing file is only generated if
the -L: Generate a listing file assembler option is specified on the command line.

The source text following the LIST directive is listed until a NOLIST - Disable
Listing on page 348 or an END - End assembly on page 318 assembler directive is
reached

This directive is not written to the listing and debug files.

Example
The assembly source code using the LIST and NOLIST directives in Listing 8.34 on
page 336 generates the output listing in Listing 8.35 on page 337.

Listing 8.34 Using the LIST and NOLIST assembler directives

aaa: NOP

 LIST
bbb: NOP

NOP

NOLIST
ccc: NOP

NOP

LIST
ddd: NOP NOP
336 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
Listing 8.35 Output listing generated from running Listing 8.34 on page 336

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

1 1 000000 9D aaa: NOP
2 2
4 4 000001 9D bbb: NOP
5 5 000002 9D NOP
6 6

12 12 000005 9D ddd: NOP
13 13 000006 9D NOP
337HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
LLEN - Set Line Length

Syntax
LLEN<n>

Synonym
None

Description
Sets the number of characters from the source line that are included on the listing
line to <n>. The values allowed for <n> are in the range [0 - 132]. If a value
smaller than 0 is specified, the line length is set to 0. If a value bigger than 132 is
specified, the line length is set to 132.

Lines of the source file that exceed the specified number of characters are truncated
in the listing file.

Example
The following portion of code in Listing 8.37 on page 338 generates the listing file in
Listing 8.37 on page 338. Notice that the ‘LLEN 24’ directive causes the output at the
location-counter line 7 to be truncated.

Listing 8.36 Example assembly source code using LLEN

DC.B $55
LLEN 32
DC.W $1234, $4567

LLEN 24
DC.W $1234, $4567
EVEN

Listing 8.37 Formatted assembly output listing as a result of using LLEN

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

1 1 000000 55 DC.B $55
338 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
2 2
4 4 000001 1234 4567 DC.W $1234, $4567
5 5
7 7 000005 1234 4567 DC.W $1234, $
8 8 000009 00 EVEN
339HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
LONGEVEN - Forcing Long-Word alignment

Syntax
LONGEVEN

Synonym
None

Description
This directive forces the next instruction to the next long-word address relative to
the start of the section. LONGEVEN is an abbreviation for ALIGN 4.

Example
See Listing 8.38 on page 340 for an example where LONGEVEN aligns the next
instruction to have its location counter to be a multiple of four (bytes).

Listing 8.38 Forcing Long Word Alignment

2 2 000000 01 dcb.b 1,1
; location counter is not a multiple of 4; three filling
; bytes are required.

3 3 000001 0000 00 longeven
4 4 000004 0002 0002 dcb.w 2,2

; location counter is already a multiple of 4; no filling
; bytes are required.

5 5 longeven
6 6 000008 0202 dcb.b 2,2
7 7 ; following is for text section
8 8 s27 SECTION 27
9 9 000000 9D nop

; location counter is not a multiple of 4; three filling
; bytes are required.

10 10 000001 0000 00 longeven
11 11 000004 9D nop
340 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
 MACRO - Begin macro definition

Syntax
<label>: MACRO

Synonym
None

Description
The <label> of the MACRO directive is the name by which the macro is called.
This name must not be a processor machine instruction or assembler directive
name. For more information on macros, see the Macros chapter.

Example
See Listing 8.39 on page 341 for a macro definition.

Listing 8.39 Example macro definition

XDEF Start
MyData: SECTION
char1: DS.B 1
char2: DS.B 1
cpChar: MACRO

LDA \1
STA \2

ENDM
CodeSec: SECTION
Start:

cpChar char1, char2
LDA char1
STA char2
341HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
MEXIT - Terminate Macro Expansion

Syntax
MEXIT

Synonym
None

Description
MEXIT is usually used together with conditional assembly within a macro. In that
case it may happen that the macro expansion should terminate prior to termination
of the macro definition. The MEXIT directive causes macro expansion to skip any
remaining source lines ahead of the ENDM - End macro definition on page 321
directive.

Example
See Listing 8.40 on page 342 allows the replication of simple instructions or
directives using MACRO with MEXIT.

Listing 8.40 Example assembly code using MEXIT

XDEF entry

storage: EQU $00FF

save: MACRO ; Start macro definition
LDX #storage
LDA \1
STA 0,x ; Save first argument
LDA \2
STA 2,x ; Save second argument
IFC '\3', '' ; Is there a third argument?

MEXIT ; No, exit from macro
ENDC
LDA \3 ; Save third argument

STA 4,X
ENDM ; End of macro definition

datSec: SECTION
342 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
char1: ds.b 1
char2: ds.b 1

codSec: SECTION
entry:

save char1, char2

Listing 8.41 on page 343 shows the macro expansion of the previous macro.

Listing 8.41 Macro expansion of Listing 8.40 on page 342

Abs. Rel. Loc Obj. code Source line

---- ---- ------ --------- -----------
1 1 XDEF entry
2 2 0000 00FF storage: EQU $00FF
3 3
4 4 save: MACRO ; Start macro definition
5 5 LDX #storage
6 6 LDA \1
7 7 STA 0,x ; Save first arg
8 8 LDA \2
9 9 STA 2,x ; Save second arg

10 10 IFC '\3', ''; is there a
11 11 MEXIT ; No, exit from macro.
12 12 ENDC
13 13 LDA \3 ; Save third argument
14 14 STA 4,X
15 15 ENDM ; End of macro defin
16 16
17 17 datSec: SECTION
18 18 000000 char1: ds.b 1
19 19 000001 char2: ds.b 1
20 20
21 21
22 22
23 23 codSec: SECTION
24 24 entry:
25 25 save char1, char2
26 5m 000000 AEFF + LDX #storage
27 6m 000002 C6 xxxx + LDA char1
28 7m 000005 E700 + STA 0,x ; Save first arg
29 8m 000007 C6 xxxx + LDA char2
30 9m 00000A E702 + STA 2,x ; Save second
31 10m 0000 0001 + IFC '', '' ; Is there a
33 11m + MEXIT ; no, exit macro.
34 12m + ENDC
343HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
35 13m + LDA ; Save third argu
36 14m + STA 4,X
344 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
MLIST - List macro expansions

Syntax
MLIST [ON|OFF]

Description
When the ON keyword is entered with an MLIST directive, the Assembler includes
the macro expansions in the listing and in the debug file.

When the OFF keyword is entered, the macro expansions are omitted from the
listing and from the debug file.

This directive is not written to the listing and debug file, and the default value is
ON.

Synonym
None

Example
The assembly code in Listing 8.42 on page 345, with MLIST ON, generates the
assembler output listing in Listing 8.43 on page 346

Listing 8.42 Example assembly source code using MLIST

XDEF entry
MLIST ON

swap: MACRO
LDA \1
LDX \2
STA \2
STX \1

ENDM
codSec: SECTION
entry:

LDA #$F0
LDX #$0F

main:
STA first
STX second
swap first, second
NOP
345HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
BRA main
datSec: SECTION
first: DS.B 1
second: DS.B 1

Listing 8.43 Assembler output listing of the example in Listing 8.42 on page 345 with
MLIST ON

1 1 XDEF entry
3 3 swap: MACRO
4 4 LDA \1
5 5 LDX \2
6 6 STA \2
7 7 STX \1
8 8 ENDM
9 9

10 10 codSec: SECTION
11 11 entry:
12 12 000000 A6F0 LDA #$F0
13 13 000002 AE0F LDX #$0F
14 14 main:
15 15 000004 C7 xxxx STA first
16 16 000007 CF xxxx STX second
17 17 swap first, second
18 4m 00000A C6 xxxx + LDA first
19 5m 00000D CE xxxx + LDX second
20 6m 000010 C7 xxxx + STA second
21 7m 000013 CF xxxx + STX first
22 18 000016 9D NOP
23 19 000017 20EB BRA main
24 20
25 21 datSec: SECTION
26 22 000000 first: DS.B 1
27 23 000001 second: DS.B 1

For the same code, with MLIST OFF, the listing file is as shown in Listing 8.44 on
page 346.

Listing 8.44 Assembler output listing of the example in Listing 8.42 on page 345 with
MLIST OFF

 Abs. Rel. Loc Obj. code Source line
---- ---- ------ --------- -----------

1 1 XDEF entry
346 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
3 3 swap: MACRO
4 4 LDA \1
5 5 LDX \2
6 6 STA \2
7 7 STX \1
8 8 ENDM
9 9 codSec: SECTION

10 10 entry:
11 11 000000 A6F0 LDA #$F0
12 12 000002 AE0F LDX #$0F
13 13 main:
14 14 000004 C7 xxxx STA first
15 15 000007 CF xxxx STX second
16 16 swap first, second
21 17 000016 9D NOP
22 18 000017 20EB BRA main
23 19 datSec: SECTION
24 20 000000 first: DS.B 1
25 21 000001 second: DS.B 1

The MLIST directive does not appear in the listing file. When a macro is called
after a MLIST ON, it is expanded in the listing file. If the MLIST OFF is
encountered before the macro call, the macro is not expanded in the listing file.
347HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
NOLIST - Disable Listing

Syntax
NOLIST

Synonym
NOL

Description
Suppresses the printing of the following instructions in the assembly listing and
debug file until a LIST - Enable Listing on page 336 assembler directive is
reached.

Example
See Listing 8.45 on page 348 for an example of using LIST and NOLIST.

Listing 8.45 Examples of LIST and NOLIST

aaa: NOP

LIST
bbb: NOP

NOP

NOLIST
ccc: NOP

NOP

LIST
ddd: NOP

NOP

The listing above generates the listing file in Listing 8.46 on page 349.
348 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
Listing 8.46 Assembler output listing from the assembler source code in Listing 8.45 on
page 348

Assembler
Abs. Rel. Loc Obj. code Source line
---- ---- ------ --------- -----------

1 1 000000 9D aaa: NOP
2 2
4 4 000001 9D bbb: NOP
5 5 000002 9D NOP
6 6

12 12 000005 9D ddd: NOP
13 13 000006 9D NOP

See Also
LIST - Enable Listing on page 336 assembler directive
349HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
NOPAGE - Disable Paging

Syntax
NOPAGE

Synonym
None

Description
Disables pagination in the listing file. Program lines are listed continuously,
without headings or top or bottom margins.
350 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
OFFSET - Create absolute symbols

Syntax
OFFSET <expression>

Synonym
None

Description
The OFFSET directive declares an offset section and initializes the location
counter to the value specified in <expression>. The <expression> must be
absolute and may not contain references to external, undefined or forward defined
labels.

Example
Listing 8.47 on page 351 shows how the OFFSET directive can be used to access
an element of a structure.

Listing 8.47 Example assembly source code

6 6 OFFSET 0
7 7 000000 ID: DS.B 1
8 8 000001 COUNT: DS.W 1
9 9 000003 VALUE: DS.L 1

10 10 0000 0007 SIZE: EQU *
11 11
12 12 DataSec: SECTION
13 13 000000 Struct: DS.B SIZE
14 14
15 15 CodeSec: SECTION
16 16 entry:
17 17 000003 CE xxxx LDX #Struct
18 18 000006 8600 LDA #0
19 19 000008 6A00 STA ID, X
20 20 00000A 6201 INC COUNT, X
21 21 00000C 42 INCA
22 22 00000D 6A03 STA VALUE, X
351HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
When a statement affecting the location counter other than EVEN, LONGEVEN,
ALIGN, or DS is encountered after the OFFSET directive, the offset section is
ended. The preceding section is activated again, and the location counter is restored
to the next available location in this section (Listing 8.48 on page 352).

Listing 8.48 Example where the location counter is changed

7 7 ConstSec: SECTION
8 8 000000 11 cst1: DC.B $11
9 9 000001 13 cst2: DC.B $13

10 10
11 11 OFFSET 0
12 12 000000 ID: DS.B 1
13 13 000001 COUNT: DS.W 1
14 14 000003 VALUE: DS.L 1
15 15 0000 0007 SIZE: EQU *
16 16
17 17 000002 22 cst3: DC.B $22

In the example above, the ‘cst3’ symbol, defined after the OFFSET directive,
defines a constant byte value. This symbol is appended to the section
‘ConstSec’, which precedes the OFFSET directive.
352 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
ORG - Set Location Counter

Syntax
ORG <expression>

Synonym
None

Description
The ORG directive sets the location counter to the value specified by
<expression>. Subsequent statements are assigned memory locations starting
with the new location counter value. The <expression> must be absolute and
may not contain any forward, undefined, or external references. The ORG directive
generates an internal section, which is absolute (see the Sections chapter).

Example
See Listing 8.49 on page 353 for an example where ORG sets the location counter.

Listing 8.49 Using ORG to set the location counter

org $2000
b1: nop
b2: rts

Viewing Listing 8.50 on page 353, you can see that the b1 label is located at address
$2000 and label b2 is at address $2001.

Listing 8.50 Assembler output listing from the source code in Listing 8.49 on
page 353

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

1 1 org $2000
2 2 a002000 9D b1: nop
3 3 a002001 81 b2: rts
353HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
See also
Assembler directives:

• DC - Define Constant on page 311

• DCB - Define Constant Block on page 313

• DS - Define Space on page 314

• SECTION - Declare Relocatable Section on page 361
354 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
PAGE - Insert Page break

Syntax
PAGE

Synonym
None

Description
Insert a page break in the assembly listing.

Example
The portion of code in Listing 8.51 on page 355 demonstrates the use of a page
break in the assembler output listing.

Listing 8.51 Example assembly source code

code: SECTION
DC.B $00,$12
DC.B $00,$34
PAGE
DC.B $00,$56
DC.B $00,$78

The effect of the PAGE directive can be seen in Listing 8.52 on page 355.

Listing 8.52 Assembler output listing from the source code in Listing 8.51 on page 355

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

1 1 code: SECTION
2 2 000000 0012 DC.B $00,$12
3 3 000002 0034 DC.B $00,$34

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

5 5 000004 0056 DC.B $00,$56
355HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
6 6 000006 0078 DC.B $00,$78
356 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
PLEN - Set Page Length

Syntax
PLEN<n>

Synonym
None

Description
Sets the listings page length to <n> lines. <n> may range from 10 to 10000. If
the number of lines already listed on the current page is greater than or equal to
<n>, listing will continue on the next page with the new page length setting.

The default page length is 65 lines.
357HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
RAD50 - Rad50-encoded string constants

Syntax
RAD50 <str>[, cnt]

Synonym
None

Description
This directive places strings encoded with the RAD50 encoding into constants. The
RAD50 encoding places 3 string characters out of a reduced character set into 2
bytes. It therefore saves memory when comparing it with a plain ASCII
representation. It also has some drawbacks, however. Only 40 different character
values are supported, and the strings have to be decoded before they can be used.
This decoding does include some computations including divisions (not just shifts)
and is therefore rather expensive.

The encoding takes three bytes and looks them up in a string table (Listing 8.53 on
page 358).

Listing 8.53 RAD50 encoding

unsigned short LookUpPos(char x) {
static const char translate[]=

" ABCDEFGHIJKLMNOPQRSTUVWXYZ$.?0123456789";

const char* pos= strchr(translate, x);
if (pos == NULL) { EncodingError(); return 0; }
return pos-translate;

}
unsigned short Encode(char a, char b, char c) {

return LookUpPos(a)*40*40 + LookUpPos(b)*40
+ LookUpPos(c);

}

If the remaining string is shorter than 3 bytes, it is filled with spaces (which
correspond to the RAD50 character 0).

The optional argument cnt can be used to explicitly state how many 16-bit values
should be written. If the string is shorter than 3*cnt, then it is filled with spaces.
358 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
See the example C code below (Listing 8.56 on page 359) about how to decode it.

Example
The string data in Listing 8.54 on page 359 assembles to the following data
(Listing 8.55 on page 359). The 11 characters in the string are represented by 8
bytes.

Listing 8.54 RAD50 Example

XDEF rad50, rad50Len
DataSection SECTION
rad50: RAD50 "Hello World"
rad50Len: EQU (*-rad50)/2

Listing 8.55 Assembler output where 11 characters are contained in eight bytes

$32D4 $4D58 $922A $4BA0

This C code shown in Listing 8.56 on page 359 takes the data and prints “Hello
World”.

Listing 8.56 Example—Program that Prints Hello World

#include "stdio.h"
extern unsigned short rad50[];
extern int rad50Len; /* address is value. Exported asm label */
#define rad50len ((int) &rad50Len)

void printRadChar(char ch) {
static const char translate[]=

" ABCDEFGHIJKLMNOPQRSTUVWXYZ$.?0123456789";
char asciiChar= translate[ch];
(void)putchar(asciiChar);

}
void PrintHallo(void) {

unsigned char values= rad50len;
unsigned char i;
for (i=0; i < values; i++) {

unsigned short val= rad50[i];
printRadChar(val / (40 * 40));
printRadChar((val / 40) % 40);
printRadChar(val % 40);

}

359HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
}

360 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
SECTION - Declare Relocatable Section

Syntax
<name>: SECTION [SHORT][RS08_SHORT][RS08_TINY][<number>]

Synonym
None

Description
This directive declares a relocatable section and initializes the location counter for
the following code. The first SECTION directive for a section sets the location
counter to zero. Subsequent SECTION directives for that section restore the
location counter to the value that follows the address of the last code in the section.

<name> is the name assigned to the section. Two SECTION directives with the
same name specified refer to the same section.

<number> is optional and is only specified for compatibility with the MASM
Assembler.

A section is a code section when it contains at least one assembly instruction. It is
considered to be a constant section if it contains only DC or DCB directives. A
section is considered to be a data section when it contains at least a DS directive or
if it is empty.

Example
The example in Listing 8.57 on page 361 demonstrates the definition of a section
aaa, which is split into two blocks, with section bbb in between them.

The location counter associated with the label zz is 1, because a NOP instruction
was already defined in this section at label xx.

Listing 8.57 Example of the SECTION assembler directive

Abs. Rel. Loc Obj. code Source line
---- ---- ------ --------- -----------

1 1 aaa: SECTION 4
2 2 000000 9D xx: NOP
3 3 bbb: SECTION 5
4 4 000000 9D yy: NOP
5 5 000001 9D NOP
6 6 000002 9D NOP
361HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
7 7 aaa: SECTION 4
8 8 000001 9D zz: NOP

The optional qualifier SHORT specifies that the section is a short section, That
means than the objects defined there can be accessed using the direct addressing
mode.

For RS08, there are two additional section qualifiers: RS08_SHORT and
RS08_TINY. When a section is declared as RS08_SHORT (or RS08_TINY) all the
objects defined there can be accessed using the short (and respectively tiny)
addressing modes.

Example
The following example demonstrates the definition and usage of a SHORT section.

In the example shown in Listing 8.58 on page 362, the symbol data is accessed
using the direct addressing mode.

Listing 8.58 Using the direct addressing mode

 1 1 dataSec: SECTION SHORT
2 2 000000 data: DS.B 1
3 3
4 4 codeSec: SECTION
5 5
6 6 entry:
7 7 000000 9C RSP
8 8 000001 A600 LDA #0
9 9 000003 B7xx STA data

See also
Assembler directives:

• ORG - Set Location Counter on page 353

• DC - Define Constant on page 311

• DCB - Define Constant Block on page 313

• DS - Define Space on page 314
362 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
SET - Set Symbol Value

Syntax
<label>: SET <expression>

Synonym
None

Description
Similar to the EQU - Equate symbol value on page 322 directive, the SET directive
assigns the value of the <expression> in the operand field to the symbol in the
<label> field. The <expression> must resolve as an absolute expression and
cannot include a symbol that is undefined or not yet defined. The <label> is an
assembly time constant. SET does not generate any machine code.

The value is temporary; a subsequent SET directive can redefine it.

Example
See Listing 8.59 on page 363 for examples of the SET directive.

Listing 8.59 Using the SET assembler directive

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

1 1 0000 0002 count: SET 2
2 2 000000 02 one: DC.B count
3 3
4 4 0000 0001 count: SET count-1
5 5 000001 01 DC.B count
6 6
7 7 0000 0001 IFNE count
8 8 0000 0000 count: SET count-1
9 9 ENDIF

10 10 000002 00 DC.B count

The value associated with the label count is decremented after each DC.B
instruction.
363HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
SPC - Insert Blank Lines

Syntax
SPC<count>

Synonym
None

Description
Inserts <count> blank lines in the assembly listing. <count> may range from 0
to 65. This has the same effect as writing that number of blank lines in the
assembly source. A blank line is a line containing only a carriage return.
364 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
TABS - Set Tab Length

Syntax
TABS <n>

Synonym
None

Description
Sets the tab length to <n> spaces. The default tab length is eight. <n> may range
from 0 to 128.
365HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
TITLE - Provide Listing Title

Syntax
TITLE "title"

Synonym
TTL

Description
Print the <title> on the head of every page of the listing file. This directive must
be the first source code line. A title consists of a string of characters enclosed in
quotes (").

The title specified will be written on the top of each page in the assembly listing
file.
366 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
XDEF - External Symbol Definition

Syntax
XDEF [.<size>] <label>[,<label>]...
where <size> = B(direct), W (default), or L or S or T

Synonym
GLOBAL, PUBLIC

Description
This directive specifies labels defined in the current module that are to be passed to
the linker as labels that can be referenced by other modules linked to the current
module.

The number of symbols enumerated in an XDEF directive is only limited by the
memory available at assembly time.

The S and T size designators are only available for RS08, and result in marking the
symbol as short or tiny.

Example
See Listing 8.60 on page 367 for the case where the XDEF assembler directive can
specify symbols that can be used by other modules.

Listing 8.60 Using XDEF to create a variable to be used in another file

XDEF Count, main
;; variable Count can be referenced in other modules,
;; same for label main. Note that Linker & Assembler
;; are case-sensitive, i.e., Count != count.

Count: DS.W 2

code: SECTION
main: DC.B 1
367HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
XREF - External Symbol Reference

Syntax
XREF [.<size>] <symbol>[,<symbol>]...

where <size> = B(direct), W (default), or L.

Synonym
EXTERNAL

Description
This directive specifies symbols referenced in the current module but defined in
another module. The list of symbols and corresponding 32-bit values is passed to
the linker.

The number of symbols enumerated in an XREF directive is only limited by the
memory available at assembly time.

The S and T size designators are only available for RS08, and result in marking the
symbol as short or tiny.

Example
XREF OtherGlobal ; Reference "OtherGlobal" defined in

; another module. (See the XDEF
; directive example.)
368 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
XREFB - External Reference for Symbols located on the Direct

Page

Syntax
XREFB <symbol>[,<symbol>]...

Synonym
None

Description
This directive specifies symbols referenced in the current module but defined in
another module. Symbols enumerated in a XREFB directive, can be accessed using
the direct address mode. The list of symbols and corresponding 8-bit values is
passed to the linker.

The number of symbols enumerated in a XREFB directive is only limited by the
memory available at assembly time.

Example

XREFB OtherDirect ; Reference "OtherDirect" def in another
; module (See XDEF directive example.)
369HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives
370 HC(S)08 / RS08 Assembler Manual

9
Macros

A macro is a template for a code sequence. Once a macro is defined, subsequent reference
to the macro name are replaced by its code sequence.

Macro overview
A macro must be defined before it is called. When a macro is defined, it is given a name.
This name becomes the mnemonic by which the macro is subsequently called.

The Assembler expands the macro definition each time the macro is called. The macro call
causes source statements to be generated, which may include macro arguments. A macro
definition may contain any code or directive except nested macro definitions. Calling
previously defined macros is also allowed. Source statements generated by a macro call
are inserted in the source file at the position where the macro is invoked.

To call a macro, write the macro name in the operation field of a source statement. Place
the arguments in the operand field. The macro may contain conditional assembly
directives that cause the Assembler to produce in-line-coding variations of the macro
definition.

Macros call produces in-line code to perform a predefined function. Each time the macro
is called, code is inserted in the normal flow of the program so that the generated
instructions are executed in line with the rest of the program.

Defining a macro
The definition of a macro consists of four parts:

• The header statement, a MACRO directive with a label that names the macro.

• The body of the macro, a sequential list of assembler statements, some possibly
including argument placeholders.

• The ENDM directive, terminating the macro definition.

• eventually an instruction MEXIT, which stops macro expansion.

See the Assembler Directives chapter for information about the MACRO, ENDM, MEXIT,
and MLIST directives.

The body of a macro is a sequence of assembler source statements. Macro parameters are
defined by the appearance of parameter designators within these source statements. Valid
371HC(S)08 / RS08 Assembler Manual

Macros
Calling macros
macro definition statements includes the set of processor assembly language instructions,
assembler directives, and calls to previously defined macros. However, macro definitions
may not be nested.

Calling macros
The form of a macro call is:

[<label>:] <name>[.<sizearg>] [<argument> [,<argument>]...]

Although a macro may be referenced by another macro prior to its definition in the source
module, a macro must be defined before its first call. The name of the called macro must
appear in the operation field of the source statement. Arguments are supplied in the
operand field of the source statement, separated by commas.

The macro call produces in-line code at the location of the call, according to the macro
definition and the arguments specified in the macro call. The source statements of the
expanded macro are then assembled subject to the same conditions and restrictions
affecting any source statement. Nested macros calls are also expanded at this time.

Macro parameters
As many as 36 different substitutable parameters can be used in the source statements that
constitute the body of a macro. These parameters are replaced by the corresponding
arguments in a subsequent call to that macro.

A parameter designator consists of a backlashes character (\), followed by a digit (0 - 9) or
an uppercase letter (A - Z). Parameter designator \0 corresponds to a size argument that
follows the macro name, separated by a period (.).

Consider the macro definition in Listing 9.1 on page 372:

Listing 9.1 Example macro definition

MyMacro: MACRO
DC.\0 \1, \2

ENDM

When this macro is used in a program, e.g.:

MyMacro.B $10, $56

the Assembler expands it to:
372 HC(S)08 / RS08 Assembler Manual

Macros
Macro parameters
DC.B $10, $56

Arguments in the operand field of the macro call refer to parameter designator \1 through
\9 and \A through \Z, in that order. The argument list (operand field) of a macro call
cannot be extended onto additional lines.

At the time of a macro call, arguments from the macro call are substituted for parameter
designators in the body of the macro as literal (string) substitutions. The string
corresponding to a given argument is substituted literally wherever that parameter
designator occurs in a source statement as the macro is expanded. Each statement
generated in the execution is assembled in line.

It is possible to specify a null argument in a macro call by a comma with no character (not
even a space) between the comma and the preceding macro name or comma that follows
an argument. When a null argument itself is passed as an argument in a nested macro call,
a null value is passed. All arguments have a default value of null at the time of a macro
call.

Macro argument grouping
To pass text including commas as a single macro argument, the Assembler supports a
special syntax. This grouping starts with the [? prefix and ends with the ?] suffix. If the
[? or ?] patterns occur inside of the argument text, they have to be in pairs. Alternatively,
brackets, question marks and backward slashes can also be escaped with a backward slash
as prefix.

NOTE This escaping only takes place inside of [? ?] arguments. A backslash is only
removed in this process if it is just before a bracket ([]), a question mark
(?), or a second backslash (\).

Listing 9.2 Example macro definition

MyMacro: MACRO
DC \1

ENDM
MyMacro1: MACRO

\1
ENDM

Listing 9.3 on page 374 has some macro calls with rather complicated arguments:
373HC(S)08 / RS08 Assembler Manual

Macros
Macro parameters
Listing 9.3 Macro calls for Listing 9.2 on page 373

MyMacro [?$10, $56?]
MyMacro [?"\[?"?]
MyMacro1 [?MyMacro [?$10, $56?]?]
MyMacro1 [?MyMacro \[?$10, $56\?]?]

These macro calls expand to the following lines (Listing 9.4 on page 374):

Listing 9.4 Macro expansion of Listing 9.3 on page 374

DC $10, $56
DC "[?"
DC $10, $56
DC $10, $56

The Macro Assembler does also supports for compatibility with previous version’s macro
grouping with an angle bracket syntax (Listing 9.5 on page 374):

Listing 9.5 Angle bracket syntax

MyMacro <$10, $56>

However, this old syntax is ambiguous as < and > are also used as compare operators. For
example, the following code (Listing 9.6 on page 374) does not produce the expected
result:

Listing 9.6 Potential problem using the angle-bracket syntax

MyMacro <1 > 2, 2 > 3> ; Wrong!

Because of this the old angle brace syntax should be avoided in new code. There is also
and option to disable it explicitly.

See also the -CMacBrackets: Square brackets for macro arguments grouping and the
-CMacAngBrack: Angle brackets for grouping Macro Arguments assembler options.
374 HC(S)08 / RS08 Assembler Manual

Macros
Labels inside macros
Labels inside macros
To avoid the problem of multiple-defined labels resulting from multiple calls to a macro
that has labels in its source statements, the programmer can direct the Assembler to
generate unique labels on each call to a macro.

Assembler-generated labels include a string of the form _nnnnn where nnnnn is a 5-
digit value. The programmer requests an assembler-generated label by specifying \@ in a
label field within a macro body. Each successive label definition that specifies a \@
directive generates a successive value of _nnnnn, thereby creating a unique label on each
macro call. Note that \@ may be preceded or followed by additional characters for clarity
and to prevent ambiguity.

This is the definition of the clear macro (Listing 9.7 on page 375):

Listing 9.7 Clear macro definition

clear: MACRO
LDX #\1
LDA #16

\@LOOP: CLR 0,X
INCX
DECA
BNE \@LOOP

ENDM

This macro is called in the application (Listing 9.8 on page 375):

Listing 9.8 Calling the clear macro

clear temporary
clear data

The two macro calls of clear are expanded in the following manner (Listing 9.9 on
page 375):

Listing 9.9 Macro call expansion

clear temporary
LDX #temporary
LDA #16

_00001LOOP: CLR 0,X
INCX
DECA
375HC(S)08 / RS08 Assembler Manual

Macros
Macro expansion
BNE _00001LOOP
clear data

LDX #data
LDA #16

_00002LOOP: CLR 0,X
INCX
DECA
BNE _00002LOOP

Macro expansion
When the Assembler reads a statement in a source program calling a previously defined
macro, it processes the call as described in the following paragraphs.

The symbol table is searched for the macro name. If it is not in the symbol table, an
undefined symbol error message is issued.

The rest of the line is scanned for arguments. Any argument in the macro call is saved as a
literal or null value in one of the 35 possible parameter fields. When the number of
arguments in the call is less than the number of parameters used in the macro the
argument, which have not been defined at invocation time are initialize with ““ (empty
string).

Starting with the line following the MACRO directive, each line of the macro body is saved
and is associated with the named macro. Each line is retrieved in turn, with parameter
designators replaced by argument strings or assembler-generated label strings.

Once the macro is expanded, the source lines are evaluated and object code is produced.

Nested macros
Macro expansion is performed at invocation time, which is also the case for nested
macros. If the macro definition contains nested macro call, the nested macro expansion
takes place in line. Recursive macro call are also supported.

A macro call is limited to the length of one line, i.e., 1024 characters.
376 HC(S)08 / RS08 Assembler Manual

10
Assembler Listing File

The assembly listing file is the output file of the Assembler that contains information
about the generated code. The listing file is generated when the –L assembler option is
activated. When an error is detected during assembling from the file, no listing file is
generated.

The amount of information available depends upon the following assembler options:

• -L: Generate a listing file

• -Lc: No Macro call in listing file

• -Ld: No macro definition in listing file

• -Le: No Macro expansion in listing file

• -Li: No included file in listing file

The information in the listing file also depends on following assembler directives:

• LIST - Enable Listing

• NOLIST - Disable Listing

• CLIST - List conditional assembly

• MLIST - List macro expansions

The format from the listing file is influenced by the following assembler directives:

• PLEN - Set Page Length

• LLEN - Set Line Length

• TABS - Set Tab Length

• SPC - Insert Blank Lines

• PAGE - Insert Page break

• NOPAGE - Disable Paging

• TITLE - Provide Listing Title.

The name of the generated listing file is <base name>.lst.

Page header
The page header consists of three lines:
377HC(S)08 / RS08 Assembler Manual

Assembler Listing File
Source listing
• The first line contains an optional user string defined in the TITLE directive.

The second line contains the name of the Assembler vendor (Freescale) as well
as the target processor name - HC(S)08.

• The third line contains a copyright notice.

Listing 10.1 Example page header output

Demo Application
Freescale HC08-Assembler
(c) COPYRIGHT Freescale 1991-2005

Source listing
The printed columns can be configured in various formats with the -Lasmc: Configure
listing file assembler option. The default format of the source listing has the five columns
as in on page 378:

Abs.
This column contains the absolute line number for each instruction. The absolute line
number is the line number in the debug listing file, which contains all included files and
where any macro calls have been expanded.

Listing 10.2 Example output listing - Abs. column

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

1 1 ;-------------------------------
2 2 ; File: test.o
3 3 ;-------------------------------
4 4
5 5 XDEF Start
6 6 MyData: SECTION
7 7 000000 char1: DS.B 1
8 8 000001 char2: DS.B 1
9 9 INCLUDE "macro.inc"

10 1i cpChar: MACRO
11 2i LDA \1
12 3i STA \2
13 4i ENDM
14 10 CodeSec: SECTION
378 HC(S)08 / RS08 Assembler Manual

Assembler Listing File
Source listing
15 11 Start:
16 12 cpChar char1, char2
17 2m 000000 C6 xxxx + LDA char1
18 3m 000003 C7 xxxx + STA char2
19 13 000006 9D NOP
20 14 000007 9D NOP

 Rel.
This column contains the relative line number for each instruction. The relative line
number is the line number in the source file. For included files, the relative line number is
the line number in the included file. For macro call expansion, the relative line number is
the line number of the instruction in the macro definition. See Listing 10.3 on page 379.

An ‘i’ suffix is appended to the relative line number when the line comes from an
included file. An ‘m’ suffix is appended to the relative line number when the line is
generated by a macro call.

Listing 10.3 Example listing file - Rel. column

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

1 1 ;-------------------------------
2 2 ; File: test.o
3 3 ;-------------------------------
4 4
5 5 XDEF Start
6 6 MyData: SECTION
7 7 000000 char1: DS.B 1
8 8 000001 char2: DS.B 1
9 9 INCLUDE "macro.inc"

10 1i cpChar: MACRO
11 2i LDA \1
12 3i STA \2
13 4i ENDM
14 10 CodeSec: SECTION
15 11 Start:
16 12 cpChar char1, char2
17 2m 000000 C6 xxxx + LDA char1
18 3m 000003 C7 xxxx + STA char2
19 13 000006 9D NOP
20 14 000007 9D NOP
379HC(S)08 / RS08 Assembler Manual

Assembler Listing File
Source listing
In the previous example, the line number displayed in the ‘Rel.’ column. represent the line
number of the corresponding instruction in the source file.

‘1i’ on absolute line number 10 denotes that the instruction ‘cpChar: MACRO’ is located
in an included file.

‘2m’ on absolute line number 17 denotes that the instruction ‘LDA char1’ is generated
by a macro expansion.

Loc
This column contains the address of the instruction. For absolute sections, the address is
preceded by an ‘a’ and contains the absolute address of the instruction. For relocatable
sections, this address is the offset of the instruction from the beginning of the relocatable
section.. This offset is a hexadecimal number coded on 6 digits.

A value is written in this column in front of each instruction generating code or allocating
storage. This column is empty in front of each instruction that does not generate code (for
example SECTION, XDEF, …). See Listing 10.4 on page 380.

Listing 10.4 Example Listing File - Loc column

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------- --------- -----------

1 1 ;-------------------------------
2 2 ; File: test.o
3 3 ;-------------------------------
4 4
5 5 XDEF Start
6 6 MyData: SECTION
7 7 000000 char1: DS.B 1
8 8 000001 char2: DS.B 1
9 9 INCLUDE "macro.inc"

10 1i cpChar: MACRO
11 2i LDA \1
12 3i STA \2
13 4i ENDM
14 10 CodeSec: SECTION
15 11 Start:
16 12 cpChar char1, char2
17 2m 000000 C6 xxxx + LDA char1
18 3m 000003 C7 xxxx + STA char2
19 13 000006 9D NOP
20 14 000007 9D NOP
380 HC(S)08 / RS08 Assembler Manual

Assembler Listing File
Source listing
 In the previous example, the hexadecimal number displayed in the column ‘Loc.’ is the
offset of each instruction in the section ‘codeSec’.

There is no location counter specified in front of the instruction ‘INCLUDE
"macro.inc"’ because this instruction does not generate code.

The instruction ‘LDA char1’ is located at offset 0 from the section ‘codeSec’ start
address.

The instruction ‘STA char2’ is located at offset 3 from the section ‘codeSec’ start
address.

Obj. code
This column contains the hexadecimal code of each instruction in hexadecimal format.
This code is not identical to the code stored in the object file. The letter ‘x’ is displayed at
the position where the address of an external or relocatable label is expected. Code at any
position when ‘x’ is written will be determined at link time. See Listing 10.5 on page 381.

Listing 10.5 Example listing file - Obj. code column

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

1 1 ;-------------------------------
2 2 ; File: test.o
3 3 ;-------------------------------
4 4
5 5 XDEF Start
6 6 MyData: SECTION
7 7 000000 char1: DS.B 1
8 8 000001 char2: DS.B 1
9 9 INCLUDE "macro.inc"

10 1i cpChar: MACRO
11 2i LDA \1
12 3i STA \2
13 4i ENDM
14 10 CodeSec: SECTION
15 11 Start:
16 12 cpChar char1, char2
17 2m 000000 C6 xxxx + LDA char1
18 3m 000003 C7 xxxx + STA char2
19 13 000006 9D NOP
20 14 000007 9D NOP
381HC(S)08 / RS08 Assembler Manual

Assembler Listing File
Source listing
Source line
This column contains the source statement. This is a copy of the source line from the
source module. For lines resulting from a macro expansion, the source line is the expanded
line, where parameter substitution has been done. See Listing 10.6 on page 382.

Listing 10.6 Example listing file - Source line column

 Abs. Rel. Loc Obj. code Source line
 ---- ---- ------ --------- -----------

1 1 ;-------------------------------
2 2 ; File: test.o
3 3 ;-------------------------------
4 4
5 5 XDEF Start
6 6 MyData: SECTION
7 7 000000 char1: DS.B 1
8 8 000001 char2: DS.B 1
9 9 INCLUDE "macro.inc"
10 1i cpChar: MACRO
11 2i LDA \1
12 3i STA \2
13 4i ENDM
14 10 CodeSec: SECTION
15 11 Start:
16 12 cpChar char1, char2
17 2m 000000 C6 xxxx + LDA char1
18 3m 000003 C7 xxxx + STA char2
19 13 000006 9D NOP
20 14 000007 9D NOP
382 HC(S)08 / RS08 Assembler Manual

11
Mixed C and Assembler
Applications

When you intend to mix Assembly source file and ANSI-C source files in a single
application, the following issues are important:

• “Memory models” on page 383

• “Parameter passing scheme” on page 384

• “Return Value” on page 384

• “Accessing assembly variables in an ANSI-C source file” on page 384

• “Accessing ANSI-C variables in an assembly source file” on page 385

• “Invoking an assembly function in an ANSI-C source file” on page 386

• “Support for structured types” on page 389

To build mixed C and Assembler applications, you have to know how the C Compiler uses
registers and calls procedures. The following sections will describe this for compatibility
with the compiler. If you are working with another vendor’s ANSI-C compiler, refer to
your Compiler Manual to get the information about parameter passing rules.

Memory models
The memory models are only important if you mix C and assembly code. In this case all
sources must be compiled or assembled with the same memory model.

The Assembler supports all memory models of the compiler. Depending on your
hardware, use the smallest memory model suitable for your programming needs.

Table 11.1 on page 384 summarizes the different memory models. It shows when to use a
particular memory model and which assembler switch to use.
383HC(S)08 / RS08 Assembler Manual

Mixed C and Assembler Applications
Parameter passing scheme
Table 11.1 HC08 memory models

NOTE The default pointer size for the compiler is also affected by the memory model
chosen.

Parameter passing scheme
Please check the compiler manual, back-end chapter about the details of parameter
passing.

Return Value
Please check the compiler manual’s backend chapter about the details of parameter
passing.

Accessing assembly variables in an ANSI-C
source file

A variable or constant defined in an assembly source file is accessible in an ANSI-C
source file.

Option Memory
Model

Local
Data

Global
Data

Suggested Use

–Ms SMALL SP rel extended The SMALL memory model is the de-
fault. All pointers and functions are as-
sumed to have 16-bit addresses if not
explicitly specified. In the SMALL mem-
ory model, code and data must be in the
64k address space.

–Mt TINY SP rel direct In the TINY memory model, all data
including stack must fit into the zero
page. Data pointers are assumed to
have 8-bit addresses if not explicitly
specified with the keyword __far. The
code address space is still 64k and
function pointers are still 16 bits in
length.
384 HC(S)08 / RS08 Assembler Manual

Mixed C and Assembler Applications
Accessing ANSI-C variables in an assembly source file
The variable or constant is defined in the assembly source file using the standard assembly
syntax.

Variables and constants must be exported using the XDEF directive to make them visible
from other modules (Listing 11.1 on page 385).

Listing 11.1 Example of data and constant definition

XDEF ASMData, ASMConst
DataSec: SECTION
ASMData: DS.W 1 ; Definition of a variable
ConstSec: SECTION
ASMConst: DC.W $44A6 ; Definition of a constant

We recommend that you generate a header file for each assembler source file. This header
file should contain the interface to the assembly module.

An external declaration for the variable or constant must be inserted in the header file
(Listing 11.2 on page 385).

Listing 11.2 Example of data and constant declarations

/* External declaration of a variable */
extern int ASMData;
/* External declaration of a constant */
extern const int ASMConst;

The variables or constants can then be accessed in the usual way, using their names
(Listing 11.3 on page 385).

Listing 11.3 Example of data and constant reference

ASMData = ASMConst + 3;

Accessing ANSI-C variables in an assembly
source file

A variable or constant defined in an ANSI-C source file is accessible in an assembly
source file.
385HC(S)08 / RS08 Assembler Manual

Mixed C and Assembler Applications
Invoking an assembly function in an ANSI-C source file
The variable or constant is defined in the ANSI-C source file using the standard ANSI-C
syntax (Listing 11.4 on page 386).

Listing 11.4 Example definition of data and constants

unsigned int CData; /* Definition of a variable */
unsigned const int CConst; /* Definition of a constant */

An external declaration for the variable or constant must be inserted into the assembly
source file (Listing 11.5 on page 386).

This can also be done in a separate file, included in the assembly source file.

Listing 11.5 Example declaration of data and constants

XREF CData; External declaration of a variable
XREF CConst; External declaration of a constant

The variables or constants can then be accessed in the usual way, using their names
(Listing 11.6 on page 386).

NOTE The compiler supports also the automatic generation of assembler include files.
See the description of the -La compiler option in the compiler manual.

Listing 11.6 Example of data and constant reference

LDA CConst
....

LDA CData
....

Invoking an assembly function in an ANSI-C
source file

An function implemented in an assembly source file (mixasm.asm in Listing 11.7 on
page 387) can be invoked in a C source file (Listing 11.9 on page 388). During the
implementation of the function in the assembly source file, you should pay attention to the
parameter passing scheme of the ANSI-C compiler you are using in order to retrieve the
parameter from the right place.
386 HC(S)08 / RS08 Assembler Manual

Mixed C and Assembler Applications
Invoking an assembly function in an ANSI-C source file
Listing 11.7 Example of an assembly file: mixasm.asm

XREF CData
XDEF AddVar
XDEF ASMData

DataSec: SECTION
ASMData: DS.B 1
CodeSec: SECTION
AddVar:

ADD CData ; add CData to the parameter in register A
STA ASMData ; result of the addition in ASMData
RTS

We recommend that you generate a header file for each assembly source file
(Listing 11.7 on page 387). This header file (mixasm.h in Listing 11.8 on page 387)
should contain the interface to the assembly module.

Listing 11.8 Header file for the assembly mixasm.asm file: mixasm.h

/* mixasm.h */
#ifndef _MIXASM_H_
#define _MIXASM_H_

void AddVar(unsigned char value);
/* function that adds the parameter value to global CData */
/* and then stores the result in ASMData */

/* variable which receives the result of AddVar */
extern char ASMData;

#endif /* _MIXASM_H_ */

The function can then be invoked in the usual way, using its name.

Example of a C file
A C source code file (mixc.c) has the main() function which calls the AddVar()
function. See Listing 11.9 on page 388. (Compile it with the -Cc compiler option when
using the HIWARE Object File Format).
387HC(S)08 / RS08 Assembler Manual

Mixed C and Assembler Applications
Invoking an assembly function in an ANSI-C source file
Listing 11.9 Example C source code file: mixc.c

static int Error = 0;
const unsigned char CData = 12;
#include "mixasm.h"

void main(void) {
AddVar(10);
if (ASMData != CData + 10){

Error = 1;
} else {

Error = 0;
}
for(;;); // wait forever

}

CAUTION Be careful, as the Assembler will not make any checks on the number and
type of the function parameters.

The application must be correctly linked.

 For these C and *.asm files, a possible linker parameter file is shown in Listing 11.10 on
page 388.

Listing 11.10 Example of linker parameter file: mixasm.prm

LINK mixasm.abs
NAMES

mixc.o mixasm.o
END
SECTIONS

MY_ROM = READ_ONLY 0x4000 TO 0x4FFF;
MY_RAM = READ_WRITE 0x2400 TO 0x2FFF;
MY_STACK = READ_WRITE 0x2000 TO 0x23FF;

END
PLACEMENT

DEFAULT_RAM INTO MY_RAM;
DEFAULT_ROM INTO MY_ROM;
SSTACK INTO MY_STACK;

END
INIT main
388 HC(S)08 / RS08 Assembler Manual

Mixed C and Assembler Applications
Support for structured types
NOTE We recommend that you use the same memory model and object file format for
all the generated object files.

Support for structured types
When the -Struct: Support for structured types assembler option is activated, the Macro
Assembler also supports the definition and usage of structured types. This allows an easier
way to access ANSI-C structured variable in the Macro Assembler.

In order to provide an efficient support for structured type the macro assembler should
provide notation to:

• Define a structured type. See “Structured type definition” on page 389.

• Define a structured variable. See “Variable definition” on page 391.

• Declare a structured variable. See “Variable declaration” on page 391.

• Access the address of a field inside of a structured variable. See “Accessing a field
address” on page 392

• Access the offset of a field inside of a structured variable. See “Accessing a field
offset” on page 393.

NOTE Some limitations apply in the usage of the structured types in the Macro
Assembler. See Structured type: Limitations on page 393.

Structured type definition
The Macro Assembler is extended with the following new keywords in order to support
ANSI-C type definitions.

• STRUCT

• UNION

The structured type definition for STRUCT can be encoded as in Listing 11.11 on
page 389:

Listing 11.11 Definition for STRUCT

typeName: STRUCT
lab1: DS.W 1 lab2: DS.W 1 ...
ENDSTRUCT

where:
389HC(S)08 / RS08 Assembler Manual

Mixed C and Assembler Applications
Support for structured types
'typeName' is the name associated with the defined type. The type name is considered
to be a user-defined keyword. The Macro Assembler will be case-insensitive on
typeName.

'STRUCT' specifies that the type is a structured type.

'lab1'and 'lab2' are the fields defined inside of the 'typeName' type. The fields
will be considered as user-defined labels, and the Macro Assembler will be case-sensitive
on label names.

As with all other directives in the Assembler, the STRUCT and UNION directives are
case-insensitive.

The STRUCT and UNION directives cannot start on column 1 and must be preceded by a
label.

Types allowed for structured type fields
The field inside of a structured type may be:

• another structured type or

• a base type, which can be mapped on 1, 2, or 4 bytes.

Table 11.2 on page 390 shows how the ANSI-C standard types are converted in the

assembler notation:

Table 11.2 Converting ANSI-C standard types to assembler notation

ANSI-C type Assembler Notation

char DS - Define Space

short DS.W

int DS.W

long DS.L

enum DS.W

bitfield -- not supported --

float -- not supported --

double -- not supported --

data pointer DS.W

function pointer -- not supported --
390 HC(S)08 / RS08 Assembler Manual

Mixed C and Assembler Applications
Support for structured types
Variable definition
The Macro Assembler can provide a way to define a variable with a specific type. This is
done using the following syntax (Listing 11.12 on page 391):

var: typeName

where:

• 'var' is the name of the variable.

• 'typeName' is the type associated with the variable.

Listing 11.12 Assembly code analog of a C struct of type: myType

myType: STRUCT
field1: DS.W 1
field2: DS.W 1
field3: DS.B 1
field4: DS.B 3
field5: DS.W 1

ENDSTRUCT

DataSection: SECTION
structVar: TYPE myType ; var ‘structVar’ is of type ‘myType’

Variable declaration
The Macro Assembler can provide a way to associated a type with a symbol which is
defined externally. This is done by extending the XREF syntax:

 XREF var: typeName, var2

where:

• 'var' is the name of an externally defined symbol.

• 'typeName' is the type associated with the variable 'var'.

'var2' is the name of another externally defined symbol. This symbol is not associated
with any type. See Listing 11.13 on page 391 for an example.

Listing 11.13 Example of extending XREF

myType: STRUCT
field1: DS.W 1
field2: DS.W 1
field3: DS.B 1
field4: DS.B 3
field5: DS.W 1
391HC(S)08 / RS08 Assembler Manual

Mixed C and Assembler Applications
Support for structured types
ENDSTRUCT

XREF extData: myType ; var ‘extData’ is type ‘myType’

Accessing a structured variable
The Macro Assembler can provide a means to access each structured type field absolute
address and offset.

Accessing a field address
To access a structured-type field address (Listing 11.14 on page 392), the Assembler uses
the colon character ':'.

var:field

where

• 'var' is the name of a variable, which was associated with a structured type.

• 'field' is the name of a field in the structured type associated with the variable.

Listing 11.14 Example of accessing a field address

myType: STRUCT
field1: DS.W 1
field2: DS.W 1
field3: DS.B 1
field4: DS.B 3
field5: DS.W 1

ENDSTRUCT

XREF myData:myType
XDEF entry

CodeSec: SECTION
entry:

LDA myData:field3 ; Loads register A with the content of
; field field3 from variable myData.

NOTE The period cannot be used as separator because in assembly language it is a
valid character inside of a symbol name.
392 HC(S)08 / RS08 Assembler Manual

Mixed C and Assembler Applications
Structured type: Limitations
Accessing a field offset
To access a structured type field offset, the Assembler will use following notation:

<typeName>-><field>

where:

• 'typeName' is the name of a structured type.

• 'field' is the name of a field in the structured type associated with the variable.
See Listing 11.15 on page 393 for an example of using this notation for accessing
an offset.

Listing 11.15 Accessing a field offset with the -><field> notation

myType: STRUCT
field1: DS.W 1
field2: DS.W 1
field3: DS.B 1
field4: DS.B 3
field5: DS.W 1

ENDSTRUCT
XREF.B myData
XDEF entry

CodeSec: SECTION
entry:

LDX #myData
LDA myType->field3,X ; Adds the offset of field 'field3'

; (4) to X and loads A with the
; content of the pointed address

 Structured type: Limitations
A field inside of a structured type may be:

• another structured type

• a base type, which can be mapped on 1, 2, or 4 bytes.

The Macro Assembler is not able to process bitfields or pointer types.

The type referenced in a variable definition or declaration must be defined previously. A
variable cannot be associated with a type defined afterwards.
393HC(S)08 / RS08 Assembler Manual

Mixed C and Assembler Applications
Structured type: Limitations
394 HC(S)08 / RS08 Assembler Manual

12
Make Applications

This chapters has the following sections:

• “Assembly applications” on page 395

• “Memory maps and segmentation” on page 396

Assembly applications
This section covers:

• Directly generating an absolute file on page 395

• Mixed C and assembly applications on page 395

Directly generating an absolute file
When an absolute file is directly generated by the Assembler:

• the application entry point must be specified in the assembly source file using the
directive ABSENTRY.

• The whole application must be encoded in a single assembly unit.

• The application should only contain absolute sections.

Generating object files
The entry point of the application must be mentioned in the Linker parameter file using the
"INIT funcname" command. The application is build of the different object files with the
Linker. The Linker is document in a separate document.

Your assembly source files must be separately assembled. Then the list of all the object
files building the application must be enumerated in the application PRM file.

Mixed C and assembly applications
Normally the application starts with the main procedure of a C file. All necessary object
files - assembly or C - are linked with the Linker in the same fashion like pure C
applications. The Linker is documented in a separate document.
395HC(S)08 / RS08 Assembler Manual

Make Applications
Memory maps and segmentation
Memory maps and segmentation
Relocatable Code Sections are placed in the DEFAULT_ROM or .text Segment.

Relocatable Data Sections are placed in the DEFAULT_RAM or .data Segment.

NOTE The .text and .data names are only supported when the ELF object file
format is used.

There are no checks at all that variables are in RAM. If you mix code and data in a section
you cannot place the section into ROM. That is why we suggest that you separate code and
data into different sections.

If you want to place a section in a specific address range, you have to put the section name
in the placement portion of the linker parameter file (Listing 12.1 on page 396).

Listing 12.1 Example assembly source code

SECTIONS
ROM1 = READ_ONLY 0x0200 TO 0x0FFF;
SpecialROM = READ_ONLY 0x8000 TO 0x8FFF;
RAM = READ_WRITE 0x4000 TO 0x4FFF;

PLACEMENT
DEFAULT_ROM INTO ROM1;
mySection INTO SpecialROM;
DEFAULT_RAM INTO RAM;

END
396 HC(S)08 / RS08 Assembler Manual

13
How to ...

This chapter covers the following topics:

• How to work with absolute sections on page 397

• How to work with relocatable sections on page 400

• How to initialize the Vector table on page 402

• Splitting an application into different modules on page 410

• Using the direct addressing mode to access symbols on page 412

How to work with absolute sections
An absolute section is a section whose start address is known at assembly time.

(See modules fiboorg.asm and fiboorg.prm in the demo directory)

Defining absolute sections in an assembly
source file
An absolute section is defined using the ORG directive. In that case, the Macro Assembler
generates a pseudo section, whose name is “ORG_<index>”, where index is an integer
which is incremented each time an absolute section is encountered (Listing 13.1 on
page 397).

Listing 13.1 Defining an absolute section containing data

ORG $800 ; Absolute data section.
var: DS. 1

ORG $A00 ; Absolute constant data section.
cst1: DC.B $A6
cst2: DC.B $BC

In the previous portion of code, the label cst1 is located at address $A00, and label
cst2 is located at address $A01.
397HC(S)08 / RS08 Assembler Manual

How to ...
How to work with absolute sections
Listing 13.2 Assembler output listing for Listing 13.1 on page 397

1 1 ORG $800
2 2 a000800 var: DS.B 1
3 3 ORG $A00
4 4 a000A00 A6 cst1: DC.B $A6
5 5 a000A01 BC cst2: DC.B $BC

Program assembly source code should be located in a separate absolute section
(Listing 13.3 on page 398).

Listing 13.3 Defining an absolute section containing code

XDEF entry
ORG $C00 ; Absolute code section.

entry:
LDA cst1 ; Load value in cst1
ADD cst2 ; Add value in cst2
STA var ; Store in var
BRA entry

In the portion of assembly code above, the LDA instruction is located at address $C00,
and the ADD instruction is at address $C03. See Listing 13.4 on page 398.

Listing 13.4 Assembler output listing for Listing 13.3 on page 398

8 8 ORG $C00 ; Absolute code
9 9 entry:

10 10 a000C00 C6 0A00 LDA cst1 ; Load value
11 11 a000C03 CB 0A01 ADD cst2 ; Add value
12 12 a000C06 C7 0800 STA var ; Store in var
13 13 a000C09 20F5 BRA entry
14 14

In order to avoid problems during linking or execution from an application, an assembly
file should at least:

• Initialize the stack pointer if the stack is used.

• The RSP instruction can be used to initialize the stack pointer to $FF.

• Publish the application’s entry point using XDEF.

• The programmer should ensure that the addresses specified in the source files are
valid addresses for the MCU being used.
398 HC(S)08 / RS08 Assembler Manual

How to ...
How to work with absolute sections
Linking an application containing absolute
sections
When the Assembler is generating an object file, applications containing only absolute
sections must be linked. The linker parameter file must contain at least:

• the name of the absolute file

• the name of the object file which should be linked

• the specification of a memory area where the sections containing variables must be
allocated. For applications containing only absolute sections, nothing will be
allocated there.

• the specification of a memory area where the sections containing code or constants
must be allocated. For applications containing only absolute sections, nothing will
be allocated there.

• the specification of the application entry point, and

• the definition of the reset vector.

 The minimal linker parameter file will look as shown in Listing 13.5 on page 399.

Listing 13.5 Minimal linker parameter file

LINK test.abs /* Name of the executable file generated. */
NAMES

test.o /* Name of the object file in the application. */
END
SECTIONS
/* READ_ONLY memory area. There should be no overlap between this

memory area and the absolute sections defined in the assembly
source file.

*/
MY_ROM = READ_ONLY 0x4000 TO 0x4FFF;

/* READ_WRITE memory area. There should be no overlap between this
memory area and the absolute sections defined in the assembly
source file.

*/
MY_RAM = READ_WRITE 0x2000 TO 0x2FFF;

END
PLACEMENT
/* Relocatable variable sections are allocated in MY_RAM. */

DEFAULT_RAM INTO MY_RAM;
/* Relocatable code and constant sections are allocated in MY_ROM. */

DEFAULT_ROM INTO MY_ROM;
END
INIT entry /* Application entry point. */
VECTOR ADDRESS 0xFFFE entry /* Initialization of the reset vector. */
399HC(S)08 / RS08 Assembler Manual

How to ...
How to work with relocatable sections
NOTE There should be no overlap between the absolute sections defined in the
assembly source file and the memory areas defined in the PRM file.

NOTE As the memory areas (segments) specified in the PRM file are only used to
allocate relocatable sections, nothing will be allocated there when the
application contains only absolute sections. In that case you can even specify
invalid address ranges in the PRM file.

How to work with relocatable sections
A relocatable section is a section which start address is determined at linking time.

Defining relocatable sections in a source
file
A relocatable section is defined using the SECTION directive. See Listing 13.6 on
page 400 for an example of defining relocatable sections.

Listing 13.6 Defining relocatable sections containing data

constSec: SECTION ; Relocatable constant data section.
cst1: DC.B $A6
cst2: DC.B $BC

dataSec: SECTION ; Relocatable data section.
var: DS.B 1

In the previous portion of code, the label cst1 will be located at an offset 0 from the
section constSec start address, and label cst2 will be located at an offset 1 from the
section constSec start address. See Listing 13.7 on page 400.

Listing 13.7 Assembler output listing for Listing 13.6 on page 400

2 2 constSec: SECTION ; Relocatable
3 3 000000 A6 cst1: DC.B $A6
4 4 000001 BC cst2: DC.B $BC
5 5
6 6 dataSec: SECTION ; Relocatable
400 HC(S)08 / RS08 Assembler Manual

How to ...
How to work with relocatable sections
7 7 000000 var: DS.B 1

Program assembly source code should be located in a separate relocatable section
(Listing 13.8 on page 401Listing 13.8 on page 401).

Listing 13.8 Defining a relocatable section for code

XDEF entry
codeSec: SECTION ; Relocatable code section.
entry:

LDA cst1 ; Load value in cst1
ADD cst2 ; Add value in cst2
STA var ; Store in var
BRA entry

In the previous portion of code, the LDA instruction is located at an offset 0 from the
codeSec section start address, and ADD instruction at an offset 3 from the codeSec
section start address.

In order to avoid problems during linking or execution from an application, an assembly
file should at least:

• Initialize the stack pointer if the stack is used

• The RSP instruction can be used to initialize the stack pointer to $FF.

• Publish the application’s entry point using the XDEF directive.

Linking an application containing
relocatable sections
Applications containing relocatable sections must be linked. The linker parameter file
must contain at least:

• the name of the absolute file,

• the name of the object file which should be linked,

• the specification of a memory area where the sections containing variables must be
allocated,

• the specification of a memory area where the sections containing code or constants
must be allocated,

• the specification of the application’s entry point, and

• the definition of the reset vector.

A minimal linker parameter file will look as shown in Listing 13.9 on page 402.
401HC(S)08 / RS08 Assembler Manual

How to ...
How to initialize the Vector table
Listing 13.9 Minimal linker parameter file

/* Name of the executable file generated. */
LINK test.abs
/* Name of the object file in the application. */
NAMES

test.o
END
SECTIONS
/* READ_ONLY memory area. */

MY_ROM = READ_ONLY 0x2B00 TO 0x2BFF;
/* READ_WRITE memory area. */

MY_RAM = READ_WRITE 0x2800 TO 0x28FF;
END
PLACEMENT
/* Relocatable variable sections are allocated in MY_RAM. */

DEFAULT_RAM INTO MY_RAM;
/* Relocatable code and constant sections are allocated in MY_ROM. */

DEFAULT_ROM, constSec INTO MY_ROM;
END
INIT entry /* Application entry point. */
VECTOR ADDRESS 0xFFFE entry /* Initialization of the reset vector. */

NOTE The programmer should ensure that the memory ranges he specifies in the
SECTIONS block are valid addresses for the controller he is using. In addition,
when using the SDI debugger the addresses specified for code or constant
sections must be located in the target board ROM area. Otherwise, the
debugger will not be able to load the application

How to initialize the Vector table
The vector table can be initialized in the assembly source file or in the linker parameter
file. We recommend that you initialize it in the linker parameter file.

• on page 403Initializing the Vector table in the linker PRM file on page 403
(recommended),

• Initializing the Vector Table in a source file using a relocatable section on
page 405, or

• Initializing the Vector Table in a source file using an absolute section on page 408.

The HC(S)08 allows 128 entries in the vector table starting at memory location $FF00
extending to memory location $FFFF.
402 HC(S)08 / RS08 Assembler Manual

How to ...
How to initialize the Vector table
The Reset vector is located in $FFFE, and the SWI interrupt vector is located in $FFFC.
From $FFFA down to $FF00 are located the IRQ[0] interrupt ($FFFA), IRQ[1]
($FFFA), ..., IRQ[125] ($FF00).

In the following examples, the Reset vector, the SWI interrupt and the IRQ[1]
interrupt are initialized. The IRQ[0] interrupt is not used.

Initializing the Vector table in the linker
PRM file
Initializing the vector table from the PRM file allows you to initialize single entries in the
table. The user can decide to initialize all the entries in the vector table or not.

The labels or functions, which should be inserted in the vector table, must be implemented
in the assembly source file (Listing 13.10 on page 403). All these labels must be
published, otherwise they cannot be addressed in the linker PRM file.

Listing 13.10 Initializing the Vector table from a PRM File

XDEF IRQ1Func, SWIFunc, ResetFunc
DataSec: SECTION
Data: DS.W 5 ; Each interrupt increments an element

; of the table.
CodeSec: SECTION

; Implementation of the interrupt functions.
IRQ1Func:

LDA #0
BRA int

SWIFunc:
LDA #4
BRA int

ResetFunc:
LDA #8
BRA entry

int:
PSHH
LDHX #Data ; Load address of symbol Data in X

; X <- address of the appropriate element in the tab
Ofset: TSTA

BEQ Ofset3
Ofset2:

AIX #$1
DECA
403HC(S)08 / RS08 Assembler Manual

How to ...
How to initialize the Vector table
BNE Ofset2
Ofset3:

INC 0, X ; The table element is incremented
PULH
RTI

entry:
LDHX #$0E00 ; Init Stack Pointer to $E00-$1=$DFF
TXS
CLRX
CLRH

CLI ; Enables interrupts

loop: BRA loop

NOTE The ‘IRQ1Func’, ‘SWIFunc’, and ‘ResetFunc’ functions are
published. This is required, because they are referenced in the linker PRM file.

NOTE The HC08 processor automatically pushes the PC, X, A, and CCR registers on
the stack on occurrence of an interrupt. The interrupt functions do not need to
save and restore those registers. To maintain compatibility with the M6805
Family, the H register is not stacked, it is the user’s responsibility to save and
restore it prior to returning.

NOTE All Interrupt functions must be terminated with an RTI instruction

 The vector table is initialized using the linker VECTOR ADDRESS command
(Listing 13.11 on page 404).

Listing 13.11 Using the VECTOR ADDRESS Linker Command

LINK test.abs
NAMES

test.o
END
SECTIONS

MY_ROM = READ_ONLY 0x0800 TO 0x08FF;
MY_RAM = READ_WRITE 0x0B00 TO 0x0CFF;
MY_STACK = READ_WRITE 0x0D00 TO 0x0DFF;

END
PLACEMENT

DEFAULT_RAM INTO MY_RAM;
DEFAULT_ROM INTO MY_ROM;
404 HC(S)08 / RS08 Assembler Manual

How to ...
How to initialize the Vector table
SSTACK INTO MY_STACK;
END
INIT ResetFunc
VECTOR ADDRESS 0xFFF8 IRQ1Func
VECTOR ADDRESS 0xFFFC SWIFunc
VECTOR ADDRESS 0xFFFE ResetFunc

NOTE The statement ‘INIT ResetFunc’ defines the application entry point.
Usually, this entry point is initialized with the same address as the reset vector.

NOTE The statement ‘VECTOR ADDRESS 0xFFF8 IRQ1Func’ specifies that
the address of the ‘IRQ1Func’ function should be written at address
0xFFF8.

Initializing the Vector Table in a source file
using a relocatable section
Initializing the vector table in the assembly source file requires that all the entries in the
table are initialized. Interrupts, which are not used, must be associated with a standard
handler.

The labels or functions that should be inserted in the vector table must be implemented in
the assembly source file or an external reference must be available for them. The vector
table can be defined in an assembly source file in an additional section containing constant
variables. See Listing 13.12 on page 405.

Listing 13.12 Initializing the Vector Table in source code with a relocatable section

XDEF ResetFunc
XDEF IRQ0Int

DataSec: SECTION
Data: DS.W 5 ; Each interrupt increments an element of the table.
CodeSec: SECTION
; Implementation of the interrupt functions.
IRQ1Func:

LDA #0
BRA int

SWIFunc:
LDA #4
BRA int
405HC(S)08 / RS08 Assembler Manual

How to ...
How to initialize the Vector table
ResetFunc:
LDA #8
BRA entry

DummyFunc:
RTI

int:
PSHH
LDHX #Data ; Load address of symbol Data in X
; X <- address of the appropriate element in the tab

Ofset: TSTA

BEQ Ofset3
Ofset2:

AIX #$1
DECA
BNE Ofset2

Ofset3:
INC 0, X ; The table element is incremented
PULH
RTI

entry:
LDHX #$0E00 ; Init Stack Pointer to $E00-$1=$DFF
TXS
CLRX
CLRH

CLI ; Enables interrupts

loop: BRA loop

VectorTable: SECTION
; Definition of the vector table.
IRQ1Int: DC.W IRQ1Func
IRQ0Int: DC.W DummyFunc
SWIInt: DC.W SWIFunc
ResetInt: DC.W ResetFunc

NOTE Each constant in the ‘VectorTable’ section is defined as a word (a 2-byte
constant), because the entries in the vector table are 16 bits wide.

NOTE In the previous example, the constant ‘IRQ1Int’ is initialized with the
address of the label ‘IRQ1Func’. The constant ‘IRQ0Int’ is initialized
406 HC(S)08 / RS08 Assembler Manual

How to ...
How to initialize the Vector table
with the address of the label ‘Dummy Func’ because this interrupt is not in
use.

NOTE All the labels specified as initialization value must be defined, published (using
XDEF) or imported (using XREF) before the vector table section. No forward
reference is allowed in the DC directive.

NOTE The constant ‘IRQ0Int’ is exported so that the section containing the vector
table is linked with the application.

The section should now be placed at the expected address. This is performed in the linker
parameter file (Listing 13.13 on page 407).

Listing 13.13 Example linker parameter file

LINK test.abs
NAMES

test.o+
END
ENTRIES

IRQ0Int
END
SECTIONS

MY_ROM = READ_ONLY 0x0800 TO 0x08FF;
MY_RAM = READ_WRITE 0x0B00 TO 0x0CFF;
MY_STACK = READ_WRITE 0x0D00 TO 0x0DFF;

/* Define the memory range for the vector table */
Vector = READ_ONLY 0xFFF8 TO 0xFFFF;

END
PLACEMENT

DEFAULT_RAM INTO MY_RAM;
DEFAULT_ROM INTO MY_ROM;
SSTACK INTO MY_STACK;

/* Place the section 'VectorTable' at the appropriated address. */
VectorTable INTO Vector;

END
INIT ResetFunc

NOTE The statement ‘Vector = READ_ONLY 0xFFF8 TO 0xFFFF’ defines
the memory range for the vector table.
407HC(S)08 / RS08 Assembler Manual

How to ...
How to initialize the Vector table
NOTE The statement ‘VectorTable INTO Vector’ specifies that the vector
table should be loaded in the read only memory area Vector. This means, the
constant ‘IRQ1Int’ will be allocated at address 0xFFF8, the constant
‘IRQ0Int’ will be allocated at address 0xFFFA, the constant ‘SWIInt’
will be allocated at address 0xFFFC, and the constant ‘ResetInt’ will be
allocated at address 0xFFFE.

NOTE The ‘+’ after the object file name switches smart linking off. If this statement is
missing in the PRM file, the vector table will not be linked with the application,
because it is never referenced. The smart linker only links the referenced
objects in the absolute file.

Initializing the Vector Table in a source file
using an absolute section
Initializing the vector table in the assembly source file requires that all the entries in the
table are initialized. Interrupts, which are not used, must be associated with a standard
handler.

The labels or functions, which should be inserted in the vector table must be implemented
in the assembly source file or an external reference must be available for them. The vector
table can be defined in an assembly source file in an additional section containing constant
variables. See Listing 13.14 on page 408 for an example.

Listing 13.14 Initializing the Vector Table using an absolute section

XDEF ResetFunc
DataSec: SECTION
Data: DS.W 5 ; Each interrupt increments an element of the table.
CodeSec: SECTION
; Implementation of the interrupt functions.
IRQ1Func:

LDA #0
BRA int

SWIFunc:
LDA #4
BRA int

ResetFunc:
LDA #8
BRA entry

DummyFunc:
RTI
408 HC(S)08 / RS08 Assembler Manual

How to ...
How to initialize the Vector table
int:
PSHH
LDHX #Data ; Load address of symbol Data in X
; X <- address of the appropriate element in the tab

Ofset: TSTA
BEQ Ofset3

Ofset2:
AIX #$1
DECA
BNE Ofset2

Ofset3:
INC 0, X ; The table element is incremented
PULH
RTI

entry:
LDHX #$0E00 ; Init Stack Pointer to $E00-$1=$DFF
TXS
CLRX
CLRH
CLI ; Enables interrupts

loop: BRA loop

ORG $FFF8
; Definition of the vector table in an absolute section
; starting at address $FFF8.
IRQ1Int: DC.W IRQ1Func
IRQ0Int: DC.W DummyFunc
SWIInt: DC.W SWIFunc
ResetInt: DC.W ResetFunc

The section should now be placed at the expected address. This is performed in the linker
parameter file (Listing 13.15 on page 409).

Listing 13.15 Example linker parameter file for Listing 13.14 on page 408:

LINK test.abs
NAMES

test.o+
END
SECTIONS

MY_ROM = READ_ONLY 0x0800 TO 0x08FF;
MY_RAM = READ_WRITE 0x0B00 TO 0x0CFF;
MY_STACK = READ_WRITE 0x0D00 TO 0x0DFF;

END
PLACEMENT
409HC(S)08 / RS08 Assembler Manual

How to ...
Splitting an application into different modules
DEFAULT_RAM INTO MY_RAM;
DEFAULT_ROM INTO MY_ROM;
SSTACK INTO MY_STACK;

END
INIT ResetFunc

NOTE The ‘+’ after the object file name switches smart linking off. If this statement
is missing in the PRM file, the vector table will not be linked with the
application, because it is never referenced. The smart linker only links the
referenced objects in the absolute file.

 Splitting an application into different
modules

Complex application or application involving several programmers can be split into
several simple modules. In order to avoid any problem when merging the different
modules, the following rules must be followed.

For each assembly source file, one include file must be created containing the definition of
the symbols exported from this module. For the symbols referring to code label, a small
description of the interface is required.

Example of an Assembly File (Test1.asm)
See Listing 13.16 on page 410 for an example Test1.asm include file.

Listing 13.16 Separating Code into Modules — Test1.asm

XDEF AddSource
XDEF Source

DataSec: SECTION
Source: DS.W 1
CodeSec: SECTION
AddSource:

RSP
ADD Source
STA Source
RTS
410 HC(S)08 / RS08 Assembler Manual

How to ...
Splitting an application into different modules
 Corresponding include file (Test1.inc)
See Listing 13.17 on page 411 for an example Test1.inc include file.

Listing 13.17 Separating Code into Modules — Test1.inc

XREF AddSource
; The AddSource function adds the value stored in the variable
; Source to the contents of the A register. The result of the
; computation is stored in the Source variable.
;
; Input Parameter: The A register contains the value that should be
; added to the Source variable.
; Output Parameter: Source contains the result of the addition.

XREF Source
; The Source variable is a 1-byte variable.

Example of an assembly File (Test2.asm)
Listing 13.18 on page 411 is another assembly code file module for this project.

Listing 13.18 Separating Code into Modules—Test2.asm

XDEF entry
INCLUDE "Test1.inc"

CodeSec: SECTION
entry: RSP

LDA #$7
JSR AddSource

BRA entry

 The application’s *.prm file should list both object files building the application. When
a section is present in the different object files, the object file sections are concatenated
into a single absolute file section. The different object file sections are concatenated in the
order the object files are specified in the *.prm file.
411HC(S)08 / RS08 Assembler Manual

How to ...
Using the direct addressing mode to access symbols
Example of a PRM file (Test2.prm)

Listing 13.19 Separating assembly code into modules—Test2.prm

LINK test2.abs /* Name of the executable file generated. */
NAMES

test1.o
test2.o / *Name of the object files building the application. */

END

SECTIONS
MY_ROM = READ_ONLY 0x2B00 TO 0x2BFF; /* READ_ONLY mem. */
MY_RAM = READ_WRITE 0x2800 TO 0x28FF; /* READ_WRITE mem. */

END

PLACEMENT
/* variables are allocated in MY_RAM */
DataSec, DEFAULT_RAM INTO MY_RAM;

/* code and constants are allocated in MY_ROM */
CodeSec, ConstSec, DEFAULT_ROM INTO MY_ROM;

END
INIT entry /* Definition of the application entry point. */
VECTOR ADDRESS 0xFFFE entry /* Definition of the reset vector. */

NOTE The ‘CodeSec’ section is defined in both object files. In ‘test1.o’, the
‘CodeSec’ section contains the symbol ‘AddSource’. In ‘test2.o’,
the ‘CodeSec’ section contains the ‘entry’ symbol. According to the
order in which the object files are listed in the NAMES block, the function
‘AddSource’ is allocated first and the ‘entry’ symbol is allocated next to
it.

Using the direct addressing mode to access
symbols

There are different ways for the Assembler to use the direct addressing mode on a symbol:

• “Using the direct addressing mode to access external symbols” on page 413,

• “Using the direct addressing mode to access exported symbols” on page 413,

• “Defining symbols in the direct page” on page 413,

• “Using the force operator” on page 414, or
412 HC(S)08 / RS08 Assembler Manual

How to ...
Using the direct addressing mode to access symbols
• “Using SHORT sections” on page 414.

Using the direct addressing mode to
access external symbols
External symbols, which should be accessed using the direct addressing mode, must be
declared using the XREF.B directive. Symbols which are imported using XREF are
accessed using the extended addressing mode.

Listing 13.20 Using direct addressing to access external symbols

XREF.B ExternalDirLabel
XREF ExternalExtLabel

…
LDA ExternalDirLabel ; Direct addressing mode is used.

…
LDA ExternalExtLabel ; Extended addressing mode is used.

Using the direct addressing mode to
access exported symbols
Symbols, which are exported using the XDEF.B directive, will be accessed using the
direct addressing mode. Symbols which are exported using XDEF are accessed using the
extended addressing mode.

Listing 13.21 Using direct addressing to access exported symbols

XDEF.B DirLabel
XDEF ExtLabel

…
LDA DirLabel ; Direct addressing mode is used.

…
LDA ExtLabel ; Extended addressing mode is used.

Defining symbols in the direct page
Symbols that are defined in the predefined BSCT section are always accessed using the
direct-addressing mode (Listing 13.22 on page 414).
413HC(S)08 / RS08 Assembler Manual

How to ...
Using the direct addressing mode to access symbols
Listing 13.22 Defining symbols in the direct page

…
BSCT

DirLabel: DS.B 3
dataSec: SECTION
ExtLabel: DS.B 5
…
codeSec: SECTION
…

LDA DirLabel ; Direct addressing mode is used.
…

LDA ExtLabel ; Extended addressing mode is used.

Using the force operator
A force operator can be specified in an assembly instruction to force direct or extended
addressing mode (Listing 13.23 on page 414).

The supported force operators are:

• < or .B to force direct addressing mode

• > or .W to force extended addressing mode.

Listing 13.23 Using a force operator

…
dataSec: SECTION
label: DS.B 5
…
codeSec: SECTION
…

LDA <label ; Direct addressing mode is used.
LDA label.B ; Direct addressing mode is used.

…
LDA >label ; Extended addressing mode is used.
LDA label.W ; Extended addressing mode is used.

Using SHORT sections
Symbols that are defined in a section defined with the SHORT qualifier are always
accessed using the direct addressing mode (Listing 13.24 on page 415).
414 HC(S)08 / RS08 Assembler Manual

How to ...
Using the direct addressing mode to access symbols
Listing 13.24 Using SHORT sections

…
shortSec: SECTION SHORT
DirLabel: DS.B 3
dataSec: SECTION
ExtLabel: DS.B 5
…
codeSec: SECTION
…

LDA DirLabel ; Direct addressing mode is used.
…

LDA ExtLabel ; Extended addressing mode is used.
415HC(S)08 / RS08 Assembler Manual

How to ...
Using the direct addressing mode to access symbols
416 HC(S)08 / RS08 Assembler Manual

II

Appendices

This document has the following appendices:

• “Global Configuration File Entries” on page 419

• “Local Configuration File Entries” on page 429

• “MASM Compatibility” on page 441

• “MCUasm Compatibility” on page 445
417HC(S)08 / RS08 Assembler Manual

418 HC(S)08 / RS08 Assembler Manual

A
Global Configuration File
Entries

This appendix documents the sections and entries that can appear in the global
configuration file. This file is named mcutools.ini.

mcutools.ini can contain these sections:

• [Installation] Section on page 420

• [Options] Section on page 421

• [XXX_Assembler] Section on page 422

• [Editor] Section on page 425
419HC(S)08 / RS08 Assembler Manual

Global Configuration File Entries
[Installation] Section
[Installation] Section

Path

Arguments

Last installation path.

Description

Whenever a tool is installed, the installation script stores the installation
destination directory into this variable.

Example

Path=C:\install

Group

Arguments

Last installation program group.

Description

Whenever a tool is installed, the installation script stores the installation program
group created into this variable.

Example

Group=Assembler
420 HC(S)08 / RS08 Assembler Manual

Global Configuration File Entries
[Options] Section
[Options] Section

DefaultDir

Arguments

Default directory to be used.

Description

Specifies the current directory for all tools on a global level. See also
DEFAULTDIR: Default current directory environment variable.

Example

DefaultDir=C:\install\project
421HC(S)08 / RS08 Assembler Manual

Global Configuration File Entries
[XXX_Assembler] Section
[XXX_Assembler] Section
This section documents the entries that can appear in an [XXX_Assembler] section of
the mcutools.ini file.

NOTE XXX is a placeholder for the name of the name of the particular Assembler you
are using. For example, if you are using the HC08 Assembler, the name of this
section would be [HC08_Assembler].

SaveOnExit

Arguments

1/0

Description

1 if the configuration should be stored when the Assembler is closed, 0 if it should
not be stored. The Assembler does not ask to store a configuration in either cases.

SaveAppearance

Arguments

1/0

Description

1 if the visible topics should be stored when writing a project file, 0 if not. The
command line, its history, the windows position and other topics belong to this
entry.

This entry corresponds to the state of the Appearance check box in the
Save Configuration dialog box.
422 HC(S)08 / RS08 Assembler Manual

Global Configuration File Entries
[XXX_Assembler] Section
SaveEditor

Arguments

1/0

Description

If the editor settings should be stored when writing a project file, 0 if not. The
editor setting contain all information of the Editor Configuration dialog box.
This entry corresponds to the state of the check box Editor Configuration in the
Save Configuration dialog box.

SaveOptions

Arguments

1/0

Description

1 if the options should be contained when writing a project file, 0 if not.

This entry corresponds to the state of the Options check box in the
Save Configuration dialog box.

RecentProject0, RecentProject1, ...

Arguments

Names of the last and prior project files
423HC(S)08 / RS08 Assembler Manual

Global Configuration File Entries
[XXX_Assembler] Section
Description

This list is updated when a project is loaded or saved. Its current content is shown
in the file menu.

Example

SaveOnExit=1
SaveAppearance=1
SaveEditor=1
SaveOptions=1
RecentProject0=C:\myprj\project.ini
RecentProject1=C:\otherprj\project.ini
424 HC(S)08 / RS08 Assembler Manual

Global Configuration File Entries
[Editor] Section
[Editor] Section

Editor_Name

Arguments

The name of the global editor

Description

Specifies the name of the editor used as global editor. This entry has only a
descriptive effect. Its content is not used to start the editor.

Saved

Only with Editor Configuration set in the File > Configuration Save Configuration
dialog box.

Editor_Exe

Arguments

The name of the executable file of the global editor (including path).

Description

Specifies the filename which is started to edit a text file, when the global editor
setting is active.

Saved

Only with Editor Configuration set in the File > Configuration Save Configuration
dialog box.
425HC(S)08 / RS08 Assembler Manual

Global Configuration File Entries
[Editor] Section
Editor_Opts

Arguments

The options to use with the global editor

Description

Specifies options (arguments), which should be used when starting the global
editor. If this entry is not present or empty, “%f” is used. The command line to
launch the editor is built by taking the Editor_Exe content, then appending a
space followed by the content of this entry.

Saved

Only with Editor Configuration set in the File > Configuration Save Configuration
dialog box.

Example

[Editor]
editor_name=IDF
editor_exe=C:\Freescale\prog\idf.exe
editor_opts=%f -g%l,%c
426 HC(S)08 / RS08 Assembler Manual

Global Configuration File Entries
Example
Example
Listing A.1 on page 427 shows a typical mcutools.ini file.

Listing A.1 Typical mcutools.ini file layout

[Installation]
Path=c:\Freescale
Group=Assembler

[Editor]
editor_name=IDF
editor_exe=C:\Freescale\prog\idf.exe
editor_opts=%f -g%l,%c

[Options]
DefaultDir=c:\myprj

[HC08_Assembler]
SaveOnExit=1
SaveAppearance=1
SaveEditor=1
SaveOptions=1
RecentProject0=c:\myprj\project.ini
RecentProject1=c:\otherprj\project.ini
427HC(S)08 / RS08 Assembler Manual

Global Configuration File Entries
Example
428 HC(S)08 / RS08 Assembler Manual

B
Local Configuration File
Entries

This appendix documents the sections and entries that can appear in the local
configuration file. Usually, you name this file project.ini, where project is a
placeholder for the name of your project.

A project.ini file can contains these sections:

• [Editor] Section on page 430

• [XXX_Assembler] Section on page 432

• Example on page 439
429HC(S)08 / RS08 Assembler Manual

Local Configuration File Entries
[Editor] Section
[Editor] Section

Editor_Name

Arguments

The name of the local editor

Description

Specifies the name of the editor used as local editor. This entry has only a
description effect. Its content is not used to start the editor.

This entry has the same format as for the global editor configuration in the
mcutools.ini file.

Saved

Only with ‘Editor Configuration’ set in the File > Configuration > Save
Configuration dialog box.

Editor_Exe

Arguments

The name of the executable file of the local editor (including path).

Description

Specifies the filename with is started to edit a text file, when the local editor setting
is active. In the editor configuration dialog box, the local editor selection is only
active when this entry is present and not empty.

This entry has the same format as for the global editor configuration in the
mcutools.ini file.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration dialog box.
430 HC(S)08 / RS08 Assembler Manual

Local Configuration File Entries
[Editor] Section
Editor_Opts

Arguments

The options to use with the local editor

Description

Specifies options (arguments), which should be used when starting the local editor.
If this entry is not present or empty, “%f” is used. The command line to launch the
editor is build by taking the Editor_Exe content, then appending a space followed
by the content of this entry.

This entry has the same format as for the global editor configuration in the
mcutools.ini file.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration dialog box.

Example

[Editor]
editor_name=IDF
editor_exe=C:\Freescale\prog\idf.exe
editor_opts=%f -g%l,%c
431HC(S)08 / RS08 Assembler Manual

Local Configuration File Entries
[XXX_Assembler] Section
[XXX_Assembler] Section
This section documents the entries that can appear in an [XXX_Assembler] section of
a project.ini file.

NOTE XXX is a placeholder for the name of the name of the particular Assembler you
are using. For example, if you are using the HC08 Assembler, the name of this
section would be [HC08_Assembler].

RecentCommandLineX, X= integer

Arguments

String with a command line history entry, e.g., fibo.asm

Description

This list of entries contains the content of the command line history.

Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

CurrentCommandLine

Arguments

String with the command line, e.g., “fibo.asm -w1”

Description

The currently visible command line content.

Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.
432 HC(S)08 / RS08 Assembler Manual

Local Configuration File Entries
[XXX_Assembler] Section
StatusbarEnabled

Arguments

1/0

Special

This entry is only considered at startup. Later load operations do not use it any
more.

Description

Current statusbar state.

• 1: Statusbar is visible

• 0: Statusbar is hidden

Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

ToolbarEnabled

Arguments

1/0

Special

This entry is only considered at startup. Afterwards, any load operations do not use
it any longer.

Description

Current toolbar state:

• 1: Toolbar is visible

• 0: Toolbar is hidden
433HC(S)08 / RS08 Assembler Manual

Local Configuration File Entries
[XXX_Assembler] Section
Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

WindowPos

Arguments

10 integers, e.g., “0,1,-1,-1,-1,-1,390,107,1103,643”

Special

This entry is only considered at startup. Afterwards, any load operations do not use
it any longer.

Changes of this entry do not show the “*” in the title.

Description

This numbers contain the position and the state of the window (maximized,..) and
other flags.

Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

WindowFont

Arguments

size: = 0 -> generic size, < 0 -> font character height, > 0 -> font cell height

weight: 400 = normal, 700 = bold (valid values are 0..1000)

italic: 0 = no, 1 = yes

font name: max. 32 characters.

Description

Font attributes.
434 HC(S)08 / RS08 Assembler Manual

Local Configuration File Entries
[XXX_Assembler] Section
Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

Example

WindowFont=-16,500,0,Courier

TipFilePos

Arguments

any integer, e.g., 236

Description

Actual position in tip of the day file. Used that different tips are shown at different
calls.

Saved

Always when saving a configuration file.

ShowTipOfDay

Arguments

0/1

Description

Should the Tip of the Day dialog box be shown at startup?

• 1: It should be shown

• 0: No, only when opened in the help menu

Saved

Always when saving a configuration file.
435HC(S)08 / RS08 Assembler Manual

Local Configuration File Entries
[XXX_Assembler] Section
Options

Arguments

current option string, e.g.: -W2

Description

The currently active option string. This entry can be very long.

Saved

Only with Options set in the File > Configuration > Save Configuration dialog
box.

EditorType

Arguments

0/1/2/3/4

Description

This entry specifies which editor configuration is active:

• 0: global editor configuration (in the file mcutools.ini)

• 1: local editor configuration (the one in this file)

• 2: command line editor configuration, entry EditorCommandLine

• 3: DDE editor configuration, entries beginning with EditorDDE

• 4: CodeWarrior with COM. There are no additional entries.

For details, see also Editor Setting dialog box.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration dialog box.
436 HC(S)08 / RS08 Assembler Manual

Local Configuration File Entries
[XXX_Assembler] Section
EditorCommandLine

Arguments

Command line, for UltraEdit-32: “c:\Programs Files\IDM
Software Solutions\UltraEdit-32\uedit32.exe %f -g%l,%c”

Description

Command line content to open a file. For details, see also Editor Setting dialog
box.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration dialog box.

EditorDDEClientName

Arguments

client command, e.g., “[open(%f)]”

Description

Name of the client for DDE editor configuration. For details, see also Editor
Setting dialog box.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration dialog box.

EditorDDETopicName

Arguments

topic name, e.g., “system”
437HC(S)08 / RS08 Assembler Manual

Local Configuration File Entries
[XXX_Assembler] Section
Description

Name of the topic for DDE editor configuration. For details, see also Editor Setting
dialog box.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration dialog box.

EditorDDEServiceName

Arguments

service name, e.g., “system”

Description

Name of the service for DDE editor configuration. For details, see also Editor
Setting dialog box.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration dialog box.
438 HC(S)08 / RS08 Assembler Manual

Local Configuration File Entries
Example
Example
The example in Listing B.1 on page 439 shows a typical layout of the configuration file
(usually project.ini).

Listing B.1 Example of a project.ini file

[Editor]
Editor_Name=IDF
Editor_Exe=c:\Freescale\prog\idf.exe
Editor_Opts=%f -g%l,%c

[HC08_Assembler]
StatusbarEnabled=1
ToolbarEnabled=1
WindowPos=0,1,-1,-1,-1,-1,390,107,1103,643
WindowFont=-16,500,0,Courier
TipFilePos=0
ShowTipOfDay=1
Options=-w1
EditorType=3
RecentCommandLine0=fibo.asm -w2
RecentCommandLine1=fibo.asm
CurrentCommandLine=fibo.asm -w2
EditorDDEClientName=[open(%f)]
EditorDDETopicName=system
EditorDDEServiceName=msdev
EditorCommandLine=c:\Freescale\prog\idf.exe %f -g%l,%c
439HC(S)08 / RS08 Assembler Manual

Local Configuration File Entries
Example
440 HC(S)08 / RS08 Assembler Manual

C
MASM Compatibility

The Macro Assembler has been extended to ensure compatibility with the MASM
Assembler.

Comment Line
A line starting with a (*) character is considered to be a comment line by the Assembler.

Constants (Integers)
For compatibility with the MASM Assembler, the following notations are also supported
for integer constants:

• A decimal constant is defined by a sequence of decimal digits (0-9) followed by a
‘d’ or ‘D’ character.

• A hexadecimal constant is defined by a sequence of hexadecimal digits (0-9, a-f,
A-F) followed by a ‘h’ or ‘H’ character.

• An octal constant is defined by a sequence of octal digits (0-7) followed by an
 ‘o’, ‘O’, ‘q’, or ‘Q’ character.

• A binary constant is defined by a sequence of binary digits (0-1) followed by a
‘b’ or ‘B’ character.

Listing C.1 Example

512d ; decimal representation
512D ; decimal representation
200h ; hexadecimal representation
200H ; hexadecimal representation
1000o ; octal representation
1000O ; octal representation
1000q ; octal representation
1000Q ; octal representation
1000000000b ; binary representation
1000000000B ; binary representation
441HC(S)08 / RS08 Assembler Manual

MASM Compatibility
Operators
Operators
For compatibility with the MASM Assembler, the following notations in Table C.1 on

page 442 are also supported for operators:

Directives
Table C.2 on page 442 enumerates the directives that are supported by the Macro

Assembler for compatibility with MASM:

Table C.1 Operator notation for MASM compatibility

Operator Notation

Shift left !<

Shift right !>

Arithmetic AND !.

Arithmetic OR !+

Arithmetic XOR !x, !X

Table C.2 Supported MASM directives

Operator Notation Description

RMB DS Define storage for a variable. Argument
specifies the byte size

RMD DS 2* Define storage for a variable. Argument
specifies the number of 2-byte blocks

RMQ DS 4* Define storage for a variable. Argument
specifies the number of 4-byte blocks

ELSEC ELSE Alternate of conditional block

ENDC ENDIF End of conditional block

NOL NOLIST Specify that all subsequent instructions must
not be inserted in the listing file.

TTL TITLE Define the user defined title for the
assembler listing file.
442 HC(S)08 / RS08 Assembler Manual

MASM Compatibility
Operators
GLOBAL XDEF Make a symbol public (Visible from outside)

PUBLIC XDEF Make a symbol public (Visible from outside)

EXTERNAL XREF Import reference to an external symbol.

XREFB XREF.B Import reference to an external symbol
located on the direct page.

SWITCH Allows the switching to a section which has
been defined previously.

ASCT Creates a predefined section which name id
ASCT.

BSCT Creates a predefined section which name id
BSCT. Variable defined in this section are
accessed using the direct addressing mode.

CSCT Creates a predefined section which name id
CSCT.

DSCT Creates a predefined section which name id
DSCT.

IDSCT Creates a predefined section which name id
IDSCT.

IPSCT Creates a predefined section which name id
IPSCT.

PSCT Creates a predefined section which name id
PSCT.

Table C.2 Supported MASM directives

Operator Notation Description
443HC(S)08 / RS08 Assembler Manual

MASM Compatibility
Operators
444 HC(S)08 / RS08 Assembler Manual

D
MCUasm Compatibility

The Macro Assembler has been extended to ensure compatibility with the MCUasm
Assembler.

MCUasm compatibility mode can be activated, specifying the -MCUasm option.

This chapter covres the following topics:

• “Labels” on page 445

• “SET directive” on page 445

• “Obsolete directives” on page 446

Labels
When MCUasm compatibility mode is activated, labels must be followed by a colon, even
when they start on column 1.

When MCUasm compatibility mode is activated, following portion of code generate an
error message, because the label ‘label’ is not followed by a colon.

Listing D.1 Example

label DC.B 1

When MCUasm compatibility mode is not activated, the previous portion of code does not
generate any error message.

SET directive
When MCUasm compatibility mode is activated, relocatable expressions are also allowed
in a SET directive.

When MCUasm compatibility mode is activated, the following portion of code does not
generate any error messages:
445HC(S)08 / RS08 Assembler Manual

MCUasm Compatibility
Obsolete directives
Listing D.2 Example

label: SET *

When MCUasm compatibility mode is not activated, the previous portion of code
generates an error message because the SET label can only refer to absolute expressions.

Obsolete directives
Table D.1 on page 446 enumerates the directives, which are not recognized any longer
when the MCUasm compatibility mode is switched ON.:

Table D.1 Obsolete directives

Operator Notation Description

RMB DS Define storage for a variable

NOL NOLIST Specify that all subsequent instructions must not
be inserted in the listing file.

TTL TITLE Define the user-defined title for the assembler
listing file.

GLOBAL XDEF Make a symbol public (Visible from the outside)

PUBLIC XDEF Make a symbol public (Visible from the outside)

EXTERNAL XREF Import reference to an external symbol.
446 HC(S)08 / RS08 Assembler Manual

Index

Symbols
$() 117
${} 117
%(ENV) 146
%” 146
%’ 146
%E 146
%e 146
%f 146
%N 145
%n 146
%p 145
* 294
.abs 138
.asm 137
.dbg 139
.hidefaults 115, 116
.inc 137
.ini 94
.lst 139
.o 138
.s1 138
.s2 138
.s3 138
.sx 138
{Compiler} 117
{Project} 117
{System} 117

A
A2309

File not found 61
About... dialog box 110
ABSENTRY 84, 300
absolute assembly 86, 88
Absolute Expression 294, 295
Absolute Section 242, 247
ABSPATH 104, 122, 138

Add Additional Files dialog box 22
Add Files dialog box 34, 42
Addressing Mod 265
Addressing Mode

Direct 276
Extended 276
Immediate 276
Indexed, 8-bit offset 266
Indexed, 8-bit offset with post-

increment 266
Indexed, no offset 266, 276
Inherent 276
Memory to memory direct to direct 266
Memory to memory indexed to direct with

post-increment 266
Relative 276
Stack pointer, 16-bit offset 266
Stack pointer, 8-bit offset 266

Addressing Modes 265, 276
ALIGN 306, 323, 340
ASMOPTIONS 123
Assembler

Configuration 94
Input File 110, 137
Menu 95
Messages 106
Option 105
Options Setting Dialog 105
Output Files 137
Status Bar 93

Assembler for HC08 preference panel 38, 84
Assembler Main Window 90
Assembler menu 95

B
-B 151
BASE 300, 307
-BL 151
447HC(S)08 / RS08 Assembler Manual

C
-C 159
-Ci 152
CLIST 301
-CMacAngBrack 154
-CMacBrackets 155
CODE 145, 193
Code Section 241
CodeWarrior 100
CodeWarrior project window 25
CodeWarrior with COM 100
color 212, 213, 214, 215, 216
COM 100
COM Editor Configuration 101
Command-Line Editor configuration 99
-Compat 156
Complex Relocatable Expression 294
Constant

Binary 283, 441
Decimal 283, 441
Floating point 283
Hexadecimal 283, 441
Integer 283
Octal 283, 441
String 283

Constant Section 241
COPYRIGHT 124
Create Group dialog box 41
CTRL-S 105
Current Directory 116, 125
CurrentCommandLine 432

D
-D 161
Data Section 242
DC 311
DCB 313
DDE Editor configuration 100
Debug File 139, 336
Default Directory 421
DEFAULTDIR 125, 137
DefaultDir 421
Device and Connection dialog box 21

Directive 265
ABSENTRY 300
ALIGN 306, 323, 340
BASE 300, 307
CLIST 301
DC 311
DCB 313
DS 300, 314
ELSE 316
ELSEC 442
END 318
ENDC 442
ENDFOR 301, 319
ENDIF 302, 319, 320, 330
ENDM 302, 342
EQU 299, 322
EVEN 323
EXTERNAL 443, 446
FAIL 301, 325
FOR 329
GLOBAL 443, 446
IF 331, 333
IFC 302, 333
IFDEF 303, 334
IFEQ 303, 333
IFGE 303, 333
IFGT 303, 333
IFLE 303, 333
IFLT 303, 333
IFNC 303, 333
IFNDEF 303, 334
IFNE 303, 333
INCLUDE 335
LIST 301, 336
LLEN 338
LONGEVEN 301, 340
Macro 341
MEXIT 342
MLIST 345
NOL 442, 446
NOLIST 301, 348
NOPAGE 301, 350
OFFSET 351
ORG 353
448HC(S)08 / RS08 Assembler Manual

PAGE 301, 355
PLEN 357
PUBLIC 443, 446
RAD50 300, 358
RMB 442, 446
Section 299, 361
SET 363
SPC 364
TABS 365
TITLE 366
TTL 442, 446
XDEF 367
XREF 282, 300, 368
XREFB 300, 369, 443

Drag and Drop 111
DS 300, 314

E
Editor 430
Editor Setting dialog bo 96
Editor_Exe 425, 430
Editor_Name 425, 430
Editor_Opts 426, 431
EditorCommandLine 437
EditorDDEClientName 437
EditorDDEServiceName 438
EditorDDETopicName 437
EditorType 436
EDOUT 139
ELSE 316
ELSEC 442
END 318
ENDC 442
ENDFOR 301, 319
ENDIF 302, 319, 320, 330
ENDM 302, 342
-ENV 163
ENVIRONMENT 126
Environment

ABSPATH 122, 138
ASMOPTIONS 123
COPYRIGHT 124
DEFAULTDIR 125, 137
ENVIRONMENT 126

ENVIRONMENT 115, 116
ERRORFILE 127
File 115
GENPATH 130, 137, 335
HIENVIRONMENT 126
INCLUDETIME 131
OBJPATH 132, 138
TEXTPATH 134
TMP 135
Variable 115

Environment Configuration dialog bo 104
Environment Variable 121

ABSPATH 138
SRECORD 138

Environment Variables 104, 115
EQU 299, 322
Error File 139
Error Listing 139
ERRORFILE 127
EVEN 323
Explorer 116
Expression 293

Absolute 294, 295
Complex Relocatable 294
Simple Relocatable 294, 296

EXTERNAL 443, 446
External Symbol 281

F
-F2 164
-F2o 164
-FA2 164
-FA2o 164
FAIL 301, 325
-Fh 164
File

Debug 139, 336
Environment 115
Error 139
Include 137
Listing 138, 139, 301, 336
Object 138
PRM 243, 245, 246
Source 137
449HC(S)08 / RS08 Assembler Manual

File Manager 116
File menu 93
File menu options 94
Floating-Point Constant 283
FOR 329

G
GENPATH 63, 65, 104, 130, 137, 335
GENPATH environmental variable 66
GLOBAL 443, 446
Global Edito 96
Global Editor Configuration dialog box 97
Group 420
groups, CodeWarrior 29
GUI Graphic User Interface 89

H
-H 166
HC(S)08 New Project dialog box 20
HC08 Assembler main window 91
HC08 Assembler Message Settings dialog

box 109
HC08 Assembler Option Settings dialog bo 55
HC08 Assembler Option Settings dialog box 39,

85
HIENVIRONMENT 126
HIGH 282
hiwave.ex 71
HOST 145

I
-I 167
IDF 116
IF 331, 333
IFC 302, 333
IFDEF 303, 334
IFEQ 303, 333
IFGE 303, 333
IFGT 303, 333
IFLE 303, 333
IFLT 303, 333
IFNC 303, 333
IFNDEF 303, 334

IFNE 303, 333
INCLUDE 335
Include Files 137
INCLUDETIME 131
Instruction 250
Integer Constant 283

L
-L 168
Label 250
LANGUAGE 145
-Lasmc 171
-Lasms 173
-Lc 175
-Ld 178
-Le 181
-Li 184
LIBPATH 104
-Lic 186, 188
-LicA 187
-LicWait 190
Line Continuation 120
Linker for HC08 preference panel 69, 86
Linker main window 75
LIST 301, 336
Listing File 138, 139, 301, 336
-Ll 191
LLEN 338
Load Executable File dialog box 79
Local Editor 97
Local editor configuration dialog box 98
LONGEVEN 301, 340
LOW 282

M
Macro 265, 341
-MacroNest 195
-MCUasm 196
MCUTOOLS.INI 125
Menu bar options 93
MESSAGE 145
Message classes 108
Message Settings 106
Message Settings dialog box 106, 107
450HC(S)08 / RS08 Assembler Manual

Message Settings options 107
MEXIT 342
Microsoft Developer Studio configuration

settings 100
MLIST 345
Modifiers 101
-Ms 193, 384
-Mt 193
-Mx 384

N
-N 197
New Target dialog box 31
-NoBeep 198
-NoDebugInfo 199
-NoEnv 200
NOL 442, 446
NOLIST 301, 348
NOPAGE 301, 350

O
Object File 138
-ObjN 201
OBJPATH 104, 132, 138
OFFSET 351
Operand 265, 276
Operator 283, 442

Addition 284, 293, 297
Arithmetic AND 442
Arithmetic Bit 297
Arithmetic OR 442
Arithmetic XOR 442
Bitwise 287
Bitwise (unary) 288
Bitwise AND 294
Bitwise Exclusive OR 294
Bitwise OR 294
Division 285, 293, 297
Force 292
HIGH 282, 289, 290, 291
Logical 288
LOW 282, 290
Modulo 285, 293, 297
Multiplication 285, 293, 297

PAGE 292
Precedence 293
Relational 289, 294
Shift 286, 294, 297
Shift left 442
Shift right 442
Sign 285, 293, 297
Subtraction 284, 293, 297

Option
CODE 145, 193
HOST 145
LANGUAGE 145
MESSAGE 145
OUTPUT 145
VARIOUS 145

Option Settings dialog box 105
Option Settings options 106
Options 421, 436
ORG 353
OUTPUT 145

P
PAGE 301, 355
-PAlign 201
PATH 132
Path 420
Path environment variables 104
Path List 119
PLEN 357
-PR8R15 201
PRM File 243, 245, 246
PRM file 72
Processor Expert dialog box 23
-Prod 203
project.ini 119
PUBLIC 443, 446

R
RAD50 300, 358
RecentCommandLine 432
Relocatable Section 244
Rename Group dialog bo 43
Reserved Symbol 282
Reset vector 83
451HC(S)08 / RS08 Assembler Manual

RGB 212, 213, 214, 215, 216
RMB 442, 446

S
Save As dialog box 40
Save Configuration dialog box 102
SaveAppearance 422
SaveEditor 423
SaveOnExit 422
SaveOptions 423
Section 299, 361

Absolute 242, 247
Code 241
Constant 241
Data 242
Relocatable 244

Sections 241
Select File to Assemble dialog box 87
Select File to Link dialog box 74
Select files to add... dialog box 33, 42
Select Files to Assemble dialog box 59
SET 363
Set Connection dialog box 77, 78
SHORT 362
ShowTipOfDay 435
Simple Relocatable Expression 294, 296
Simulator 80
Simulator/Debugger 71
Source File 137
SPC 364
Special Modifiers 145
-ST 204
Starting 89
startup 119
Startup dialog box 19
Status Bar 93
StatusbarEnabled 433
String Constant 283
-Struct 204
Symbol 280

External 281
Reserved 282
Undefined 282
User Defined 280

T
TABS 365
TEXTPATH 104, 134
Tip of the Day 51, 89
Tip of the Day dialog box 90
TipFilePos 435
TITLE 366
TMP 135
Toolbar 92
ToolbarEnabled 433
True-Time Simulator & Real-Time Debugger 77
TTL 442, 446

U
Undefined Symbol 282
UNIX 116
User Defined Symbol 280

V
-V 205
Variable

Environment 115
VARIOUS 145
-View 206
View menu 95
View menu options 95

W
-W1 208
-W2 209
-WErrFile 210
WindowFont 434
WindowPos 434
Windows 116
WinEdit 116, 128
-Wmsg8x3 211
-WmsgCE 212
-WmsgCF 213
-WmsgCI 214
-WmsgCU 215
-WmsgCW 216
-WmsgFb 112
-WmsgFbiv 219
452HC(S)08 / RS08 Assembler Manual

-WmsgFbm 217
-WmsgFbv 217
-WmsgFi 112, 211
-WmsgFim 219
-WmsgFob 221
-WmsgFoi 223
-WmsgFonp 218, 220, 222, 224, 226, 227, 228
-WmsgNe 229, 233
-WmsgNi 229, 230
-WmsgNu 231
-WmsgNw 229, 230, 233
-WmsgSd 234
-WmsgSe 235
-WmsgSi 236
-WmsgSw 237
-WOutFile 238
-WStdout 239

X
XDEF 367
XREF 282, 300, 368
XREFB 300, 369, 443
453HC(S)08 / RS08 Assembler Manual

454HC(S)08 / RS08 Assembler Manual

455HC(S)08 / RS08 Assembler Manual

456HC(S)08 / RS08 Assembler Manual

457HC(S)08 / RS08 Assembler Manual

458HC(S)08 / RS08 Assembler Manual

	Using the HC(S)08/RS08 Assembler
	Highlights
	Structure of this document
	Working with the Assembler
	Programming Overview
	Project directory
	External Editor

	Using CodeWarrior to manage an assembly language project
	The Wizard

	Analysis of groups and files in the project window
	CodeWarrior groups
	Creating a Target
	Generating Listing Files
	Renaming files
	Creating a new group
	Renaming groups in the project window

	Writing your assembly source files
	Analyzing the project files
	Assembling your source files
	Assembling with CodeWarrior
	Assembling with the Assembler

	Linking the application
	Linking with CodeWarrior
	Linking with the Linker

	Directly generating an ABS file
	Using CodeWarrior to generate an ABS file

	Assembler Graphical User Interface
	Starting the Assembler
	Assembler Main Window
	Window title
	Content area
	Toolbar
	Status bar
	Assembler menu bar
	File menu
	Assembler menu
	View menu

	Editor Setting dialog box
	Global Editor (shared by all tools and projects)
	Local Editor (shared by all tools)
	Editor started with the command line
	Editor started with DDE
	CodeWarrior with COM
	Modifiers

	Save Configuration dialog box
	Environment Configuration dialog box

	Option Settings dialog box
	Message settings dialog box
	Changing the class associated with a message

	About... dialog box
	Specifying the input file
	Use the command line in the toolbar to assemble
	Assembling a new file
	Assembling a file which has already been assembled
	Use the File > Assemble... entry
	Use Drag and Drop

	Message/Error feedback
	Use information from the assembler window
	Use a user-defined editor
	Line number can be specified on the command line
	Line number cannot be specified on the command line

	Environment
	Current directory
	Environment macros
	Global initialization file - mctools.ini (PC only)
	Local configuration file (usually project.ini)
	Line continuation
	Environment variables details
	ABSPATH: Absolute file path
	ASMOPTIONS: Default assembler options
	COPYRIGHT: Copyright entry in object file
	DEFAULTDIR: Default current directory
	ENVIRONMENT: Environment file specification
	ERRORFILE: Filename specification error
	GENPATH: Search path for input file
	INCLUDETIME: Creation time in the object file
	OBJPATH: Object file path
	SRECORD: S-Record type
	TEXTPATH: Text file path
	TMP: Temporary directory
	USERNAME: User Name in object file

	Files
	Input files
	Source files
	Include files

	Output files
	Object files
	Absolute files
	S-Record Files
	Listing files
	Debug listing files
	Error listing file

	File Processing

	Assembler Options
	Types of assembler options
	Assembler Option details
	Using special modifiers

	List of Assembler options
	Detailed listing of all assembler options
	-Ci: Switch case sensitivity on label names OFF
	CMacAngBrack: Angle brackets for grouping Macro Ar guments
	-CMacBrackets: Square brackets for macro arguments grouping
	-Compat: Compatibility modes
	CS08/-C08/-CRS08: Derivative family
	-D: Define Label
	-Env: Set environment variable
	-F (-Fh, -F2o, FA2o, F2, -FA2): Output-file format
	-H: Short Help
	-I: Include file path
	-L: Generate a listing file
	-Lasmc: Configure listing file
	-Lasms: Configure the address size in the listing file
	-Lc: No Macro call in listing file
	-Ld: No macro definition in listing file
	-Le: No Macro expansion in listing file
	-Li: No included file in listing file
	-Lic: License information
	-LicA: License information about every feature in directo ry
	-LicBorrow: Borrow license feature
	-LicWait: Wait until floating license is available from floating License Server
	-Ll: Show label statistics
	-M (-Ms, -Mt): Memory model
	-MacroNest: Configure maximum macro nesting
	-MCUasm: Switch compatibility with MCUasm ON
	-N: Display notify box
	-NoBeep: No beep in case of an error
	-NoDebugInfo: No debug information for ELF/DWARF files
	-NoEnv: Do not use environment
	-ObjN: Object filename specification
	-Prod: Specify project file at startup
	-Struct: Support for structured types
	-V: Prints the Assembler version
	View: Application standard occurrence
	-W1: No information messages
	-W2: No information and warning messages
	-WErrFile: Create "err.log" error file
	-Wmsg8x3: Cut filenames in Microsoft format to 8.3
	-WmsgCE: RGB color for error messages
	-WmsgCF: RGB color for fatal messages
	-WmsgCI: RGB color for information messages
	-WmsgCU: RGB color for user messages
	-WmsgCW: RGB color for warning messages
	-WmsgFb (-WmsgFbv, -WmsgFbm): Set message file for mat for batch mode
	WmsgFi (WmsgFiv, -WmsgFim): Set message file for mat for interactive mode
	-WmsgFob: Message format for batch mode
	-WmsgFoi: Message format for interactive mode
	WmsgFonf: Message format for no file information
	-WmsgFonp: Message format for no position information
	-WmsgNe: Number of error messages
	-WmsgNi: Number of Information messages
	-WmsgNu: Disable user messages
	-WmsgNw: Number of Warning messages
	-WmsgSd: Setting a message to disable
	-WmsgSe: Setting a message to Error
	-WmsgSi: Setting a message to Information
	-WmsgSw: Setting a Message to Warning
	-WOutFile: Create error listing file
	-WStdout: Write to standard output

	Sections
	Section attributes
	Code sections
	Constant sections
	Data sections

	Section types
	Absolute sections
	Relocatable sections

	Relocatable vs. absolute sections
	Modularity
	Multiple developers
	Early development
	Enhanced portability
	Tracking overlaps
	Reusability

	Assembler Syntax
	Comment line
	Source line
	Label field
	Operation field
	Operand field: Addressing modes (HC08 / HCS08)
	Operand Field: Addressing Modes (RS08)
	Comment Field

	Symbols
	User-defined symbols
	External symbols
	Undefined symbols
	Reserved symbols

	Constants
	Integer constants
	String constants
	Floating-Point constants

	Operators
	Addition and subtraction operators (binary)
	Multiplication, division and modulo operators (binary)
	Sign operators (unary)
	Shift operators (binary)
	Bitwise operators (binary)
	Bitwise operators (unary)
	Logical operators (unary)
	Relational operators (binary)
	HIGH operator
	HIGH_6_13 Operator
	LOW operator
	MAP_ADDR_6 Operator
	PAGE operator
	Force operator (unary)
	Operator precedence

	Expression
	Absolute expression
	Simple relocatable expression
	Unary operation result
	Binary operations result

	Translation limits

	Assembler Directives
	Directive overview
	Section-Definition directives
	Constant-Definition directives
	Data-Allocation directives
	Symbol-Linkage directives
	Assembly-Control directives
	Listing-File Control directives
	Macro Control directives
	Conditional Assembly directives

	Detailed descriptions of all assembler directives
	ABSENTRY - Application entry point
	ALIGN - Align Location Counter
	BASE - Set number base
	CLIST - List conditional assembly
	DC - Define Constant
	DCB - Define Constant Block
	DS - Define Space
	ELSE - Conditional assembly
	END - End assembly
	ENDFOR - End of FOR block
	ENDIF - End conditional assembly
	ENDM - End macro definition
	EQU - Equate symbol value
	EVEN - Force word alignment
	FAIL - Generate Error message
	FOR - Repeat assembly block
	IF - Conditional assembly
	IFcc - Conditional assembly
	INCLUDE - Include text from another file
	LIST - Enable Listing
	LLEN - Set Line Length
	LONGEVEN - Forcing Long-Word alignment
	MACRO - Begin macro definition
	MEXIT - Terminate Macro Expansion
	MLIST - List macro expansions
	NOLIST - Disable Listing
	NOPAGE - Disable Paging
	OFFSET - Create absolute symbols
	ORG - Set Location Counter
	PAGE - Insert Page break
	PLEN - Set Page Length
	RAD50 - Rad50-encoded string constants
	SECTION - Declare Relocatable Section
	SET - Set Symbol Value
	SPC - Insert Blank Lines
	TABS - Set Tab Length
	TITLE - Provide Listing Title
	XDEF - External Symbol Definition
	XREF - External Symbol Reference
	XREFB - External Reference for Symbols located on the Direct Page

	Macros
	Macro overview
	Defining a macro
	Calling macros
	Macro parameters
	Macro argument grouping

	Labels inside macros
	Macro expansion
	Nested macros

	Assembler Listing File
	Page header
	Source listing
	Abs.
	Rel.
	Loc
	Obj. code
	Source line

	Mixed C and Assembler Applications
	Memory models
	Parameter passing scheme
	Return Value
	Accessing assembly variables in an ANSI-C source file
	Accessing ANSI-C variables in an assembly source file
	Invoking an assembly function in an ANSIC source file
	Example of a C file

	Support for structured types
	Structured type definition
	Types allowed for structured type fields
	Variable definition
	Variable declaration
	Accessing a structured variable

	Structured type: Limitations

	Make Applications
	Assembly applications
	Directly generating an absolute file
	Mixed C and assembly applications

	Memory maps and segmentation

	How to ...
	How to work with absolute sections
	Defining absolute sections in an assembly source file
	Linking an application containing absolute sections

	How to work with relocatable sections
	Defining relocatable sections in a source file
	Linking an application containing relocatable sections

	How to initialize the Vector table
	Initializing the Vector table in the linker PRM file
	Initializing the Vector Table in a source file using a relocatable section
	Initializing the Vector Table in a source file using an absolute section

	Splitting an application into different modules
	Example of an Assembly File (Test1.asm)
	Corresponding include file (Test1.inc)
	Example of an assembly File (Test2.asm)

	Using the direct addressing mode to access symbols
	Using the direct addressing mode to access external symbols
	Using the direct addressing mode to access exported symbols
	Defining symbols in the direct page
	Using the force operator
	Using SHORT sections

	Appendices
	Global Configuration File Entries
	[Installation] Section
	Path
	Group

	[Options] Section
	DefaultDir

	[XXX_Assembler] Section
	SaveOnExit
	SaveAppearance
	SaveEditor
	SaveOptions
	RecentProject0, RecentProject1, ...

	[Editor] Section
	Editor_Name
	Editor_Exe
	Editor_Opts

	Example

	Local Configuration File Entries
	[Editor] Section
	Editor_Name
	Editor_Exe
	Editor_Opts

	[XXX_Assembler] Section
	RecentCommandLineX, X= integer
	CurrentCommandLine
	StatusbarEnabled
	ToolbarEnabled
	WindowPos
	WindowFont
	TipFilePos
	ShowTipOfDay
	Options
	EditorType
	EditorCommandLine
	EditorDDEClientName
	EditorDDETopicName
	EditorDDEServiceName

	Example

	MASM Compatibility
	Comment Line
	Constants (Integers)
	Operators
	Directives

	MCUasm Compatibility
	Labels
	SET directive
	Obsolete directives

	Index

