HC(S)08 / RS08
Assembler Manual

freescalp’"‘

Revised: 29 April 2006 - HCOBASMRM -REVL o eon ductor

Freescale™ and the Freescal e logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior isatrademark or reg-
istered trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. All other product or ser-
vice names are the property of their respective owners.

Copyright © 2006 by Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and al liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “ Typ-
icals’, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescal e Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against al
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.
7700 West Parmer Lane
Austin, TX 78729

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

Table of Contents

| Using the HC(S)08/RS08 Assembler

Highlights.o e 15
Structure of thisdocument 15
1 Working with the Assembler 17
Programming OVENVIEWottt e 17
Project directoryo 18
External EAitOr 18
Using CodeWarrior to manage an assembly language project 18
TheWizard 19
Analysis of groups and filesintheprojectwindow 29
COdEWAITION QrOUPS -« e v et et ettt e e e e e e e e e 29
Creating aTargel oo oot 30
Generating ListingFiles i 38
Renaming files. o 39
Creating anew groUpo vttt e e e 41
Renaming groupsintheprojectwindow. 42
Writing your assembly sourcefiles. i 43
Anayzing theprojectfiles........... i 44
Assemblingyour sourcefiles......... ..o 47
Assembling with CodeWarrior i, 47
Assembling withthe Assembler i, 51
Linkingtheapplication. e 67
Linkingwith CodeWarrior ..., 67
LinkingwiththeLinker...... 71
Directly generatingan ABSfile........... ... i i 80
Using CodeWarrior to generatean ABSfile. 81

2 Assembler Graphical User Interface 89
Startingthe Assembler 89

HC(S)08 / RS08 Assembler Manual 3

Table of Contents

Assembler MainWindow 90
Window title o i
CONMENE IR . . o .ottt et 1
TOOIbar . 92
SatUShar. . o e 93
Assemblermenubar 93
Filemenu. 93
Assembler Mmenu 95
VIBW MEBNU. .« ottt e e e e e e e 95

Editor SettingdialogboxX 96
Global Editor (shared by all toolsand projects) 96
Local Editor (sharedby altools), 97
Editor started withthecommandline. 98
Editor started WithDDE 99
CodeWarrior WithCOM e 100
Modifiers. . .o 101

Save Configurationdialogbox i 102
Environment Configuration dialogbox. 103

Option SettingsdialogboXo 105

Message settingsdialogbox o 106
Changing the class associated withamessage 108

About...dialogbox 110

Specifying theinputfile. o 110
Use the command linein the toolbar toassemble. 110
Assemblinganew file. o 110
Assembling afile which has already beenassembled. 110
UsetheFile>Assemble...entry.......... 111
UseDragand Dropot 111

Message/Error feedback 111
Useinformation from the assembler window 112
Useauser-definededitor. 112
Line number can be specified onthecommandline. 112
Line number cannot be specified on the commandline............... 112

HC(S)08 / RS08 Assembler Manual 4

Table of Contents

3 Environment

Currentdirectory. . ..o
Environment macros.oviiiiiii
Global initiadization file - mctools.ini (PConly)
Local configuration file (usualy project.ini)
Linecontinuation oo,
Environment variablesdetails.
ABSPATH: Absolutefilepath.
ASMOPTIONS: Default assembler options..
COPY RIGHT: Copyright entry in object file.
DEFAULTDIR: Default current directory.

ENVIRONMENT: Environment file specification

ERRORFILE: Filename specificationerror
GENPATH: Search path for input file.

INCLUDETIME: Creation time in the object file

OBJPATH: Objectfilepath.....................
SRECORD: S-Recordtype............ccooonn..
TEXTPATH: Textfilepath.
TMP: Temporary directory
USERNAME: User Namein object file...........

4 Files

Inputfiles
Sourcefiles
Includefiles........ ... i

Outputfiles.
Objectfiles ...
Absolutefiles.
SRecordFiles. i
Ligtingfiles. ...
Debug listingfiles............
Error listingfile........... .. o i i

FileProcessingcoiiiiii i

115

HC(S)08 / RS08 Assembler Manual

Table of Contents

5 Assembler Options 143
Typesof assembleroptions. 143
Assembler Optiondetailso 145

Using special modifiers. 145
Listof Assembler options.t 149
Detailed listing of al assembler options. 151

-Ci: Switch case sensitivity onlabel namesOFF 152

-CMacAngBrack: Angle brackets for grouping Macro Arguments.. 154

-CMacBrackets: Square brackets for macro arguments grouping. 155

-Compat: Compatibility modes., 156

-CS08/-C08/-CRS08: Derivativefamily............. 159

-D:Definelabel 161

-Env: Set environmentvariable.o 163

-F (-Fh, -F20, -FA?20, -F2, -FA2): Output-fileformat. 164

SHoShort Help. ..o 166

-l:Includefilepath 167

-L: Generatealigtingfile o 168

-Lasmc: Configurelistingfile......... o i 171

-Lasms: Configure the addresssizein thelistingfile................. 173

-Lc: NoMacrocal inlistingfile. i 175

-Ld: No macro definitioninlistingfile. 178

-Le: No Macro expansioninlistingfile 181

-Li: Noincluded fileinlistingfile it 184

-Lic: Licenseinformation 186

-LicA: License information about every featurein directory 187

-LicBorrow: Borrow licensefeature.t 188

-LicWait: Wait until floating license is available from floating

LiCENSE SaIVEr . ot 190

-LI: Show label statistics. 191

-M (-Ms, -Mt): Memory model 193

-MacroNest: Configure maximum macronesting. 195

-MCUasm: Switch compatibility withMCUasmON................. 196

-N: Display notify box. 197

-NoBeep: Nobeepincaseof anerror.t 198

HC(S)08 / RS08 Assembler Manual 6

Table of Contents

-NoDebuglnfo: No debug information for ELF/DWARF files. 199
-NoEnv: Donotuseenvironment 200
-ObjN: Object filename specification. oot 201
-Prod: Specify project fileatstartupo 203
-Struct: Support for structured types. 204
-V: Printsthe Assembler version. oo 205
-View: Application standard occurrence. i 206
-WZ1: Noinformation messages. oo oo i 208
-W2: Noinformation and warningmessagesSo v oo v vve v e ennn. 209
-WErrFile: Create "err.log" errorfile i it 210
-Wmsg8x3: Cut filenamesin Microsoft formatto 83 211
-WmsgCE: RGB color for error messageso v vvveieiiennnnnn. 212
-WmsgCF: RGB color for fatal messages.ot 213
-WmsgCl: RGB color for informationmessages 214
-WmsgCU: RGB color for user messages.ovvvvinenennnn.. 215
-WmsgCW: RGB color for warning messages.o vvvennn .. 216
-WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode
217
-WmsgF (-WmsgFiv, -WmsgFim): Set message file format for interactive
MOAE . . 219
-WmsgFob: Message format for batchmode 221
-WmsgFoi: Message format for interactivemode. 223
-WmsgFonf: Message format for no fileinformation. 225
-WmsgFonp: Message format for no position information. 227
-WmsgNe: Number of errormessages« oov v e i i e 229
-WmsgNi: Number of Informationmessages. 230
-WmsgNu: Disable user messageso .vv i i 231
-WmsgNw: Number of Warningmessages.cooienn.. 233
-WmsgSd: Settingamessagetodisable........................... 234
-WmsgSe: SettingamessagetoError. i 235
-WmsgSi: Setting amessageto Information. 236
-WmsgSw: SettingaMessagetoWarningcoooa. .. 237
-WOutFile: Create error listingfile. it 238
-WStdout: Writeto standardoutput 239

HC(S)08 / RS08 Assembler Manual 7

Table of Contents

6 Sections 241
Section attributes. 241
COdE SECLIONS. . . . ottt 241
Constant SECHIONS.ottt 241
Data SECtiONS . . . vt 242
SECliON LY PES. . o e ottt e 242
AbSOIULE SECLIONS.o 242
Relocatable sectionso 244
Relocatable vs. absolutesections 247
ModUlarity. ..o 247
Multipledevelopers.o 247
Early development. 248
Enhanced portability 248
Trackingoverlaps 248
Reusability. 248

7 Assembler Syntax 249
Comment liNeo 249
SOUrCE e e 249
Label field. ... 250
Operationfield. o 250
Operand field: Addressing modes (HC08/HCS08).................. 265
Operand Field: Addressing Modes(RS08)t 276
Comment Field 280
SYMBOIS . .o 280
User-definedsymbols.o 280
External symbolS. 281
Undefined symbols. 282
Reserved symbols. 282
CONSANES. .« . .ot 282
Integer CONStaNtS oo ot 283
SIHNG CONSLANTS. . . o o oot 283
Floating-Pointconstants i 283

(] 61 7 0] £ 283

HC(S)08 / RS08 Assembler Manual 8

Table of Contents

Addition and subtraction operators (binary) 284
Multiplication, division and modulo operators (binary) 285
Sign OpEratorS (UNAY) . . v v vt et et e et 285
Shift operators (binary)o e e 286
Bitwise operators (binary). 287
Bitwise Operators (UNAry)o oot et e 288
Logical Operators (UNArY)ottt e e 288
Relational operators (binary). 289
HIGH Operator.ot e e e e e e 289
HIGH_6_13 OpEratoro oottt e et e e 290
LOW Oparator . .. oottt e e e e 290
MAP_ADDR B OpEraiorot et e 291
PAGE Operatoroi e 292
Force operator (UNary).ot e 292
Operator precedenCe. oot 293

EX IS ON. .« oot 294
ADSOIULE BXPIESSION . .\ ottt 295
Simplerelocatable expression. i 296
Unary operationresult. 296
Binary operationsresult 297
Tranglation limits e 298
8 Assembler Directives 299
DiIreCtivVe OVEIVIEWottt 299
Section-Definitiondirectives. 299
Constant-Definitiondirectives i 299
Data-Allocation directives.t 299
Symbol-Linkagedirectives. i 300
Assembly-Control directives. 300
Listing-File Control directives 301
Macro Control direCtives. 302
Conditional Assembly directives i 302
Detailed descriptions of all assembler directives....................... 303
ABSENTRY - Applicationentry point., 304
ALIGN - AlignLocationCounter.coouiini . 306

HC(S)08 / RS08 Assembler Manual 9

Table of Contents

BASE-Setnumberbase. 307
CLIST - List conditional assemblyt 309
DC-DefineConstantoovve e 311
DCB - DefineConstant Block. 313
DS-DefineSpace.o 314
ELSE - Conditional assemblyo 316
END -Endassembly. 318
ENDFOR - Endof FORblOCKo 319
ENDIF - End conditional assembly 320
ENDM - End macro definitionco i 321
EQU - Equatesymbol value.o 322
EVEN - Forcewordalignment, 323
FAIL - Generale Error MeSsage. oo oo v i e 325
FOR - Repeat assembly block o i 329
IF-Conditional assembly i 331
IFcc - Conditional assembly 333
INCLUDE - Include text from another file. 335
LIST-EnableListingcovei i e 336
LLEN-SetLinelLength. 338
LONGEVEN - Forcing Long-Word alignment. 340
MACRO - Begin macro definition. 341
MEXIT - Terminate Macro Expansion., 342
MLIST - Listmacro eXpanSionSo v ve e e e ee i e e ee e 345
NOLIST - DisableListing.oviii e 348
NOPAGE - DisablePaging. e 350
OFFSET - Createabsolutesymbols, 351
ORG - Set Location CoUNter.ottt 353
PAGE - Insert Pagebreako i i 355
PLEN-SetPagelength.t 357
RAD?5S0 - Rad50-encoded stringconstantscoi v 358
SECTION - Declare Relocatable Section.t 361
SET-SetSymbol Value. o 363
SPC-InsertBlank Lines. ... 364
TABS-SetTablLength.......o 365
TITLE - Provide Listing Title. 366

HC(S)08 / RS08 Assembler Manual 10

Table of Contents

XDEF - External Symbol Definition. 367
XREF - External Symbol Reference. it 368
XREFB - External Reference for Symbols located on the Direct Page . . . 369

9 Macros 371
MaCTO OVEIVIBIW . . .ottt et e e e e e e e et 371

Defining @amacro e e 371

Calling MECIOS . . . oottt 372

MaCrO ParamMElEr Sottt e 372

Macro argument groUPIiNg. « - « .« v v e et e e 373
Labelsinsidemacros.o i 375

MaCrO EXPANSION. . . o v vttt ettt et e e 376

NESEEA MABCTOS. . . . v ettt e et et et e e e 376

10 Assembler Listing File 377
Pageheader. i 377

SOUrCE liStiNg . ..o 378

ADS. 378

Rl . 379

LOC. . ot 380

Obj. COdE. ..ot 381

SOUICE NG, . . 382

11 Mixed C and Assembler Applications 383
Memory MOCElS 383

Parameter passingscheme 384
ReturnValue. 384

Accessing assembly variablesin an ANSI-C sourcefile 384

Accessing ANSI-C variablesin an assembly sourcefile 385

Invoking an assembly functionin an ANSI-C sourcefile 386

Exampleof aCfile. 387

Support for structured typeso 389

Structured typedefinition 389

Typesalowed for structured typefields. 390
Variabledefinition. 391

HC(S)08 / RS08 Assembler Manual 11

Table of Contents

Varigbledeclaration. 391

Accessing astructured variable.o 392

Structured type: Limitations i 393

12 Make Applications 395
Assembly applicationst e 395

Directly generating an absolutefile 395

Mixed C and assembly applications 395

Memory mapsand segmentation i i 396

13 How to ... 397
How to work with absolutesections., 397

Defining absolute sectionsin an assembly sourcefile................ 397

Linking an application containing absolute sections. 399

How to work with relocatable sections. i, 400

Defining relocatable sectionsinasourcefile. 400

Linking an application containing relocatable sections 401

How toinitializethe Vectortable. i, 402

Initializing the Vector tableinthe linker PRM file. 403

Initializing the Vector Table in a source file using arelocatable section . . 405
Initializing the Vector Table in a source file using an absolute section . . . 408

Splitting an application into different modules 410
Example of an Assembly File (Testl.asm), 410
Corresponding include file (TestLinc).covviviiin.. 410
Example of an assembly File (Test2.asm).t 411
Using the direct addressing modeto accesssymbols. 412
Using the direct addressing mode to access external symbols.......... 413
Using the direct addressing mode to access exported symbols. 413
Defining symbolsinthedirectpageo oL 413
Usingtheforceoperatort 414
UsSiNg SHORT SECtIONS . . . oo e et e e 414

HC(S)08 / RS08 Assembler Manual 12

Table of Contents

Il Appendices

A Global Configuration File Entries 419
[Installation] Section.ccoii 420
Path ..o 420

L 0 420
[Options] SECioN 421
DefaultDiro 421
[XXX_Assembler] Section.o e 422
SAVEONEXIT . o v ottt 422
SAVEAPPEAIANCE ot it 422
SaVEEItOr 423
SAVEOPLIONS . . ottt 423
RecentProject0, RecentProjectl, 423
[Eitor] SeCtion.ot e 425
Editor Name. ... 425
Editor EXe. ... 425
Editor OptS. ..ot 426
EXample . .. 427
B Local Configuration File Entries 429
[Eitor] SECtion. 430
Editor Name. ... 430
Editor EXe. ..ot 430
Editor_OptS. . .ot 431
[XXX_Assembler] Section.o 432
RecentCommandLineX, X=integercoviviiveininnnnnn.. 432
CurrentCommandLine.t e 432
StatusbarEnabled. 433
ToolbarEnabled 433
WINdowPOoSo 434
WindowFont 434
TIPFIEPOS. . oo e e 435
ShOWTIPOfDAY . . .o vt 435

HC(S)08 / RS08 Assembler Manual 13

Table of Contents

Ooptionscovviiiii
EditorType. ...
EditorCommandLine................
EditorDDEClientName.
EditorDDETopicName

EditorDDEServiceName

C MASM Compatibility

CommentLine
Constants(Integers)
Operators. . ..o

Directives

D MCUasm Compatibility

Index

HC(S)08 / RS08 Assembler Manual

14

Using the HC(S)08/RS08
Assembler

This document explains how to effectively use the HC(S)08/RS08 Macro Assembler.

Highlights

The major features of the HC(S)08/RS08 Assembler are:
e Graphical User Interface
¢ On-lineHelp
e 32-bit Application
¢ Conformsto the Freescale Assembly Language Input Standard

Structure of this document

This section has the following chapters:

« “Working with the Assembler” on page 17: A tutoria using the CodeWarrior
Development Studio to create and configure an assembly-code project. In addition,
there is adescription of using the Assembler and the Linker as standalone Build
Tools.

« “Assembler Graphical User Interface” on page 89: A description of the Macro
Assembler’s Graphical User Interface (GUI)

« “Environment” on page 115: A detailed description of the Environment variables
used by the Macro Assembler

* “Files’ on page 137: A description of the input and output file the Assembles uses or
generates.

HC(S)08 / RS08 Assembler Manual 15

Structure of this document

» “Assembler Options’ on page 143: A detailed description of the full set of assembler
options

e “Sections’ on page 241: A description of the attributes and types of sections

* “Assembler Syntax” on page 249: A detailed description of the input syntax used in
assembly input files.

» “Assembler Directives’ on page 299: A list of every directive that the Assembler
supports

« “Macros’ on page 371: A description of how to use macros with the Assembler
» “Assembler Listing File” on page 377: A description of the assembler output files

¢ “Mixed C and Assembler Applications’ on page 383: A description of the important
issues to be considered when mixing both assembly and C source filesin the same

project

« “Make Applications’ on page 395: A description of special issuesfor the linker

e “How to...” on page 397: Examples of assembly source code, linker PRM, and
assembler output listings.

In addition to the chaptersin this section, there are the following chapters of Appendices

* “Global Configuration File Entries” on page 419: Description of the sections and
entries that can appear in the global configuration file - mcutools. ini

¢ “Loca Configuration File Entries’ on page 429: Description of the sections and
entries that can appear in the local configuration file- project.ini

* “MASM Compatibility” on page 441: Description of extensions for compatibility
with the MASM Assembler

* “MCUasm Compatibility” on page 445: Description of extensions for compatibility
with the MCUasm Assembler

16 HC(S)08 / RS08 Assembler Manual

1
Working with the Assembler

This chapter is primarily atutorial for creating and managing HC(S)08/RS08 assembly
projects with the CodeWarrior Development Studio. In addition, there are directions to
utilize the Assembler and Smart Linker Build Tools in the CodeWarrior Devel opment
Studio for assembling and linking assembly projects.

Programming Overview

In general terms, an embedded systems developer programs small but powerful
microprocessors to perform specific tasks. These software programs for controlling the
hardware is often referred to as firmware. One such use for firmware might be controlling
small stepping motors in an automobile seat.

The developer instructs what the hardware should do with one or more programming
languages, which have evolved over time. The three principal languagesin useto program
embedded microprocessors are C and its variants, various forms of C++, and assembly
languages which are specially tailored to families of microcontrollers. C and C++ have
been fairly standardized through years of use, whereas assembly languages vary widely
and are usually designed by semiconductor manufacturers for specific families or even
subfamilies of their embedded microprocessors.

Assembly language instructions are considered as being at alower level (closer to the
hardware) than the essentially standardized C instructions. Programming in C may require
some additional assembly instructions to be generated over and beyond what an
experienced developer could do in straight assembly language to accomplish the same
result. As aresult, assembly language programs are usually faster to execute than C
instructions, but require much more programming effort. In addition, each chip series
usually hasits own specialized assembly language which is only applicable for that family
(or subfamily) of CPU derivatives.

Higher-level languages like C use compilersto trandate the syntax used by the
programmer to the machine-language of the microprocessor, whereas assembly language
uses assemblers. It is aso possible to mix assembly and C source codein asingle project.
See the Mixed C and Assembler Applications chapter.

This manual covers the Assembler dedicated to the Freescale 8-bit HC(S)08 series of
microcontrollers. There is acompanion manual for this seriesthat covers the HC(S)08
Compiler.

The HC(S)08 Assembler can be used as atransparent, integral part of the CodeéWarrior
Development Studio. Thisis the recommended way to get your project up and running in
minimal time. Alternatively, the Assembler can also be configured and used as a

standal one macro assembler as amember of Build Tool Utilities such asa (Smart) Linker,
Compiler, ROM Burner, Simulator or Debugger, etc.

Thetypical configuration of an Assembler is its association with a Project directory on
page 18 and an External Editor on page 18. CodeWarrior uses the project directory for
storing thefilesit creates and coordinates the various tools integrated into the

HC(S)08 / RS08 Assembler Manual 17

Working with the Assembler
Using CodeWarrior to manage an assembly language project

CodeWarrior suite. The Assembler is but one of these tools that CodeWarrior coordinates
for your projects. The tools used most frequently within CodeWarrior are its Editor,
Compiler, Assembler, Linker, the Simulator/Debugger, and Processor Expert. Most of
these “Build Tools’ are located in the prog subfolder of the CodeWarrior installation. The
others are directly integrated into the CodeWarrior Development Studio

The textual statements and instructions of the assembly-language syntax are written by
editors. CodeWarrior has its own editor, although any external text editor can be used for
writing assembly code programs. If you have afavorite editor, chances are that it can be
configured so as to provide both error and positive feedback from either CodeWarrior or
the standalone Assembler.

Project directory

A project directory contains all of the environment files that you need to configure your
development environment.

In the process of designing a project, you can either start from scratch by making your
own Source code, configuration (* . ini), and variouslayout files for your project for use
with standal one project-building tools. Thiswas how embedded microprocessor projects
were developed in the recent past. On the other hand, you can have the CodeWarrior IDE
coordinate and manage the entire project. This is recommended because it is easier and
faster than employing standal one tools. However, you can still utilize any of the Build
Toolsin the CodeWarrior suite.

External Editor

CodeWarrior reduces programming effort because itsinternal editor is configured with the
Assembler to enable error feedback. Y ou can use the Configuration dialog box of the
standal one Assembler or other standalone Build Tools in CodeWarrior to configure or to
select your choice of editors. Please refer to the Editor Setting dialog box section of this
manual .

Using CodeWarrior to manage an assembly
language project

CodeWarrior has an integrated Wizard to easily configure and manage the creation of your
project. The Wizard will get your project up and running in short order by following a
short series of stepsto create and coordinate the project and to generate the basic files that
are located in the project directory.

This section will create a basic CodeWarrior project that uses assembly source code. A
sample program is included for a project created using the Wizard. For example, the
program included for an assembly project cal culates the next number in a Fibonacci series.
Itis much easier to analyze any program if you aready have some familiarity with solving
the result in advance.

In case you did not know, a Fibonacci seriesis a mathematical infinite seriesthat is very
easy to visualize (Listing 1.1 on page 19):

18

HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Using CodeWarrior to manage an assembly language project

Listing 1.1 Fibonacci series

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... to infinity--»>

Itissimpleto calculate the next number in this series. Thefirst calculated result is actually
the third number in the series because the first two numbers make up the starting point: O
and 1. The next term in aFibonacci seriesisthe sum of the preceding two terms. The first
sumisthen: 0+ 1=1. Thesecond sumis1+1=2. Thesixthsumis5+ 8=13. And soon
toinfinity.

Let’snow rapidly create a project with CodeWarrior and analyze the assembly source and
the Linker’s parameter files to calculate a Fibonacci series for a particular 8-bit
microprocessor in the Freescale HC(S)08 family - the MC68HC908GP32. Along the way,
some CodeWarrior tips demonstrate how CodeWarrior could help manage your projects.

The Wizard
Start the HC(S)08/RS08 Codewarrior IDE application. Itspath is:

<CodeWarrior installation folder>\bin\IDE.exe)

After CodeWarrior opens, press the Create New Project button. If CodeWarrior is already
running, select New... from the File menu (File > New...). See Figure 1.1 on page 19.

Figure 1.1 Startup dialog box

Startup rg|

Create Mew Project

Load E xample Project

Load Previous Project I

Fun Getting Started Tutorial

Start using Codet/ arrior |

= freescale

sl sy e v Display on Startup

HC(S)08 / RS08 Assembler Manual 19

Working with the Assembler
Using CodeWarrior to manage an assembly language project

Press the Create New Project button. The HC(S)08 New Project dialog box appears,
showing the Project Parameters panel of the Wizard Map. If CodeWarrior is already open,
select New... from the File menu (File > New...). The HC(S) New Project dialog box

appears (Figure 1.2 on page 20).
Figure 1.2 HC(S)08 New Project dialog box

Freescale CodeWarrior

File Edit View 1 Project Processor Expert Device Initialization Window Help

HC(3)08 Mew Project

Wizard Map :
Please choose the set of languages ta be Project name:

supported initially. “ou can make multiple
selections. I

Project Parameters

o T - A i Location:
Sic2 Anc ConiEgy r Cssem v |C:\Documents and SettingshMy Documents
Add Additional Files W
Cs+

Set
Processor Expert

A zsembly language suppart will be
included in the project

Save As

x| e &k E-

Save in: I 123 Projects

() Absalute |5 5ample
|5 Absalute Assembly =) Test:
() Fibonacc =15
T Model &

) Model T

I Relocatable Assermbly

Cancel

Filz name; IABC Save I
j Cancel I

Save as type: I

A

Enter the Project Parameters of the Wizard Map for your project. For the programming
language, check Assembly and uncheck both C and C++. Type the name for the project in
the Project name: text box. In the event that you want another location for the project
directory than the default in the Location: text box, press Set... and browse to the new
location. Thereis no need to first prepare an empty folder, as CodeWarrior automatically
creates its own folder - the project directory.

NOTE If you do not use the default Location for the project directory, you need not
enter aname in the Project name: text box. Whatever you enter in the
File name: text box will be entered into Location automatically.

CodeWarrior uses the default * . mcp extension, so you do not have to explicitly append
any extension to the filename.

Press the Save and Next > buttons to close the dialog boxes.

20 HC(S)08 / RS08 Assembler Manual

Working with the Assembler

Using CodeWarrior to manage an assembly language proje

ct

The Device and Connection dialog box of the Wizard Map appears (Figure 1.3 on
page 21).

Figure 1.3 Device and Connection dialog box

HC(S)08 New Project

Wizard Map L § .
Select the derivative you would like to use: Choose your default connection:
Project Parameters = = Em——
Device and Connection +- AB Farily Full Chip Simulation
+- AP Family IMon0d Interface
Add Additional Files +1- ASIAZ Family P&f Multilink{Cyclone Pro
’ SofTec HZOS
Processor Expert . 23 :nn:i':y MMES-MMEYS Emulator
i FSICE Emulator
=13 Farmily
M
MCESHC908GR16
MCEEHCI0EGR16A FEE HCOS Full Chip Simulation with
MCEEHCI03GR3ZA zimulation of all on-chip peripherals.
MCESHC905GR4
MCESHCO05GR454
MCESHC905GRE04
MCEEHC205GRS w

< Back | Mext > I Finizh | Cancel |

£

Select the desired CPU derivative for the project. Expand HCO8 and G Family. In this
case, the MC68HC908GP32 derivative is selected. For Connections, select the default -
Full Chip Smulation. Press Next >. The Add Additional Files dialog box appears

(Figure 1.4 on page 22).

HC(S)08 / RS08 Assembler Manual

21

Working with the Assembler
Using CodeWarrior to manage an assembly language project

Figure 1.4 Add Additional Files dialog box

Wizard Map L i
Add existing files to the project

Froject Parameters = @' Deskkop - Project Files
+ ui] My Documents

Device and Connection + j My Computer 1 —]

i < |- W) My Network Places
Add Additional Files &4 my -
g Ad-fwware SE Personal

Processor Expert kA adobe Reader 7.0

ol BNGT.0

¥ Crosstrainer

i n Diskeeper Lite I~ Copy files to project
[Eudora

& Google Earth b IV Create main template file
£ | =

S elect files to be added to the new project and press "Add..."
To copy the added files to the project folder, select "Copy Files to Project”
T o have the wizard generate template main files, select ''Create Example Code"

< Back ‘ Mext > | Finizh ‘ Cancel]

If you wanted to add any existing files to your project, you could browsein the left panel -
Add existing files to the project - for the files and press the Add button. The added files
would then appear in the right panel - Project Files. No user files are to be added for this
project, so you can either uncheck the Copy filesto project check box or make sure that no
files are selected and leave this check box checked.

Check the Create main template file check box. This enables template filesincluding a
main.asmfileinthe Sources subfolder to be created in the project directory (ABC, in
this case) with some sample assembly-source code. Press Next >. The Processor Expert
panel appears (Figure 1.5 on page 23).

22

HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Using CodeWarrior to manage an assembly language project

Figure 1.5 Processor Expert dialog box

HC{S)08 New Praject
Wizard Map . -

Fiapid &pplication Development
Options:

Froject Parameters

Device and Connection e ihine

Add Additional Files 7 Device Initislization
© Pro Expert

Processor Expert

Mo code is generated. it iz neceszany to wiite device
initialization code manually. Project contains startup
code only.

Help !

< Back et » Finizh Cancel
I I | I

The default - None - is selected. For this simple demo project, you do not need the Rapid
Application Development (RAD) tool - Processor Expert - in the CodeWarrior
Development Studio. A basic demo assembly language project is being created. In
practice, you would probably routinely use Processor Expert on account of its many
advantages.

Press Finish >. The Wizard now creates the project (Figure 1.6 on page 24).

HC(S)08 / RS08 Assembler Manual 23

Working with the Assembler
Using CodeWarrior to manage an assembly language project

Figure 1.6 The CodeWarrior project is being created...

Freescale CodeWarrior

File Edit Wiew Search Project Processor Expert Dewice Initialization ‘Window Help

BEsH s xBREARAA EER L @R B

==l
ABC mcp I
I@‘ Creating Project... ji ’B V @ 3(
Files |Link Drderl Targetsl
¢ | Fie | Code | Data 4
0 files
= 1l

7 |

Using the Wizard, an HC(S)08 project is set up in a matter of aminute or two. Y ou can
add additional components to your project afterwards. A number of files and folders are
automatically generated in the root folder that was used in the project-naming process.
Thisfolder isreferred to in this manual as the project directory. The major GUI
component for your project is the project window. The CodeWarrior project window

appears (Figure 1.7 on page 25).

24

HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Using CodeWarrior to manage an assembly language project

Figure 1.7 CodeWarrior project window

Freescale CodeWWarrior

File Edit WYiew Search Project Processor Expert Device Initialization Window Help
" y N
L N=N— E W% B
=]

ABC mcp I

| ¥ Full Chip Simulation @Ry @y

Files l Link Drder] Targets]

¥ File Code | Data 4 =
% =423 Sources] 0« ==
4 R main.asm i} os =
27 Includes i] o =
¥ [#1{Z] Project Settings i o =
G files 0 0

If you expand the three “folder” icons, actually groups of files, by clicking in the
CodeWarrior project window, you could view some of the filesthat CodeWarrior created.
In general, any filesin the project window with red check markswill remain checked until
they are successfully assembled, compiled, or linked. At thisfinal stage of the Wizard, you
could safely close the project and you can reopen it later. A CodeWarrior project reopens
in the same configuration it had when it was last saved (Figure 1.8 on page 25).

Figure 1.8 Project window showing some of the files that the Wizard created

ABC . mcp l

| ¥ Full Chip Simulation ~BRy &5

Files] Lirk Dldel] Targets]

L File Code | Data # | =
@ -2 Sources 1] 0+ ==
L3 ol mainasm a 0« =
= Includes 0 0=
@ derivative.inc 0 o =
- MCBSHCI08GP32ine 1} 0 =l
@ (=13 Project Seftings i o =
w [=-E3Linker Files] o =
W gl burner.bbl nia n'a =l
W i Project.pim n'a nfa =
[l Project.map nfa nfa =
G files 1} 1}

Y ou should examine the types and location of folders and files that CodeWarrior created
in the actual project directory so that you know their location if you later configure the
Assembler. If you work with standal one tools such as a Compiler, Linker, Simulator/

HC(S)08 / RS08 Assembler Manual 25

Working with the Assembler
Using CodeWarrior to manage an assembly language project

Debugger, etc., you may need to specify the paths to these files. So it is helpful to know
their typical locations and functions.

Y ou could use the Windows Explorer (Figure 1.9 on page 26) to examine the actual
folders and files that CodeWarrior created for your project and displaysin the project
window above. The name and location for the project directory are what you selected
when creating the project using the Wizard.

Figure 1.9 Project directory in Windows Explorer

s E:\Projects\WiBC ['-_I['E|f5__<|
. File Edit ‘Wiew Faworites Toodls Help :f’
Folders x Mame Size | Type
=] e Drive E (E:) ~ [C)8BC_Data File Folder
153 Clawhammer Banjo [C3kin File Folder
155 Downloads [Zycmd File Folder
[23) Freescale Saprm File Folder
1) Gimp =) 50urces File Falder
15 Gpenoffice ""BC-ITICD 46 KB CodeWarrior Project
2) Frojects =] asst_layout bwl LKE HWL File
= 3 apc = Default.mem LKE MEM File
=) ABC_Data @HCDS_FuII_Chip_SimuIator.ini LKE IMIFile
IC3) Standard
[bin
[C3 end
D pm
£ sources v € 3

The project directory holds atotal of six subfolders and 15 files at this point. The major
filefor any CodeWarrior project isits <project names.mcp file. Thisisthe file you
can use to reopen your project.

Return back to the CodeWarrior project window. Double-click on themain.asmfilein
the Sources group. The editor in CodeWarrior opensthemain . asm file (Figure 1.10 on
page 27).

26

HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Using CodeWarrior to manage an assembly language project

Figure 1.10 Sample main.asm file in the project

i B main.asm

b -{} - M- = ' - Path: |E:Projects\ABCAS ourceshmain. asm <
FW\\’\\’***WW\\’\\’**WW\\’\\’***WW\\’***WW\\’\\’**WW\\’\\’***WW\\’\\’**WW*****WW*W**WW*****WW* gl
;% This stationery serves as the framework for a user application. * -
;% For a more comprehensive program that demonstrates the more * —
;% advanced functionality of this processor, please ses the *

% demonstration applications, located in the exameles *
;% sukdlirectory of the "Freescale CodeWarrior for HIO0S" program *
% directory. *
FW\\’\\’***WW\\’\\’**WW\\’\\’***WW\\’***WW\\’\\’**WW\\’\\’***WW\\’\\’**WW*****WW*W**WW*****WW*
; export symkeols
XDEF _Startup, noiln
; we use export 'Entry' as symkeol. This allows us to
; reference 'Entry' either in the linker .prm file
; or from O/C++ later on
YFEF _ 2RI END SSTACE ; symkol defined by the linker for
; Imclude derivative-specific definitions
INCLUDE 'derivative.inc'
: variable/data section
MY IERCDALZE: SECTICHN SHORT ; Insert here your data definition
Counter - DE.E 1 -
FikboRes - DE.E 1

: ocode secticm

Myloda: SECTION
Tein
_Etartup:
LOHY #_ SEZ END SSTACK ; initialize the stack pointer
TS
LT ; enakle interrupts
meminloog -
CLEL ; A contains counter
cntLoop - TR
CEEQA #14, mminloog ; larger walues cause overflow.
feed watchdog
STh Clounter ; update glakal .
BSR CmloFiko
ST FikoRes ; =tore result -
Line 1 Coll |[4] | v [A

You can use this samplemain. asm file as abase to rewrite your own assembly source
program. Otherwise, you can import other assembly-code files into the project and delete
thedefault main . asm file from the project. For this project, themain . asm file contains

the sample Fibonacci program.

Asaprecaution, you can seeif the project is configured correctly and if the source codeis
free of syntactical errors. It is not necessary that you do so, but you should make (build)
the default project that CodeWarrior just created. Either press the Make button from the
toolbar or select (Project > Make) from the Project menu. All of the red check marks will

disappear after a successful building of the project (Figure 1.11 on page 28).

HC(S)08 / RS08 Assembler Manual

27

Working with the Assembler

Using CodeWarrior to manage an assembly language project

Figure 1.11 Project window after a successful build

==l
ABC . mcp ‘
[f¥ Full Chip Simuation ey &%
Files l Link Drderl Targets]
File Code | Data # | =
-EA Sources 51 2+ =2~
[Prain. azm 51 2+ =
=143 Include 0 0 =
ol derivative.ing 0 o=
- MCBSHCI08GP32in 1} 1} =l
=143 Project Settings i] o =
=3 Linker Files 0 0o o=
- burner. bbl nda nfa =l
+f Project.prm néa n'a =
ol Project.map néa n'a =
6 files 51 2 _

If you checked the project directory after the first successful build (make) of the project
with the Windows Explorer, you would see that another subfolder and four additional files

were created (Figure 1.12 on page 28).

Figure 1.12 main.o file generated...

B E:\ProjectsMiBCWABC_DatalStandard\ObjectCode [= |[81][X]

File Edit “iew Favorites Tools Help

Folders £

|2 Clawhammer Barjo
[Dowrloads
|3) Freescale
) Gimp
|2 Openoffice
[= I Projects
=) a8c
= [Z) ABC_Data
= [standard
) ObjectCade
1) bin
I emd
I prm
[Sources

Mame

- main.asm.o 4KE O File

'5:

Size Type

The new subfolder - ObjectCode - holds an object file for every assembly source-code file
that is assembled. In this case, themain . asm. o object-code file was generated.

28

HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window

Analysis of groups and files in the project
window

There are three default groups for this holding this project’ sfiles. It really does not matter
inwhich group afile resides aslong as that file is somewherein the project window. A file
does not even have to be in any group. The groups do not correspond to any physical
foldersin the project directory. They are simply present in the project window for
conveniently grouping files anyway you choose. Y ou can add, rename, or delete files or
groups, or you can move files or groups anywhere in the project window.

CodeWarrior groups

These groups and their usual functions are:
e Sources

This group contains the assembly source code files.
¢ Includes

This group holds include files. Oneinclude fileis for the particular CPU derivative.
In this case, the MC68HC908GP32 . inc fileisfor the MC68HCO08GP32
derivative.

« Project Settings
— Linker Files

This group holds the burner file, the Linker PRM file, and the Linker mapping
file.

NOTE Thedefault configuration of the project by the Wizard does not generate an
assembler output listing file for every * . asm source file. However, you can
afterwards select the Generate a listing file in the assembler options for the
Assembler to generate aformat-configurablelisting file of the assembly source
code (with theinclusion of includefiles, if desired). Assembler listing files
(with the * . 1 st file extension) are located in the bin subfolder in the project
directory when * . asm files are assembled with this option set.

TIP Toset up your project for generating assembler output listing files, select:
Edit > <target_name> Settings... > Target > Assembler for HC08 > Options >
Output. (The default <target_name> is Standard.) Check Generate a listing
file. If you want to format the listing files differently than the default, check
Configure listing file and make the desired options. Y ou can aso add these listing
filesto the project window for easier viewing instead of having to continually hunt
for them. For example, you might add thelisting files to the Sources group in order
to have them near the assembly source files in the project window.

HC(S)08 / RS08 Assembler Manual 29

Working with the Assembler
Analysis of groups and files in the project window

Thisinitial building of your project shows whether it is created and configured correctly.
Now you can utilize some of CodeWarrior’s features for managing your project. One
useful featureisthe creation of additional build targets for your projects. Y ou can use
multiple targets to have additional subprojects, each with its own files and configuration.

However, itisnot at all necessary to use multiple build targets and renaming files and
groups in CodeWarrior, so you might skip the following sections about some
CodeWarrior project-management features and resume the Assembler part of this tutorial
at “Writing your assembly source files” on page 43.

Creating a Target

The Wizard created one target which is named standard. You can check this out for
yourself by double-clicking on the Targets tab in the project window. The Targets panel
appears (Figure 1.13 on page 30).

Figure 1.13 Targets panel

=
ABC mcp I
| D Full Chip Simuation ME R A Y
Files | Link Order Targets |
H Targets Fe
8, Standard =
1 target I

Creating another build target iseasy. Select Project > Create Target.... (If Create Target...
isgrayed in the Project menu, click once on the project window and try again.) The New
Target dialog box appears (Figure 1.14 on page 31).

30 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window

Figure 1.14 New Target dialog box

Mews Target g|

MHame for new target:

|&pha 0.1
Mews target containg:
" Emphy target

+ Clone existing target:

%5 tandard j

Enter the name for the new target and select either of the two options. The Clone existing
target: option should be used if you plan on using any material from the existing
(Sandard) build target. Y ou can later delete whatever you do not want. Press OK. Now
there is another build target for your project (Figure 1.15 on page 31).

Figure 1.15 Two build targets are now available
=
ABC mcp I

| D Ful Chip Simulation ME R A Y

Files | Link Order Targets |

H Targets Fe
@ Standard
3 Alpha 0.1

2 targets a1 2

Y ou can use the new target by clicking itsicon so that the black arrow is attached to it and
then select the Files tab. The project window now lists the files used for the new build
target. In practice, anumber of these files will be the same cloned files used by the other
targets, but you can add or delete files as with any build target. Y ou can also select which
target is the default upon opening the project by selecting Project > Set Default Target.

This project just cloned the default Standard build target without changing the
configuration. That does not do much at this point but to changethe <target names.
So let’s create a subfolder in the Sources folder and include another main. asm file
that you can use for your new build target. If you do not create another main.asmfilein

HC(S)08 / RS08 Assembler Manual 31

Working with the Assembler
Analysis of groups and files in the project window

a separate folder, any changes to the original main . asm file would affect all build
targets.

NOTE Inpractice, you would rename the files that are not common with filesin other
build targets to some unique filename for each build target. We will rename
them later after you see what might occur when common filenames are used for
filesthat differ among build targets.

One way to have a separate assembler-sourcefile for each project isto remove the original
main.asm file from the project (both build targets simultaneously) and then add the
appropriatemain . asm file back into each build target. In either build target, right-select
themain.asm file and select Remove from the right-context menu (Figure 1.16 on

page 32).

Figure 1.16 Removing the original main.asm file simultaneously from all build targets

=l
ABC.mcp ‘

| D Fuil Chip Simulation BBy &5

Files] Lirk Dldel] Targets]

L File Code | Data W6 4 =
@ =149 Sources i o ooz~
v - e a .
=R Includes Open in Wwindows Explarer
M derivat

LR MCEsr Check Syntax
R Project 58 Compile
« [=4RALirker| Compile If Dirty
L B ———
W f Pro
@ Fro) addFiles...
Create Group,..

& files T i

[EQENCYERCYCQERCERER

A Freescale CodeWarrior dialog box appears, asking if you want to remove thisfile from
the project. Press OK. Themain.asm fileis now removed from all build targets.
However, themain . asm still remainsin the Sources folder in the project directory.
From Windows Explorer, create new subfolders, one for each build target, in the
Sources folder. You may name them as you choose, but you should use a meaningful
name, such as the same name as the appropriate build target. Then cut themain . asmfile
from the Sources folder and paste it into every build target’s folder (Figure 1.17 on
page 33)

32

HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window

Figure 1.17 Project directory with a separate main.asm source file for each build target

8% E:\ProjectstiBCiSources\tlpha 0.1
Help

File Edit “iew Favorites

Folders
[=] = Drive E(E:)
I3 Clawhammer Banjo
I Downloads
|5 Freescale
1) Gimp
15 Opencffice
= I3 Projects
=) aBC
[ABC_Data
=5 bin
C3) cmd
= prm
=) Sources

< |

= alpha 0.1
[standard +

1';'

Tools

Type
Assembly Source

Size
3KB

X Mame

~ Emain.asm

> <

Now the appropriate main . asm fileis added to each build target. In the Project menu,
select the Sources group for any of the build targets and then select Add Files.... The

Sdlect filesto add... dialog box appears (Figure 1.18 on page 33).

Figure 1.18 Select files to add... dialog box

Select files to add...

Lok ir: | (3 Sources

[5)Standard
IE] derivative.inc

Obiject name: |

Objectsof |l Files)

ﬂ Cancel

Select the appropriate folder for the build target, press Open, and select themain . asm

file. Press Open again. The Add Files dialog box appears (Figure 1.19 on page 34).

HC(S)08 / RS08 Assembler Manual

33

Working with the Assembler
Analysis of groups and files in the project window

Figure 1.19 Add Files dialog box

Add Files 3
Add files to targets:

B Targsts

[~ Standard

v Alpha 0.1

The figure above would be used for the Alpha 0.1 build target. Deselect the original build
target (Sandard) and keep the new build target (Alpha 0.1) checked. Press OK. The
main.asn fileis now added to the Alpha 0.1 build target. Repeat this procedure for
adding themain . asm to the remaining build target.

Now you can modify amain.asm filefor one build target without its adversely affecting
the other build targets. Y ou could repeat this procedure for any other filesin the project
that would be different for other build targets. However, you should not do this for those
filesthat are common to al build targets.

NOTE Themain.asm filewasadded to each build target, but only one of them is
active. The inactive main.asm file will have n/a entries for the Code and Data
columnsin the project window (Figure 1.20 on page 35).

34 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window

Figure 1.20 Project window showing active and inactive main.asm files

==l
ABC . mcp ‘
[f¥ Full Chip Simuation ~ERy &%
Files l Link, Drderl Targets]
¥ File Code | Data [2
@ [-53 Sources] 0+ « =~
-l main.asm n'a nta =l
W : Pm: sm| 0 0« « =
=13 Includes 0 0« =
ol derivative.ing a 0« =l
ol MCEEHCANAGF3Z ine 0 0« =l
¥ -3 Project Settings il 0« =l
@ [=-Z3Linker Files 0 0 - =
¥ B burmer.bbl na n'a = =l
B Project.map nia nia * =l
W - Project prm nia nia * =l
7T files 1} 1}

So far you have not yet used the editor for this project. For one of the build targets, say the
Alpha 0.1, double click on the activemain . asm filein the project window. Thisfile
opens. Adjust the mode of thema in . asm file'swindow so asto have acomfortable
view. Oneway isto choose the Docked-window option. Right-click on thetitle bar for the
main.asm file and select Docked in the right-context menu (Eigure 1.21 on page 35).

Figure 1.21 Docked-window option for the main.asm file

48 Freescale CodeWarrior

Fil= Edit Yiew Search Project Processor Expert Device Initialization “Window Help
i R=l: @3 =R % |
ix I
i @ main.
ABC.mcp l mMaimn.asnm
b~ {} - M % Floating
| [m)‘ Full Chip Simulation j i B % @ % _ ® MDI Child
CialoFilo:
Files lLink Drder] Targets] LENZL fikc
INCA
7 - N ETS
File: Code | Data [4 £ filsaDo:
@ =3 Sources] 0« o =~ DL
@l main.asm nda nda = CLEX
™ [] 0« « = 14 #501
=& Includes a 0« = FiboLoop: — DPEHA
-l derivative.inc 0 0. = TXEA
-f MCEBHCINEGR3Zinc 0 1] =l ADD 1.8
=-ERAProject Settings 0 0« =l PULL
¥ =S Linker Files 0 0 =) DENZ 1.SE
3 BB burner.bbl nda nia = FiboDome: PULH
@ Project.map néa nla = =l RTS
L3 R Project.prm néa nla = Line 13 Col12 | |4 |
7 files 0 0 _ >

HC(S)08 / RS08 Assembler Manual

35

Working with the Assembler
Analysis of groups and files in the project window

The docked-window view could be adjusted so as to appear asin Figure 1.22 on page 36.

Figure 1.22 Docked-window view for the main.asm file and project window

Freescale CodeWarrior

Fil= Edit Yiew Search Project Processor Expert Device Initialization “Window Help

BEFglocxhBAMAN EELWREER

x -
Tl main.asm I

bh-{}-n- - o' - Path: |E:\Proiects'\ABE\Sources\-’-‘«lpha 0.1%main. azm

XDEF _Startup, mmin

; we use export 'Enktry' as symkeol. This allows us to
; reference 'Entry' either in the linker .prm file

: or from OFfC++ later on

HREF __ SEE_END_SSTACK

; Include derivative-specific definitions
INCLUDE 'derivative.inc'

: wariakle/dats secticon
M¥_ZERCOPAGE: SECTICON SHCORT
Counter: DE.B 1
FikoRes : Da.B 1

; ocode section

; symbeol defined by the linker for

; Insert here your data definition

|P||D<>

MyZode - SECTICN
rmin:
_Etartup:
LTHE #__ SEE END_SSTACK ; initialize the stack pointer
TEE
LI ; enmble interrupbs
IrminLoogs
CLRA ; A conbains counbter
chntLiocg: IMCA
CEECA #14,mainLook ; larger waluss cause overflow.
-
Line 53 Col65 ||| | v
==l
ABC . mcp]
| D Ful Chip Sirulstion RaE= R e Y
Files |Link Drderl Targetsl
| Fie | Code | Data ¥4 |-
¥ =53 Sources 0 0+ & =«
i nda nda =l
o i e o xf—
a 0« =l
~f derivative.inc i] 0 s =l
FI Y [== = =T = e T nt ! -lﬂ
7 files 0 a

2

Now you can modify themain . asm filein aminor manner. Let's add aNOP instruction

after the CLI instruction. Place the cursor at the end of the comment in the CLI

36

HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window

instruction line and press Enter on the keyboard. Type NOP and press Enter once more

(Eigure 1.23 on page 37).

Figure 1.23 Modified main.asm file

e Y . . -
e & B HE=Re % B
3 mam.asm |
main.asm
i
bh-{}-m- ~ o' ~ Path; | E:\ProjectstABCAS ources\lpha 0.14main. asm L4
IDEF _Startup, main juj
; we use export 'Entry' as symbol . This allows us to -
; reference 'Entry' either in the linker .prm file —
; or from 2fC++ later on
XEEF _ SEZ END» SSTACK ; symkol defined kv the linker for -
; Include derivative-specific definitions
INCLUDE 'derivative._inc'
; variable/data secticon
MY ZERCPASE: SECTICN SHORT ; Insert here your data definition
Counter: DE B 1
FilxcRes: e B 1
; code section
My Tode: SECTTON
i
_Startups:
LLHY #_ 2Ez END SSTACK ; initialize the stack pointer
TS
LI ; enable interrupts
NoP
mainlocg:
CLEA ; A contains counter
cntLioogs: INZa
-
Line 34 Col16 | 4] | v

There are numerous ways to save any changes made by the editor to themain . asmfile.
Some of these are:

Pressing the Save icon on the Toolbar
Selecting File > Save or entering Ctrl+ Swith the keyboard.

Selecting Project > Check Syntax (Ctrl+;). This also checks the syntax for the
main.asn file asthe name for the command suggests.

Selecting Project > Compile (Ctrl+F7) or pressing the Compileicon on the Toolbar.
This also checks the syntax, assemblesthemain . asm file, and produces a
main.asm.o object-codefileinthebin folder in the project directory, if
successful.

Selecting Project > Bring Up To Date (Ctrl+U). If successful, this does everything
that Compile does plus assembling multiple assembly-code files. In addition, each

HC(S)08 / RS08 Assembler Manual

37

Working with the Assembler
Analysis of groups and files in the project window

filewith ared check mark is processed. However, no executable output (* . abs) file
is generated.

« Selecting Project > Make (F7) or pressing Make on any of the two Toolbars. This
effectsal the functions that Bring Up To Date does in addition to generating an
executable * . asm filein the bin folder, if successful

« Selecting Project > Debug (F5) or pressing the Debug icon on any of the two
Toolbars. This does everything that Make does in addition to starting the Simulator/
Debugger Build Tool (hiwave . exe inthe prog folder in the CodeWarrior
installation folder), if successful.

Generating Listing Files

It was mentioned previously that the assembler output listing files were not generated
without making configuration changes for the build target. Generating alisting file is easy
to set up using Assembler options. Select Edit > <target_name> Settings > Target >
Assembler for HC08. The Assembler for HCO8 preference panel opens (Figure 1.24 on

page 38).
Figure 1.24 Assembler for HCO8 preference panel

i@ Standard Settings [ABC.mcp]
|E Target Settings Panels J |E Azzembler for HCOS

= Target

- Target Settings
- Access Paths |
- Build Extraz
- File Mappings
- Source Trees
- 05EE Sysgen [Display generated cammandlines in message windaw
- Agsembler for HCOS
- Burner for HCOS [Use Decoder to generate Disassembly Listing
- Campiler for HCOS
- |mparter for HCOS
- Linker for HCOZ
= Editor

L Cushom Kepwards

Command Line Arguments:

Meszages Optionz

About | Help |

| Revert | Import Panel... | Export Panel.. |

ak. | Cancel | Apply |

Press Options. The HCO8 Assembler Option Settings dialog box opens (Figure 1.25 on
page 39).

38 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window

Figure 1.25 HCO08 Assembler Option Settings dialog box

HCO8 Assembler, Option Settings &

]
Code Generation] Meszages] W arioLiz]
Dutput] Input] Language] Host]

[10bject File Format

[w]Generate a listing file

[Configure lizting file

[Configure the address size it the Listing
100 not prink macro call in listing file

[0 riat privk rmacra definition in lizsting file
[100 niot prink maco exparsion in listing file
| ik | i file
riker [<file:])

-Li: Do not print inchuded files in listing file

L=Z[TEXTPATHMZr lst -Li

0K | Cahcel | Help |

Check Generate a listing file and also Do not print included files in Isting file (unless you
actually want to view the sometimes lengthy include files). Press OK twice to close the
dialog box and the preference panel. Then repeat this procedure for the remaining build
targets. With these options set, the Assembler will generate alisting fileinthebin folder
for al * . asmfilesfor each build target. Thefilenamefor thislisting fileisthe same asthe
* . asm file, but with the * . 1st file extension.

Using the samefilename for themain . asmfilefor al build targets causes a problem for
the assembler output listing file. Towhichmain . asm file doesthemain. 1st listing
file correspond? Y ou could eliminate this confusion by choosing a unique filename for the
main.asm filefor each build target. However, using the poor practice of using common
filenames for files that differ in other build targets was done intentionally so that:

* You could see the confusion it causes with listing files.
¢ Thisallows you to employ another CodeWarrior functionality - renaming files.

Renaming files

It is possible to change the name of afile in the project window, add it to the project, and
remove the former file from the project window simultaneously.

HC(S)08 / RS08 Assembler Manual 39

Working with the Assembler
Analysis of groups and files in the project window

Double-click onthe activemain . asm file'sicon in the project window. The editor opens
that file. Select File> Save as.... The Save As dialog box appears (Figure 1.26 on

page 40).

Figure 1.26 Save As dialog box

Save As EJE|
Save in; |) Standard j f:ﬁ v

main.asm

Object name; |main_8tandard.asm
Save a3 type: |,e3,|| Files(*7] ﬂ Cancel

Enter the new filename in the Object name: text box. Press Save. Close the open file by
selecting File > Close or by pressing the Close button in the Title bar of the openfile.
Now:
e Thenew filename (e.g., main Standard.asm) replacesthe former filenamein
the project window for al build targets.

« A filewith the new filnameis created in the folder selected in the Save As dialog box
<project_name> \<all_source-files>\<build_target>, or in this case:
ABC\Sources\Standard.

However, the original file still existsin itsfolder with its original filename.
Y ou can use this procedure for renaming other files in the project window:
¢ Open thefile in the project window that you want to rename.

¢ Sdect File> SaveAs....
* Browse for the folder in which to store the new file.

* Enter anew filename. Press Save.

Renaming a filename in this manner simultaneously removes the ol der file from and
imports the newer file into the project (window). Repeat this procedure for the other build
targets. Y ou can delete the two unneeded ma in . asm filesfrom the two subfolders, if you
choose, as they now longer are involved with the project. Y ou could also delete the
main.lst listingfileand themain.dbg file from thebin folder if any of themis
present.

If you build any of the two build projects from this point, auniquelisting file is generated
for each build target in the bin folder.

40

HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analysis of groups and files in the project window

Creating a new group

From the Project menu, select Create Group.... The Create Group dialog box appears
(Figure 1.27 on page 41).

Figure 1.27 Create Group dialog box

Create Group

Enter name far new group:

|Bau:| Mam

Ok I Cancel |

Enter aname for the new group in the Enter name for new group: text box. Press OK. The
new group appears in the project window (Figure 1.28 on page 41).

Figure 1.28 Project window now has another group

Freescale CodeWarrior

File Edit View Search Project Processor Expert Device Initialization Window Help

fTasEv><hBAA N NSy HRER

=1z
ABC. mcp I
[Full Chip Simation Ry &y
Files I Link Drderl Targetsl
¢ | Fie | Code | Data ¥4 | =|
L3 BadMam 0 0 = -
=-E3 Sources 51 2« +od
-l main_Standard.asm 51 2+ + =
B main_Alpha 0.1.azm nia n'a =l
=53 Includes 0 0« =l
ol derivative.ing 0 0 =l
gl MCEEHCI08GP3Z.ine 0 (1 =l
=3 Praject Settings i] 0. =l
[=HE3 Linker Files] 0« =
-l burmnerbbl néa nia =l
il Project.map nta nia e =l
R Project.prm nia nla + .ﬂ
7 files 51 2

¥

Thereisonly one reason for creating agroup: placing one or morefilesinit. And “Oops!”
The group name has an error. But you can rectify that later. Let's place thetwo listing files
located in the bin folder into the new group. (If there are not two listing files - one for

each build target, build the build targets until there are two.) Select Project > Add Files....

HC(S)08 / RS08 Assembler Manual 41

Working with the Assembler
Analysis of groups and files in the project window

Figure 1.29 New group - Select files to add... dialog box

Select files to add...
Lock in: | I bir - e mekE-

main_.ﬂlpha 0.1.dbg E‘l Project. map
|!1 main_alpha 0.1.1st
main_Standard.dbg
|£] main_standard. lst
Project.abs
Project.abs.519

Object name: |"main_8tandard.lst" "mair_alpha 0.1.1st"
Objects of | &l Files [%7] | Cancel

Select the two listing files and press Open. The Add Files dialog box appears
(Figure 1.30 on page 42).

Figure 1.30 New group - Add Files dialog box

Add Files (X
Add files to targets:

N Targets

[¥ Standard

v Alpha 0.1

|
QK. | Cancel |

Check all of the build targets - the default. Press OK. Now thelisting files are conveniently
grouped into the new group in the project window.

Renaming groups in the project window

In addition to the ease in changing your Target Name or renaming filesin the project
window, you can aso rename any of the groups in the project window.

42 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Writing your assembly source files

Double-click on the misnamed group - Bad Nam. The Rename Group diaog box appears
(Figure 1.31 on page 43).

Figure 1.31 Rename Group dialog box

Rename Group

Enter group narme:

|Listing Files

QK. | Cancel |

Enter a new name for the group and press OK. The group name is now changed in the
project window (Figure 1.32 on page 43).

Figure 1.32 Project window with the renamed group

1xl
ABC mcp ‘
| [D¥ Ful Cip Simulation ~EBEY 3y
Files]Link Dldel] Targetsl
3 File Code | Data |48 4 B
ling Files 0 0. =~
B main_Standard Ist néa nda e =
Sl main_tipha 001,05t néa nia =l
=159 Sources 52 2+ & =
@ main_Standard. asm néa néa =l
L main_tlpha 0.1 azm 52 2+ o+ =
=3 Includes 0 0« =
@ derivative.inc 0 0. =
- MCBSHCI08GP32ine 1] 0« =l
-3 Praject Settings] 0= =l
=& Linker Files 0 0« =
fl bumer. bbl nda nia e =
@ Project map néa na e =
-l Project.prm néa nia =l
9 files 52 2

Writing your assembly source files

Once your project is configured, you can start writing your application’s assembly source
code and the Linker's PRM file.

NOTE You can write an assembly application using one or several assembly units.
Each assembly unit performs one particular task. An assembly unit is
comprised of an assembly source file and, perhaps, some additional include

HC(S)08 / RS08 Assembler Manual 43

Working with the Assembler
Analyzing the project files

files. Variables are exported from or imported to the different assembly units
so that avariable defined in an assembly unit can be used in another assembly
unit. You create the application by linking all of the assembly units.

The usua procedure for writing an assembly source-code file is to use the editor that is
integrated into CodeWarrior. Y ou can begin anew file by pressing the New Text Fileicon
on the Toolbar to open anew file, write your assembly source code, and later saveit with
a* . asm file extension using the Save icon on the Toolbar to name and store it wherever
you want it placed - usually in the Sources folder.

After the assembly-code file iswritten, it is added to the project using the Project menu. If
the source fileis still open in the project window, select the Sources group icon in the
project window, single click on thefile that you are writing, and then select

Project > Add <filename> to Project. The newly created file is added to the Sources
group in the project. If you do not first select the destination group’sicon (for example,
Sources) in the project window, the file will probably be added to the bottom of the files
and groups in the project window, which is OK. You can drag and drop the icon for any
file wherever you want in the project window.

Analyzing the project files

We will analyze the default main . asm file that was generated when the project was
created with the Wizard. Listing 1.2 on page 44 is the default but renamed

main Standard.asmfilethat islocated in the Sources folder created by the
Wizard. Thisisthe assembler source code for the Fibonacci program.

Listing 1.2 main_Standard.asm file

.k
r
;

7

*
*
*
I

. %
I

*
*
*

7

7

7

I

khhkkhhhkkhhkhkdkhkhhkhkhhkhhhhkhkhhhhdhkhdhdhdhhhkdhkhdhkhkdhhhhdhkrdhkrdhdhrdrhkdrrhrhdxx

This stationery serves as the framework for a user application.
For a more comprehensive program that demonstrates the more
advanced functionality of this processor, please see the
demonstration applications, located in the examples
subdirectory of the "Freescale CodeWarrior for HC08" program
directory.
R EEEEEEEEEEREEEEE RS SRS R R R SRS EEEREEEEEEEEEEEEESESESEEESES

*
*
*
*
*
*
export symbols

XDEF _Startup, main

; we use export 'Entry' as symbol. This allows us to

; reference 'Entry' either in the linker .prm file

; or from C/C++ later on

XREF _ SEG_END SSTACK ; symbol defined by the linker
; for the end of the stack

Include derivative-specific definitions

INCLUDE 'derivative.inc'

44

HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Analyzing the project files

; variable/data section

MY ZEROPAGE: SECTION SHORT ; Insert here your data definition
Counter: DS.B 1
FiboRes: DS.B 1

; code section

MyCode : SECTION
main:
_Startup:
LDHX #__ SEG_END_SSTACK ; initialize the stack pointer
TXS
CLI ; enable interrupts
mainLoop:
CLRA ; A contains counter
cntLoop: INCA
CBEQA #14,mainLoop ; larger values cause overflow.
feed watchdog
STA Counter ; update global.
BSR CalcFibo
STA FiboRes ; store result
LDA Counter
BRA cntLoop ; next round.

; Function to calculate fibonacci numbers. Argument is in A.
CalcFibo:

DBNZA fiboDo ; fiboDo
INCA
RTS
fiboDo:
PSHA ; the counter
CLRX ; second last = 0
LDA #$01 ; last = 1
FiboLoop: PSHA
ADD 1,SP
PULX
DBNZ 1,SP,FiboLoop
FiboDone: PULH ; release counter
RTS ; result in A

;**

spurious - Spurious Interrupt Service Routine. *
P * (unwanted interrupt) *
;**
spurious: ; placed here so that security wvalue
NOP ; does not change all the time.
RTI

HC(S)08 / RS08 Assembler Manual 45

Working with the Assembler
Analyzing the project files

;**

i* Interrupt Vectors *
;**

ORG SFFFA

DC.W spurious ;
DC.W spurious ; SWI
DC.W _Startup ; Reset

Since the RS08 memory map is different from the HCO8 one (and so isthe instruction set),
Listing 1.3 on page 46 shows a similar example for RS08.

NOTE Inorder to assemble files for the RS08 derivative the option -Crs08 should be
passed to the assembler. This can be done either directly (in the command line
or in the assembler command bar) or by choosing the “ Code generation” tab
from the assembler options menu. Then select the “ Derivative family” option
and enable the RS08 Derivative Family radio button.

Listing 1.3 Contents of Example File test_rs08.asm

XDEF Entry ; Make the symbol entry visible for external module

; This is necessary to allow the linker to find the
; symbol and use it as the entry point for the
; application.

cstSec: SECTION ; Define a constant relocatable section

varl: DC.B 5 ; Assign 5 to the symbol varl

dataSec: SECTION ; Define a data relocatable section

data: DS.B 1 ; Define one byte variable in RAM

codeSec: SECTION ; Define a code relocatable section

Entry:
LDA varl
main:
INCA
STA data
BRA main

When writing your assembly source code, pay specid attention to the following:

« Make sure that symbols outside of the current sourcefile (in another sourcefileor in
the linker configuration file) that are referenced from the current sourcefile are
externally visible. Notice that we have inserted the assembly directive “XDEF
_Startup, main” whereappropriatein the example.

46 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files

« In order to make debugging from the application easier, we strongly recommend that
you define separate sections for code, constant data (defined with DC) and variables
(defined with DS). Thiswill mean that the symbols|ocated in the variable or constant
data sections can be displayed in the data window component.

* Make suretoinitialize the stack pointer when using BSR or JSR instructions in your
application. The stack can beinitialized in the assembly source code and allocated to
RAM memory in the Linker parameter file, if a * . prm fileis used.

NOTE Thedefault assembly project using the Wizard with CodeWarrior initiaizesthe
stack pointer automatically with a symbol defined by the Linker for the end of
thestack ® SEG END SSTACK”.

NOTE For the RS08 derivative initializing the stack does not apply.

Assembling your source files

Once an assembly source file is available, you can assembleit. Y ou can either utilize
CodeWarrior to assemble the * . asm files or alternatively you can use the standalone
assembler of the build toolsin the prog folder in the CodeWarrior installation.

Assembling with CodeWarrior
CodeWarrior simplifies the assembly of your assembly source code. Y ou can assemble the
source code files into object (* . o) files without linking them by:
 selecting one or more * . asm filesin the project window and then select Compile
from the Project menu (Project > Compile). Only * . asm files that were selected
will generate updated * . o object files.

« selecting Project > Bring Up To Date. It is not necessary to select any assembly
source files.
The object files are generated and placed into the ObjectCode subfolder in the project
directory. The object file (and its path) that results from assembling themain . asmfilein
the default Code Warrior project is:
<project names\<project name> Datal<build-target names\
ObjectCode\main.asm.o.

NOTE The build-target name can be changed to whatever you choose in the Target
Settings preference panel. Select Edit > <target> Settings... > Target > Target
Settings and enter the revised target name into the Target Name: text box. The
default Target Name is Standar d.

HC(S)08 / RS08 Assembler Manual a7

Working with the Assembler
Assembling your source files

Or, you can assemble all the * . asm files and link the resulting object files to generate the
executable <target names . abs file by invoking either Make or Debug from the
Project menu (Project > Make or Project > Debug). This resultsin the generation of the
<target names.abs fileinthebin subfolder of the project directory.

Two other files generated by CodeWarrior after Linking (Make) or Debug are:

® <target name>.map

This Linker map file lists the names, load addresses, and lengths of all segmentsin
your program. In addition, it lists the names and |oad addresses of any groupsin the
program, the start address, and messages about any errors the Linker encounters.

e <target name>.abs.sl9

Thisis an S-Record File that can be used for programming a ROM memory.

TIP Theremaining filein the default bin subfolder isthe <target names.dbg
file that was generated back when the * . asm file was successfully assembled.
This debugging file was generated because a bullet was present in the debugging
column in the project window.
You can enter (or deselect by toggling) a debugging bullet by clicking at the
intersection of the * . asm file (or whatever other source-code file selected for
debugging) and the debugging column in the project window. Whenever the
debugger or simulator does not show thefileinits Source window, check first to
seeif the debugging bullet is present or not in the project window. The bullet must
be present for debugging purposes.

TIP TheWizard does not generate default assembler-output listing files. If you want
such listing files generated, you have to select this option: Edit > <target_name>
Settings > Target > Assembler for HCO8 > Options. Select the Output tab in the
HCO08 Assembler Option Settings dialog box. Check Generate a listing file and Do
not print included filesin list file. (Y ou can uncheck Do not print included filesin
list fileif you choose, but be advised that the include files are usually quite
lengthy.) Now a * . 1st file will be generated in the bin subfolder of the project
directory whenever a * . asm file is assembled.

TIP Youcanaddthe *. 1st filesto the project window for easier viewing. This way
you do not have to continually hunt for them with your editor.

Listing 1.4 on page 48 showsthemain. 1st filefor this project. The comments are
truncated on the far-right edge due to size constraints of the manual’s page.

Listing 1.4 main_Standard.Ist assembler output listing file

Freescale HC08-Assembler

48 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files

(c)

Abs.

1 1

Rel.

Copyright Freescale 1987-2005

;***

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19
1238 20
1239 21
1240 22
1241 23 000000
1242 24 000001
1243 25
1244 26
1245 27
1246 28
1247 29
1248 30
1249 31 000000 45 xxxx
1250 32 000003 94
1251 33 000004 9A
1252 34
1253 35 000005 4F
1254 36 000006 4C
1255 37 000007 41 OE FB
1256 38
1257 13m O00000A C7 FFFF
1258 39 00000D B7 xx
1259 40 00000F AD 06
1260 41 000011 B7 xx

+

;* This stationery serves as the fram
For a more comprehensive program t
advanced functionality of this pro
demonstration applications, locate
subdirectory of the "Freescale Cod

directory.
R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

7

*
*

7

. %

7

. %
*
*

7

I

7

; export symbols

XDEF _Startup, main
; we use export 'Entry' a
; reference 'Entry' eithe

; or from C/C++ later on
XREF _ SEG END_SSTACK ;

; Include derivative-specific d
INCLUDE 'derivative.inc'

; variable/data section

MY ZEROPAGE: SECTION SHORT ;
Counter: DS.B 1

FiboRes: DS.B 1

; code section

MyCode: SECTION
main:
_Startup:
LDHX # SEG END SSTACK
TXS
CLI ;
mainLoop:
CLRA ;
cntLoop: INCA
CBEQA #14,mainLoop ;
feed watchdog
STACOPCTL
STA Counter ;
BSR CalcFibo
STA FiboRes ;

HC(S)08 / RS08 Assembler Manual

49

Working with the Assembler
Assembling your source files

1261 42 000013 B6 xx LDA Counter

1262 43 000015 20 EF BRA cntLoop ;
1263 44

1264 45 CalcFibo: ; Function to calculate f
1265 46 000017 4B 02 DBNZA fiboDo ;
1266 47 000019 4cC INCA

1267 48 00001A 81 RTS

1268 49 fiboDo:

1269 50 00001B 87 PSHA ;
1270 51 00001C 5F CLRX ;
1271 52 00001D A6 01 LDA #3501 ;
1272 53 00001F 87 FiboLoop: PSHA ;
1273 54 000020 9F TXA

1274 55 000021 9EEB 01 ADD 1,SP

1275 56 000024 88 PULX

1276 57 000025 9E6B 01 F6 DBNZ 1,SP,FiboLoop

1277 58 000029 8A FiboDone: PULH ;
1278 59 00002A 81 RTS ;
1279 60

1280 61 ;*************************************
1281 62 ;* spurious - Spurious Interrupt Servi
1282 63 ;* (unwanted interrupt)

Freescale HCO8-Assembler
(c) Copyright Freescale 1987-2005

Abs. Rel. Loc Obj. code Source line

1283 64 ;************************************
1284 65 spurious: ;
1285 66 00002B 9D NOP ;
1286 67 00002C 80 RTI

1287 68

1288 69 ;************************************
1289 70 ;* Interrupt Vectors
1290 71 ;************************************
1291 72 ORG SFFFA

1292 73

1293 74 a00FFFA XXXX DC.W spurious ;
1294 75 a00FFFC xXxxxX DC.W spurious

1295 76 aO0FFFE xXxXXX DC.W _Startup ;

50 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files

Assembling with the Assembler

It is also possible to use the HC(S)08 Assembler as a standalone assembler. If you prefer
not to use the assembler but do want to use the Linker, you can skip this section and
proceed to “Linking the application” on page 67.

Thistutorial does not create another project from scratch with the Build Tools, but instead
uses some files of a project aready created by the CodeWarrior Wizard. CodeWarrior can
create, configure, and mange a project much easier and quicker than using the Build
Tools. However, the Build Tools could a so create and configure another project from
scratch.

A Build Tool such asthe Assembler makes use of a project directory file for configuring
and locating its input and generated files. The folder that is designated for this purposeis
referred to by aBuild Tool asthe “current directory.”

Start the Assembler. Y ou can do this by opening the ahc08 . exe filein the prog folder
in the HCO8 CodeWarrior installation. The Assembler opens (Figure 1.33 on page 51).

Figure 1.33 HC08 Assembler opens...

Tip of the Day

@ Did you know...

Welcome to the world of embedded systems tools.
‘wie've got a lot of great tips for getting the most out of
our tools, so leave Tip of the Day turned on for a while.
I wou tumn Tip of the D ay off, it iz available from the Help
meny.

2 [+ Show Tips on Startp Next Tip | Clase £

Ready 01:35::

Read any of the Tipsif you choose to and then press Close to close the Tip of the Day
dialog box.

Configuring the Assembler

A Build Tool, such asthe Assembler, requiresinformation from configuration files. There
are two types of configuration data:

e Global

This datais common to al Build Tools and projects. There may be common data for
each Build Tool (Assembler, Compiler, Linker, ...) such aslisting the most recent

HC(S)08 / RS08 Assembler Manual 51

Working with the Assembler
Assembling your source files

projects, etc. All tools may store some global datainto themcutools. ini file.
Thetool first searchesfor thisfile in the directory of the tool itself (path of the
executable). If thereisnomcutools. ini fileinthisdirectory, thetool looks for
anmcutools.ini filelocated in the MS WINDOWS installation directory (e.g.

C:\WINDOWS). SeeListing 1.5 on page 52.

Listing 1.5 Typical locations for a global configuration file

\CW installation directory\prog\mcutools.ini -#1 priority
C:\WINDOWS\mcutools.ini - usedif thereisnomcutools. ini file above

If atool is started in the default location C: \Program Files\CWO08
V5. x\prog directory, theinitialization file in the same directory asthetool is used:

C:\Program Files\CWO08 V5.x\prog\mcutools.ini.

But if thetool is started outside the CodeWarrior installation directory, the
initiaization file in the Windows directory is used. For example,
C:\WINDOWS\mcutools.ini.

For information about entries for the global configuration file, see
Global Configuration File Entriesin the Appendices.
¢ Loca

Thisfile could be used by any Build Tool for a particular project. For information
about entries for the local configuration file, see Local Configuration File Entriesin
the Appendices.

After opening the Assembler, you would load the configuration file for your project if it
aready had one. However, you will create a new configuration file for the project in this
tutorial and save it so that when the project isreopened, its previously saved configuration
state will be used. From the File menu, select New / Default Configuration. The HCO8
Assembler Default Configuration dialog box appears (Figure 1.34 on page 53)

52 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files

Figure 1.34 HC08 Assembler New / Default dial

w! HCO8 Assembler Default Configuration

og box

File Assembler View Help

DeE 28| RAIE -V =0 |
A
A/

<@ >

Ready 23:26:53

Now let's save this configuration in anewly created folder that will become the project
directory. From the File menu, select Save Configuration As.... A Saving Configuration
as... dialog box appears. Navigate to the folder of your choice and Click on the Create
New Folder icon in the Toolbar. Enter a name for the project directory (Figure 1.35 on

page 53).

Figure 1.35 Loading configuration dialog box

Saving Configuration as...

Savein: | 3 Projects

(CABC [C15ample
[Chabsolute [Test
[Chabsolute Assembly [C3)%-15
[C)Fibonacei

(CMadel &

[C)Relocatable Assembly

File: narne: |pmiect.ini

Save as type: | Project files [*ini pit)

ﬂ Cancel

Press Open. In this case, Model T becomesthe project directory in the Projects folder.
Press Save and theproject . ini fileiscreated in the Model T folder and becomes the
local configuration file for this project. The current directory for the HCO8 Assembler is

changed to your project directory (Figure 1.36 on page 54).

HC(S)08 / RS08 Assembler Manual

53

Working with the Assembler
Assembling your source files

Figure 1.36 Assembler’s current directory switches to your project directory...

w! HCO8 Assembler E:\ProjectsiModel Tiproject.ini |Z||E|r5__<|

File Assembler Wiew Help

DeE 7w Ik ==

Y
Changed current directory to E:ZProjectaiModel T =

| £

0] ?

Ready 02:00:48

If you were to examine the project directory with the Windows Explorer at this point, it
would only containtheproject .ini configuration file that the Assembler just created
(Figure 1.37 on page 54).

Figure 1.37 Project directory in Windows Explorer

8% E:\Projects\Wodel T |’._||’E|
File Edit “iew Favorites Tools Help i

Folders X Marne Size Type
e Drive E (E1) [=)projectini 1k IMIFile
I Clawhammer Banjo
|5 Downloads
|5 Freescale
hﬁ Gimp B
1) Opencffice
= 23 Projects
() ABC
() Absolute
[3) Absolute Assembly
(25 Fibonacci
£ Model &
I3 Model T

| *

154

If you further examined the contents of the project . ini configuration file, you would
see that it contains Assembler optionsin the [AHC08_Assembler] portion of thefile. The
project.ini filefor this project only has an [AHC08_Assembler] section

(Listing 1.6 on page 54).

Listing 1.6 Contents of the project.ini file

[AHC08 Assembler]

StatusbarEnabled=1

ToolbarEnabled=1
WindowPos=0,1,-1,-1,-1,-1,66,87,505,453

54 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files

EditorType=4

The AHCO08_Assembler options are described in detail in [XXX_Assembler] Sectionin
the Appendices.

Next, you set the object-file format that you will use (HIWARE or ELF/DWARF). Select
Assembler > Options. The Assembler displays the HCO8 Assembler Option Settings
dialog box (Figure 1.38 on page 55).

Figure 1.38 .HC08 Assembler Option Settings dialog box

HCO8 Assembler Option Settings E
Code Generation] Messages] Various]
Output l Input] Language] Host]

Object File Format

Generate a listing fle

["1Configure listing file

[1Configure the address size in the Lizting
(100 ot print macro call in listing file

[10'a mot print macro definition in listing file
(100 not print macro expansion in listing file
[w]D'o not print included files in listing file
[10bject file name zpecification [enter [<file>])

“FlhIAZ0]A212012]: Objzct Fils Format

ELF/DWARF 2.0 Object File Format

-F2 -L=%(TEXTPATHN%n Ist -Li

QK | Cancel Help

In the Output panel, select the check boxes labeled Generate a listing file and Object
File Format. For the Object File Format, select the ELF/DWARF 2.0 Object File
Format in the pull-down menu. The listing file could be much shorter if the Do not
print included filesin list file check box is checked, so you may want to select that
option also. Press OK to close the HC0O8 Assembler Option Settings dialog box.

NOTE Note: For the RS08 derivative the HIWARE Object File Format is not
supported.

HC(S)08 / RS08 Assembler Manual 55

Working with the Assembler
Assembling your source files

Save the changes to the configuration by:

» selecting File > Save Configuration (Ctrl + S) or

¢ pressing the Save button on the toolbar.
After the changes to the configuration are saved, the project.ini file's contents are as
follows (Listing 1.7 on page 56).

Listing 1.7 project.ini file after some assembly options were added

[AHC08 Assembler]

StatusbarEnabled=1

ToolbarEnabled=1
WindowPos=0,1,-1,-1,-1,-1,66,87,482,269
EditorType=4

Options=-F2 -L=%(TEXTPATH)\%n.lst -Li

Input Files

Now that the project’s configuration is set, you can assemble an assembly-code file.
However, the project does not contain any source-code files at thispoint. Y ou could create
assembly * . asm and include * . inc files from scratch for this project. However, for
simplicity’s sake, you can copy-and-paste themain_Standard.asm and the
derivative.inc filesfrom the previous CodeWarrior project. For this project you
should have a project directory named Mode1 T. Within this folder, you should have
another folder named Sources, which contains the two files described above. Using a
text editor of your choice, themain Standard.asm fileshould bedightly modified so
that it appears as below (Listing 1.8 on page 56):

Listing 1.8 main.asm_Standard file

;***

7

* This stationery serves as the framework for a user application. *
* For a more comprehensive program that demonstrates the more *
;* advanced functionality of this processor, please see the *
;* demonstration applications, located in the examples *
* *
* *
* *

I

7

subdirectory of the "Freescale CodeWarrior for HCO08" program

directory.
kkhkkhkkhkkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhhhkhhkhhkhhkhhkhhkkkkkkkkkkkk***x

7

7

; export symbols
XDEF _Startup, main
; we use export ' Startup' as symbol. This allows us to
; reference ' Startup' either in the linker .prm file
; or from C/C++ later on

XREF _ SEG_END SSTACK ; symbol defined by the linker
; for the end of the stack

56 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files

Include derivative-specific definitions
INCLUDE 'derivative.inc'

; variable/data section

MY ZEROPAGE: SECTION SHORT ; Insert here your data definition
Counter: DS.B 1
FiboRes: DS.B 1

; code section

MyCode : SECTION
main:
_Startup:
LDHX #_ SEG_END_SSTACK ; initialize the stack pointer
TXS
CLI ; enable interrupts
mainLoop:
CLRA ; A contains counter
cntLoop: INCA
CBEQA #14,mainLoop ; larger values cause overflow.
STA Counter ; update global.
BSR CalcFibo
STA FiboRes ; store result
LDA Counter
BRA cntLoop ; next round.

; Function to calculate fibonacci numbers. Argument is in A.
CalcFibo:

DBNZA fiboDo ; fiboDo
INCA
RTS
fiboDo:
PSHA ; the counter
CLRX ; second last = 0
LDA #s501 ; last = 1
FiboLoop: PSHA
ADD 1,8P
PULX
DBNZ 1,SP,FiboLoop
FiboDone: PULH ; release counter
RTS ; result in A

Now there are three files in the project (Figure 1.39 on page 58):
¢ theproject. ini configuration file and

HC(S)08 / RS08 Assembler Manual 57

Working with the Assembler
Assembling your source files

¢ twofilesinthe Sources folder:

- main Standard.asm

— derivative.inc.

Figure 1.39 Project files

® E:\Projects\odel TASources

: File Edit Wiew Favorites

Folders
“e Drive E(E:)
I£3) Clawhammer Banjo
22 Dowrloads
[5) Freescale
[ﬁ Gimp
) Speniffice
B [£5) Projects
I ABC
1) Absolute
| Absolute Assembly
| Fibonacei
1) Model &
= 155 Model T

Sources

x

Tools Help

Mame

A @ derivative.ine

1 main_Standard.asm 3KE Assembly Source

<

Size Type
1KE INCFile

Assembling the assembly source-code files

Let'sassemblethemain Standard.asm file. From the File menu, select Assemble.
The Select File to Assemble dialog box appears (Figure 1.40 on page 59).

58

HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files

Figure 1.40 Select Files to Assemble dialog box
Select File to Assemble

Lok in: |L‘f} Sources j o &5 EB-

File: harne: |main_5tandard. asm
Files of type: |assembler source files [*.asm) j Cancel

Browse to the Sources folder in the project directory and select the
main Standard.asmfile PressOpenandthemain.asm fileshould start assembling
(Figure 1.41 on page 59).

Figure 1.41 Results of assembling the main.asm file...

{»! HCOB Assembler E:\ProjectsiModel Tiproject.ini *

File Assembler Wiew Help

AR o= -

"E:VProjects\lodel T\Sources‘\main_jtandard.asm"
Command Line; '-FZ -L=%(TEXTPATH)‘%n.lst -Li "E:‘\Projects\Model T\Sourcesimain_5tandard.asm™'

Top: E:\Projects\Model ThSources‘main Stendard.asm
Could not open the file 'derivatiwve.inc'

»» in "E:vProjectshModel ThSourcesimain Standard.asw”, line 19, col 0, pos 935
INCLUDE 'derivative.inc'
“
ERROR A4Z3059: File not found
HCO3 Assembler: #*% 1 errorisz), 0 warning(z), 0 information message(s)] %%
***% command line: '-F2 -L=%(TEXTPATH)%“%n.lst -Li "E:%ProjectsiModel ThSourcesimain Standard.asm™' ***
HCOS Assemhler: #%% Error occurred while processing! #%7%

Ready 04:51:04

The project window provides information about the assembly process or generates error
messages if the assembly was unsuccessful. In this case an error message is generated. -
the A2209 File not found message. If you right-click on the text containing the error
message, a context menu appears (Figure 1.42 on page 60).

NOTE If you get any other types of errors, make surethemain_Standard.asm
fileismodified as shown in Listing 1.8 on page 56

HC(S)08 / RS08 Assembler Manual 59

Working with the Assembler
Assembling your source files

Figure 1.42 Context menu

COB Assembler E:VProjectsibodel Thproject.

Flle Assembler ‘Yiew Help

e 28

BAIE- - =

"Er\ProjectsiModel T\ Fources\main Standard. asm™
Command Line: '-FZ -L=%(TEXTPATH|%%n.lst -Li "E:%FrojectsiModel T\Sourcesimain_3tandard.asm™'

Top: E:%Projecta‘Model T\Sourcea'\main Standard. asm
Could not open the file 'deriwvatiwe.inc'

=» in "E:%Projects\Model ThSources‘main Standard.asm™, line 19, col 0, poz 935
INCLUDE ‘'deriwvative.inc'
-
ERROR A2309: File not Sow=d
HCOS Assewbler: wsx 1 MainHelp wrx
#%% command line: '-F ourcesimain Standard.asw”' FFF

HCOG Assembler: #++ E!

s\main_Standard. asm’
Copy "ERROR A2309: File not Found"

05:00:47

alls context help

Select Help on “ file not found” and help for the A2309 error message appears
(Figure 1.43 on page 61).

60

HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files

Figure 1.43 A2309: File not found

E? Freescale HCO8 Assembler Messages

oL g 8r
| i -
A2309: File not found
[ERROR]
Description

The assembler cannot find the file, which name is specified in the
include directive.

Tips

o If the file exist, check if the directory where it is located is
specified in the GENPATH environment variable.

o First check if your project directory is correct. A file
"default.env" should be located there, where the environment
variables are stored.

« The macro assembler looks for the included files in the
working directory and then in the directory enumerated in the —
GENPATH environment variable.

o If the file do not exist, create it or remove the include
directive.

Y ou know that the file exists because it isincluded in the Sources folder that you
imported into the project directory. The help message for the A2309 error states that the
Assembler looksfor this“missing” includefilefirst in the current directory and thenin the
directory specified by the GENPATH environment variable. This suggests that the
GENPATH environment variable should specify the location of thederivative.inc
includefile.

NOTE If youread themain.asm file, you could have anticipated this on account of
this statement on line 20: INCLUDE 'derivative.inc'.

To fix this, select File > Configuration. The Configuration dialog box appears
(Figure 1.44 on page 62).

HC(S)08 / RS08 Assembler Manual 61

Working with the Assembler
Assembling your source files

Figure 1.44 Browsing for the Sources folder

poan s

Configuration
[EdilorSattingsI Save Configuation Environment |
a Heter kil Browse for Folden
Cay Object Path
Text Path ’ .
To Absolute Path Select a directory:
Header File Path)
o “arious Enviranment Y arisbles T -0 OpenOffice ~
EIE) Projects
=3 B3 ABC
| [[5) Absalute 2
[#-|5) Absolute Assembly |
Lo Add | Changel Delete |]} | Dawn | [# (3 Fibonacci
HC -5 Model &
b 5) Model T
HE Sources
- Relocatable Assembly
) Sample
-5 Test
R b4
< oK Cancel Help
. B — =)
Read [05:08:08

Select the Environment tab and then General Path. Pressthe “...” button and navigate in
the Browse for Folder dialog box for the folder that containsthederivative. inc file
- the aforementioned Sources folder in the project directory. Press OK to close the
Browse for Folder dialog box. The Configuration dialog box is now again active

(Figure 1.45 on page 63).

62 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files

Figure 1.45 Adding a GENPATH

X

Configuration

Editor Settings] Save Configuration Environment]

Object Path

Text Path

Absolute Path

Header File Path

Various Environment Variables

|E:"-—.Projects"-—.Model T Sources

E:\Projects“Model T \Sources

QK | Cancel Help

Press the Add button, and the path to the derivative. inc file “E:\Projects\Model
T\Sources’ now appearsinthe lower panel. Press OK. An asterisk now appearsinthe Title
bar, so save the change to the configuration by pressing the Save button in the Toolbar or
by selecting File > Save Configuration. The asterisk disappears.

TIP You can clear the messages in the Assembler window at any time by selecting
View > Log > Clear Log.

Now that you have supplied the pathtothederivative. inc file, let’ s attempt again to
assemblethemain Standard.asmfile

Select File> Assemble and again navigatetothe main Standard.asmfileand press
Open. However, the A2309 error message reappears but this time for a different include
file- MC68HC908GP32. inc. (Figure 1.46 on page 64).

NOTE In this case, the derivative.inc file has this statement:
INCLUDE 'MC68HC908GP32.inc'. Therefore, aprior reading of the
assembly-code and include files woul d suggest these include files might
require GENPATH configurations. Therefore, you should set any needed
GENPATH in advance of assembling the source-code files.

HC(S)08 / RS08 Assembler Manual 63

Working with the Assembler
Assembling your source files

Figure 1.46 Assemble attempt #2

HCO® Assembler E:\ProjectsWodel Thproject.ini
File Assembler Wiew Help
DEE 2% o = nain_5tandard.asm" j & F ==

"E:\Projectsi\Model ThSources\main Standard.asm”
Command Line: '-F& -L=%(TEXTPATH|]\%n.lst -Li "E:\ProjectsiModel ThSources‘main_Standard.asm™'

Top: E:\ProjectsiModel ThSources\main Standard. asm

"E:\Projects\Model ThSources‘derivative.inec™
Could not open the file 'MCASHCH0SGP3Z.inc'

>» in "E:ZProjecta\Model Th\iourceshderiwatiwve.inc™, line 5, col 0, pos 1&4
INCLUDE 'MCEEHCS0GGPIZ. inc'
-
ERROR AZ309: File not found
HCO8 dssembler: *** 1 error(s), 0 warning(s), 0 information message(s] ***
#*% pommand line: '-FZ -L=%(TEXTPATH)\%n.lst -Li "E:\ProjectsiModel ThSources\main_Standard.asm™' ##%%
HCO0G Assembler: *** Error occurred while processing! **%

Processing failed! 05:55:32

You fix this by repeating the GENPATH routine for the other include file (Figure 1.47 on
page 65). TheMC68HC908GP32 . inc fileislocated at this path:

CW08 V5.x\1lib\c08c\include
The include folder isthe typica place for “missing” include files.

64 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Assembling your source files

Figure 1.47 Adding another GENPATH

X

Configuration

EditorSettings] Save Configuration Enwiranment]

Warious Environment W ariables

|C:\F'mgram Files\FreezcalehOwW 0B WE.0MEYhc 0B

| | Delete| Up | |
05 %5, 04 ik he 08 inchud

1].8 | Cancel Help |

After the GENPATH is set up for the second include file and saved as before, you cantry to

assemblethemain Standard.asmfilefor the third time (Figure 1.48 on page 65).

Figure 1.48 Assemble attempt #3 - success!

: HCOB Assembler E:\ProjectsiModel Thproject.ini ™

File Assembler View Help

DeEd %% | in_Standard. asm'

"E:hvProjectsiModel ThHourceshmain Standard.asw™

Top: E:%Projecta\Model T\Jources\main Standard.asm

"E:VProjectsiModel Th3ources‘\derivatiwve.inc"”

"C:\Program Files‘\Freescale‘\CW03 ¥5.0%1ibYhcO8chinclude\MCASHCO08GP32, inc™
writing debug listing to E:%Projects\Model Th\main_ 3tandard.dbyg

Output file: "E:%ProjectsiModel Thmain Standard.o”

Code Size: 40

writing listing to E:ZProjects‘\Model Tymain Standard. lst

HCOS Assewbler: **%% 0 error(s), 0 warning(s), 0 information message(s) **¥
HCOS Assewmbler: **%% Processing ok *+%

Command Line: '-F2 -L=%(TEXTPATH)%%n.lst -Li "E:%Projects\Model Th\3ources'main Standard.asm™'

< >
Processing ok 06:00:57
HC(S)08 / RS08 Assembler Manual 65

Working with the Assembler
Assembling your source files

The Macro Assembler indicates successful assembling and indicated that the Code Size
was 40 bytes. Themessage“*** 0 error (s),” indicatesthat the

main_ Standard.asm file assembled without errors. Do not forget to save the
configuration one additional time.

The Assembler also generated amain Standard . dbg file (for use with the Simulator/
Debugger), amain_ Standard. o object file (for further processing with the Linker),
andamain Standard.lst output listing filein the project directory. The binary
object-code file has the same name as the input module, but with the* * . o’ extension -
main_Standard.o. The debug file has the same name as the input module, but with
the'* .dbg’ extension-main_Standard.dbg and the assembly output listing file has
the * . 1st extension (Figure 1.49 on page 66).

Figure 1.49 Project directory after a successful assembly

% E:\Projects\Model T EJ[E|E|
= 4]’

File Edit View Favorites Tools Help

Folders x Marmne Size | Type
% Drive E (E:) | D)Sources File Folder
I3 Clawharmmer Banjo ERR.TXT OKE Text Document
(O3 Downloads main_Standard.dbg 3KE CodeWarrior Debug Preferences
) Fresscale [#] main_Standard.lst SKB LSTFie
) Gimp main_Standard.o 3KB OFile
|5 CpenOffice @ project. ini 1KE IMIFile
= I3 Projects
|0 ABC

1) Absolute

) Absaluke Assemnbly
|5 Fibonacc

12 Model &

= O

| Sources v

The ERR . TXT fileis present in the project directory on account of the earlier failed
attempts at assembling. The ERR . TXT fileis empty upon a successful assembly. Y ou can
deletethisfile. Let' stake an additional look at the project . ini file (Figure 1.8 on

page 25).

Listing 1.9 project.ini file after GENPATH environmental variable is created

[AHC08 Assembler]

StatusbarEnabled=1

ToolbarEnabled=1

WindowPos=0,1,-1,-1,-1,-1,66,87,767,535

EditorType=1

Options=-F2 -L=%(TEXTPATH)\%n.lst -Li
RecentCommandLine0=""E:\Projects\Model T\Sources\main Standard.asm""
CurrentCommandLine=""E:\Projects\Model T\Sources\main Standard.asm""
[Environment Variables]

GENPATH=C:\Program Files\Freescale\CW08 V5.x\

66 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Linking the application

lib\hcoO8c\include;E:\Projects\Model T\Sources
OBJPATH=
TEXTPATH=
ABSPATH=
LIBPATH=

The haphazard running of this project was intentionally designed to fail in order to
illustrate what would occur if the path of any include fileis not properly configured. Be
aware that include files may be included by either * . asm or * . inc files. In addition,
remember that the 1ib folder in the CodeWarrior installation contains several derivative-
specific include and prm files available for inclusion into your projects.

Linking the application

Once the object files are available you can link your application. The linker organizes the
code and data sectionsinto ROM and RAM memory areas according to the project’slinker
parameter (PRM) file.

Linking with CodeWarrior

The Linker'sinput files are object-code files from assembler and compiler, library files,
and the Linker PRM file.

PRM file

If you are using CodeWarrior to manage your project, a pre-configured PRM filefor a
particular derivativeisalready set up (Listing 1.10 on page 67). Listing 1.11 on page 68is
an example Linker PRM file for the RS08 derivative.

Listing 1.10 Linker PRM file for the GP32 derivative - Project.prm

/* This is a linker parameter file for the GP32 */

NAMES END /* CodeWarrior will pass all the needed files to the linker
by command line. But here you may add your own files too. */

SEGMENTS /* Here all RAM/ROM areas of the device are listed. Used in
PLACEMENT below. */

ROM = READ ONLY 0x8000 TO OxXFDFF;
Z_RAM = READ WRITE 0x0040 TO OxOOFF;
RAM = READ WRITE 0x0100 TO 0x023F;

END

PLACEMENT /* Here all predefined and user segments are placed into the
SEGMENTS defined above. */
DEFAULT_ RAM INTO RAM;

HC(S)08 / RS08 Assembler Manual 67

Working with the Assembler
Linking the application

_DATA ZEROPAGE, MY ZEROPAGE INTO Z_RAM;
DEFAULT ROM, ROM VAR, STRINGS INTO ROM;
END

STACKSIZE 0x50

//VECTOR 0 _Startup /* Reset vector: This is the default entry

// point for a C/C++ application. */

//VECTOR 0 Entry /* Reset vector: this is the default entry point
for an Assembly application. */

/* For assembly applications: that this is as
well the initialization entry point */

//INIT Entry

Listing 1.11 Linker PRM file for the RS08 derivative

LINK test rs08.abs
NAMES test_rs08.o END

SEGMENTS
TINY RAM = READ WRITE 0x0000 TO 0x000D;
DIRECT_ RAM = READ WRITE 0x0020 TO O0x004F;
ROM = READ ONLY 0x3800 TO Ox3FFB;
RESET_ JMP_AREA= READ ONLY Ox3FFD TO Ox3FFF;

END

PLACEMENT

DEFAULT_ ROM
DEFAULT_ RAM

TINY RAM VARS,
DIRECT RAM_VARS

TINY RAM;

END

STACKSIZE 0x00 //

VECTOR 0 Entry
INIT Entry

no stack for RS08

INTO ROM;
INTO DIRECT_RAM;

INTO TINY RAM;
INTO DIRECT RAM,

The Linker PRM file allocates memory for the stack and the sections named in the
assembly source code files. If the sectionsin the source code are not specifically
referenced in the PLACEMENT section, then these sections are included in

DEFAULT ROM or DEFAULT RAM. You may use adifferent PRM file for each build
target instead of the default PRM file generated by the Wizard - Project . prm.

The Linker for HCO8 preference panel controls which PRM fileis used for your
CodeWarrior project. The default PRM file for a CodeWarrior project isthe PRM filein
the project window. Let's see what other options exist for the PRM file. From the Edit

68

HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Linking the application

menu, select <target_name> Settings... > Target > Linker for HCO8. The Linker for
HCO08 preference panel appears (Figure 1.50 on page 69).

Figure 1.50 Linker for HCO8 preference panel

i@ Standard Settings [Test.mcp]

|E Target Settings Panels J |E Linker for HCOS

= Target

. Command Line Arguments:
- Target Settings

- Acoess Paths

|-Wmsng‘I 100 wmzg5d1912

" Use Custom PRM file
" Use Template PRM file

- Agsembler for HCOS

- Bumer for HCOB

- Caompiler for HCOS

- |mparter for HCOS

o Link.er for HCOS

= Editor
L Cuszhom Kepwards

% Usze PRM file from project

Application Filenane:

- Build Extraz .
N N Mezzages Options
- File Mappings
- Source Trees [~ Display generated commandlines in message window
- O5EK Syzgen

™ Preprocess PRM file

|

" Abzolute, Single-File Assembly project

I

|Proiect.abs

About | Help |

|

Factory Settings |

Import Panel... | Export Panel... |

oK | Cancel | |

There are three radio buttons for selecting the PRM file and another for selecting an

absolute, single-file assembly project:
¢ Use Custom PRM file

This option will browse for an existing PRM file for the build target.

¢ Use Template PRM file

This option uses atemplate PRM in the pull-down menu and copiesit for usein your

build target.
¢ Use PRM file from project - the default
« Absolute, Sngle-File Assembly project.

An absolute assembly project does not require a PRM file. Therefore, the
configuration information that is otherwise present in aPRM file must beincluded in
asingle-file * . asmfile. Only one * . asm fileis allowed for absolute assembly.

In case you want to change the filename of the application, you can determine the
filename and its path with the Application Filename: text box.

HC(S)08 / RS08 Assembler Manual

69

Working with the Assembler
Linking the application

The'STACKSIZE' entry isused to set the stack size. The size of the stack for this project
is80 bytes. Some entriesin the Linker PRM file may be commented-out by the IDE, asare
thethreelast itemsinthe Project . prmfilein Listing 1.10 on page 67.

Linking the object-code files

Y ou can run this rel ocatabl e assembly project from the Project menu: Select Project >
Make or Project > Debug. The Linker generatesa * . abs fileanda* .abs.s19
standard S-Record Filein the bin subfolder of the project directory. Y ou can use an
S-Record File to program ROM memory (Figure 1.51 on page 70).

Figure 1.51 bin folder in the project directory in Windows Explorer after linking

% E:\Projects\iBCibin f_][ﬁ _|_r-s_? _|
¢ File Edit View Favorites Todls Help :‘,l’
Folders X Narne: Size | Twpe
12 Openoffice | EBmain_siphan.1.dba 4KEB Codewarrior Debug Preferences
= I3 Projects main_Alpha0.1.lst &KE LSTFile
= 5 ABC main_Standard.dbg 4 KE CodeWarrior Debug Preferences
=) 4BC_Data [#]main_standard.st 6kE LSTFile
= I Alpha_o.1 Project. abs 3KE ABSFile
(£ OhjectCode Project.abs.slg 1KE 3519 File
2) Standard [Project.map BKE MAP File
|3 ObisctCode
I bin
I emd
= prm
=) Sources
) Alpha 0.1
| standard w
£ > < >

TheProject.abs, Project.abs.s19,and Project .map filesin the Figure
above are the Linker output files resulting from the object-code and PRM files and
configuration in the build target that is selected in the Targets panel in the project window.

The Full Chip Smulation option in CodeWarrior was sel ected when the project was
created, so if Project > Debug is selected, the debugger opens and you can follow each
assembly-code instruction during the execution of the program with the Hiwave Simulator
(Figure 1.52 on page 71).

70

HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Linking the application

Figure 1.52 hiwave.exe - Simulator/Debugger build tool

lator;, & Real-Time Debugger, E:\Projects\AB! _Full_Chip_Simulator. ini
Wiew PRun HCOSFCS Component Procedure Window Help

D|@|@| 4]5[8] R[W| | [=|&|e-] S

El Source | {E”X\ [Assembly = B][%
E:\Prajects%AB C\binmain_Standard.dbg Line: 27 _Startup

; code section e 5000 LLHX

NyCode: SECTION 8003 Tad
main: §004 CLI
Startup: 8005 CLRA
{ ; initialize the pointet] §0065 INCA
8007 CEEQA #0x0E,*-2 sabs = OxE005
; enable interrupts 8004 3TA 0xFFFF
mainLoop:
CLRA ; & contains counter
cntloop: THCA Register

g]:EgAwaii:ér:?nLoop ; larger walues cause overflow. WWW
A |

HL a 5P FF

Data SR |68 Status | VIINZC

[ImanStandaddg [Auwo | Symb [Global |f| PC 2000

Counter undefined unsigmed char

FiboRes undefined unsigned char

VAROOOOL -32725 int

VAROOODZ -32725 int

VAROOOO3 -32765 int [Procedure

) im|

_dtartup ()
ZZ Command

/¢ Afrter load the comwands written below will be execured [Memory
RESET
done . 4omdiHCO0S_Full Chip Sipulator postload.cmd
U WU WL W WU U U
Postload command file correctly executed. WU WU WL WU WM WL U UL LU
WU UM UL UL WL WL UL UM WML
e U WU WL W WU U U
< WU WU W MU W W UG U Ui

For Help, press F1 HC905GR3Z |FCS |done \emdiHCO8_Full_Chip_Simulator_posth 7|

Y ou can single-step the Simulator through the Fibonacci program from the Run menu in
the Simulator (Run > Assembly Step or Ctrl+F11). Y ou can monitor the seven panelsin
the Simulator while following the logic in the Fibonacci application.

Linking with the Linker
If you are using the Linker (SmartLinker) build tool utility for a relocatable assembly
project, you will useaPRM file for the Linker to allocate ROM and RAM memory areas.

¢ Using atext editor, create the project’s linker parameter file. Y ou can modify a
* _prm file from another project and renameit as <target names.prm.

» Storethe PRM file in a convenient location, such as the project directory.

e Inthe <project name>.prm file, change the name of the executable (* . abs)
file to whatever you choose, e.9., <project namesx.abs. In addition, you can
also modify the start and end addresses for the ROM and RAM memory areas. The
module sModel T.prmfile— aPRM filefor an MC68HC908GP32 from another
(CodeWarrior) project was adapted — is shown in Listing 1.12 on page 72.

HC(S)08 / RS08 Assembler Manual 71

Working with the Assembler
Linking the application

Listing 1.12 Layout of a PRM file for the Linker - Model T.prm

/* This is a linker parameter file for the GP32 */

LINK Model T.abs /* Absolute executable file */
NAMES main_Standard.o /* Input object-code files are listed here. */
END

SEGMENTS /* Here all RAM/ROM areas of the device are listed. Used in
PLACEMENT below. */

ROM = READ ONLY 0x8000 TO OxFDFF;
Z_RAM = READ WRITE 0x0040 TO OxOOFF;
RAM = READ WRITE 0x0100 TO 0x023F;

END

PLACEMENT /* Here all predefined and user segments are placed into the
SEGMENTS defined above. */

DEFAULT_ RAM INTO RAM;
DATA ZEROPAGE, MY ZEROPAGE INTO Z RAM;
DEFAULT ROM, ROM VAR, STRINGS INTO ROM;

END
STACKSIZE 0x50

VECTOR 0 _Startup /* Reset vector: this is the default entry point
for an Assembly application. */

INIT Startup /* For assembly applications: that this is as
well the initialization entry point */

NOTE If you are adapting aPRM file from a CodeWarrior project, al you really need
isadding the LINK portion and adding whatever object-code filenamesthat are
to be linked in the NAMES portion.

NOTE Thedefault sizefor the stack using the CodeWarrior Wizard for the GP32is 80
bytes - (STACKSIZE 0x50). This Linker statement and
___SEG_END_SSTACK in the assembly-code snippet below determinethe size
and placement of the stack in RAM:

MyCode : SECTION ; code section

main:

_Startup:
LDHX #_ SEG _END_SSTACK ; initialize stack pointer
TXS

72 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Linking the application

The statementsin the linker parameter file are described in the Linker portion of the Build
Tool Utilities manual.

e Start the Linker.

The SmartLinker tool islocated in the prog folder in the CodeWarrior installation:
prog\linker.exe

¢ Press Close to close the Tip of the Day dialog box.

« Load the project’s configuration file. Use the same <project . ini > file that the
Assembler used for its configuration - the project . ini filein the project
directory:

File> Load Configuration and navigate to and select the project’s configuration file
(Figure 1.53 on page 73).

Figure 1.53 HC(S)08 Linker

SmartLinker Default Configuration

- [B]X]
| Loading configuration |?|&| i
Lok ir:]B tdodel T :j &= ck B~]

hSources

ﬁModeI T.prm
ﬁmain_Standard.dbg
ﬁ main_Standard. lst
main_Standard.o

File name: |project.ini
w
Files of type: IAII files [*.7] ‘:j Cancel —

Ready I

* Press Open to load the configuration file. The project directory is now the current
directory for the Linker. Y ou should press the Save button to save the configuration.
From the File menu in the Smart Linker, select Link: (File> Link). The Select Fileto
Link dialog box appears (Figure 1.54 on page 74).

HC(S)08 / RS08 Assembler Manual 73

Working with the Assembler
Linking the application

Figure 1.54 Select File to Link dialog box

i SmartLinker E:\Projects\Model Thproject.ini

Select File to Link il IR
Loak in: IE}MDdE” L‘ o £k E- (Al

) Sources

=4 Model T.prm

File: name: IM adel T.prm Open I

Files of type: Ilink parameter files [*.prm) _'_I Cancel =]
4 |
02:40:18 2

Ready

« Browseto locate and select the PRM file for your project. Press Open. The Smart
Linker links the object-code filesin the NAMES section to produce the executable
* . abs file, as specified in the LINK portion of the Linker PRM file (Figure 1.55 on

page 75).

74 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Linking the application

Figure 1.55 Linker main window after linking

SmartLinker E:‘ProjectsMModel Thproject.ini

File Smattlinker Wiew Help

O = | % K ||t Fojects\Madel TiMadel T.pm" Bk K==

Chatged current directory to E:\Projects\Model T
"E:\ProjectsyModel T Model T.prm™

Command Line: '"E:%Projects\Model T'Model T.prw™'
Feading Parameters

Linking E:%ProjectsiModel T'Model T.prm

Bead Binary Input Files

Beading file 'E:%ProjectaiyModel Tymain Standard.o’
Marking Referenced Objects

Mowving Objects across Sections

Feserving Memory for Startup Data

Allocating Objects

Preparing Startup Data

Generating Code

Generating Symbol table

Generating DWARF data wersion 2.0

Code Gize: 42

Generating MAP file 'E:\Projects‘\Model T'\Model T.map'
Smartlinker: *** 0 erroriz), 0 warning(s), 0 information nessageis) ¥#*¥
Smartlinker: *** Processing ok *%%

Processing ok 04:00;28

The messages in the linker’ s project window indicated that:

The current directory for the Linker is the project directory,
E:\Projects\Model T.

TheModel T.prm filewas used to name the executable file, which object files
were linked, and how the RAM and ROM memory areas were alocated for the
relocatable sections. The Reset and application entry points were also specified in
thisfile.

There was one object file, main_Standard.o.

The output format was DWARF 2.0.

The Code Size was 42 bytes.

A Linker Mapfile- Model T.map was generated.

No errors or warnings occurred and no information messages were issued.

The TEXTPATH environmental variable was not used for this project. Therefore, the
Linker generatesits * . map Linker Map file in the same folder that contains the PRM file
for the project. Because the ABSPATH environment variable was not used, the * . abs
executable file is generated in the same folder as the Linker PRM file. Figure 1.56 on
page 76 shows the contents of the project directory after the relocatable assembly project
was linked.

HC(S)08 / RS08 Assembler Manual 75

Working with the Assembler
Linking the application

Figure 1.56 Project directory after linking

% E:\Projects\Model T

File Edit View Favorites Tools Help w

v
Falders x Mame Size | Twpe
= [C5) Projects ~ Sources File Folder

) ABC B main_Standard.dbg 3KE Codewwarrior Debug Preferences

) Absalute) [#]main_Standard.st SKE LSTFile

[C3) Absolute Assembly main_Standard.o IKE OFile

) Fibonacci ﬂModeI T.prm 1KB Linker Parameter File

) Madel & Model_T.abs IKE ABS File

=20 5] rodel_T map 7KB MAP File

[Sources o [Dlproject.ini 1KB IMIFie

< | > < | >

The Simulator/Debugger Build Tool, hiwave . exe, located in the prog folder in the
CodeWarrior installation could be used to simulate the program that was assembled using
themain Standard.asm source-code file and linked to generatetheModel T.abs
executable.

Start the Simulator. The GUI for the Simulator appears (Figure 1.57 on page 77).

76 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Linking the application

Figure 1.57 True-Time Simulator & Real-Time Debugger

i True-Time Simulator & Real-Time Debugger C:\Program Files\Freescale\CWO08 ¥5.0\proghproject.ini
File Wew Run HCOSFCS Component Command ‘Window Help

D|o|e| &% (@] 2| ||| ¢|a|4] 9

i
BREET 0,0x00,%+3 0xE00&
BRSET 0,0x00,%+3 ;abs = 0xG00%

Register

[HCOB CPUCycles 0 | Auo
——— [y
[Procedure I=JlE Ex o sp| FF
=l sr [68 Status | VEINZC

or znnn

E1 Memory.

ud uw ua i 00 00 00 00
g -- -- -- 00 00 00 00
— 28 08 uu 00 00 80 CO 0O
Data:1 | ug 00 00 00 00 00 00 00
zo 00 FF FF 00 uu uu
Auto | Symb | Global 00w w20 00 00 FF
00 uw wa 00 ua wa 20
00 40 40 01 IF wa
UL U Ul Ul U uauua LRLBLFIFIBIRIERRY
W uu uu o wau R

Command

Data: 2 ~
I0 registers loaded for MCESHC90SGP3Z from C:WPr ™
Luta Surnb Local Startup command file does not exist.
Target Ready
A pouer-on Reset has occured.

i
%3/m)

For Help, press FL \HCQUSGP32 FCs \A pawet-on Reset has occured, Y

Select Set Connection... from the Component menu. The Set Connection dialog box
appears (Figure 1.58 on page 78)

HC(S)08 / RS08 Assembler Manual 77

Working with the Assembler
Linking the application

Figure 1.58 Set Connection dialog box

Set Connection |

Processor

Cannection

Full Chip Simulation =l Cancel
Thiz Connection supports: Help
- PRE HCOB Full Chip Simulation [FCS)

C:\Prograrn Filez\Freezcaleh Cw/08
W DhproghHCOSBFCS tgt

The CPU derivative for this project isin the HCO8 subfamily, so select HCO8 from the
Processor pull-down menu. Select Full Chip Simulation in the Connection pull-down
menu. Press OK. From the File menu, select Load Application.... The Load Executable
File dialog box appears (Figure 1.59 on page 79)

78

HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Linking the application

Figure 1.59 Load Executable File dialog box

Load Executable File

Look in: |) Modsl T

| & ®= et E-

E Sources
Model_T.abs

File narme: |ModeI_T .abs

Files of type: |Executables [".absz; "elf] j

Advanced Commands

Load Code | Load Symbols Werify Code |

Open and Load Code Optioks
r

™ erify memoary image after lnading code
{+
i

[Run after suscessful load

N |

Cancel

Browse to and select the Model T.abs filein the project directory. Press Open. The
Simulator is now set up to be run (Figure 1.60 on page 80).

HC(S)08 / RS08 Assembler Manual

79

Working with the Assembler
Directly generating an ABS file

Figure 1.60 Simulator is now ready

True-Time Simulator & Real-Time Debugger rogram Files\Freescals

Fi Wiew Run HCOBFCS Component Command Window Help

08 ¥5.0zprogiproject.ini

= TR YA L e B = - S R D

H source

nain:
startup:

; enable interrupts
mainloop:

; A contains counter
1|

[Procedure

_Startup ()

[=] : [Assembly X
_Startup

Register = 1B X
HC08 |CPU Cycles: O Luto

a [ao
sp | FF

B0
SR |68 Status | VHINZC

o mnnn

1 Memory

L ouuoau uu 00 00 00 00
uw -- -- -- 00 00 00 00
26 08 uu 00 00 80 CO OO0
uuw 00 00 00 00 00 00 00
20 00 00 FF FF 00 uu un
00 vy wu 20 00 00 FF FF .
00 v w00 wa w20 00
00 40 40 01 1F ua 00 --
WL WU W UM WA UM Ul ud
UL W UL UM WA UM U un

Data:1 M=
main_Standard.dbg Auto Symb Global

Counter undefined unsigned char
FiboRes undefined unsioned char

RFEREIEIPUES
REERRELTIRIBITEY

ZE Command

Data: 2
4 power-on Reset has occured.

_Startup Auto Symb | Local Preload command file does not exist.
Postload comwand file does not exist.
RESET
i
4] ﬂl
For Help, press F1 HCo0sGRa2 [FCs |RESET

Y ou can repeatedly press the Assembly Step (Ctrl+F11) icon to single-step the Simulator
through the assembly source-code and monitor the program’slogic of the Fibonacci
application in the eight panels within the Simulator’s GUI.

Directly generating an ABS file

Y ou can also use CodeWarrior or the Assembler build tool to generate an ABS file directly
from your assembly-source file. The Assembler may also be configured to generate an
S-Record File at the same time.

When you use CodeWarrior or the Assembler to directly generate an ABS file, thereis no
Linker involved. This means that the application must be implemented in asingle
assembly unit and must contain only absol ute sections.

80 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Directly generating an ABS file

Using CodeWarrior to generate an ABS file

Y ou can use the Wizard to produce an absol ute assembly project. To do so, you follow the
same steps in creating a relocatable-assembly project given earlier. There are some
exceptions, however:

« No PRM fileisrequired.

* The memory areaallocation is determined directly in asingle * . asm file assembly
sourcefile.

« CodeWarrior needs some configurations to be applied to the Linker and Assembler
preference panels.
Start the CodeWarrior Wizard and create an assembler project in the usual manner. See

“The Wizard” on page 19. Next, convert themain Standard.asm relocatable
assembly file to the absolute assembly file below in Listing 1.13 on page 81.

Adapting the main_Standard.asm file produced
by the Wizard

Changing the SECTION directivesin arelocatable assembly file to ORG directivesis
required. The ORG directives must specify the absolute memory areasfor ROM and RAM.
Listing 1.13 on page 81 is an adaptation of themain Standard.asm file produced
previously by the Wizard. Thisfile may be used by CodeWarrior or the Assembler build
tool.

Listing 1.13 Example source file — main_Standard.asm

;**

* This stationery serves as the framework for a user *
* application. For a more comprehensive program that
;* demonstrates the more advanced functionality of this
;* processor, please see the demonstration applications
*
*
*

7

7

* Ok ok Xk

;* located in the examples subdirectory of Codewarrior
for the HC08 program directory. *

LR RS R E LR SRS SRS SR SRS E RS SRS EE RS SRS EE SR EEEEEEEEEEEEESEE

7

7

; application entry point
ABSENTRY _ Startup
; export symbols
XDEF _Startup, main
; we use ' Startup' as an export symbol. This allows
; us to reference ' Startup' either in the linker
; *.prm file or from C/C++ later on.

; Include derivative-specific definitions
INCLUDE 'derivative.inc'

; variable/data section

HC(S)08 / RS08 Assembler Manual 81

Working with the Assembler
Directly generating an ABS file

ORG $0040
Counter: DS.B 1
FiboRes: DS.B 1

; initial value for SP
initStack: EQU S023E

; code section
ORG $8000

main:
_Startup:
LDHX #initStack ; initialize the stack pointer
TXS
CLI ; enable interrupts
mainLoop:
CLRA ; A contains a counter.
cntLoop: INCA
CBEQA #14,mainLoop ; Larger values cause overflow.
STA COPCTL ; Feed the watchdog.
STA Counter ; update global
BSR CalcFibo
STA FiboRes ; store result
LDA Counter
BRA cntLoop ; next round
CalcFibo: ; Function to compute Fibonacci numbers. Argument is in A.
DBNZA fiboDo ; fiboDo
INCA
RTS
fiboDo:
PSHA ; the counter
CLRX ; second last = 0
LDA #$01 ; last = 1
FiboLoop: PSHA ; push last
TXA
ADD 1,SP
PULX
DBNZ 1,SP,FiboLoop
FiboDone: PULH ; release counter
RTS ; Result in A

;**

;* spurious - Spurious Interrupt Service Routine. *
P (unwanted interrupt) *
;**
spurious: ; Put here so the security
NOP ; value does not change
RTI ; all the time.

82 HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Directly generating an ABS file

;**

i* Interrupt Vectors *
;**
ORG SFFFA
DC.W spurious H
DC.W spurious ; SWI
DC.W _Startup ; Reset

Listing 1.14 on page 83 is asimilar example for RS08.

Listing 1.14 Example source file abstest_rs08.asm

ABSENTRY entry; Specifies the application Entry point

XDEF entry ; Make the symbol entry visible (needed for debugging)
ORG $40 ; Define an absolute constant section

varl: DC.B 5 ; Assign 5 to the symbol varl
ORG $80 ; Define an absolute data section

data: DS.B 1 ; Define one byte variable in RAM at $80
ORG $B0O0 ; Define an absolute code section

entry:
LDA wvarl
main:
INCA
STA data
BRA main

When writing your assembly source file for direct absolute file generation, pay special
attention to the following points:
¢ TheReset vector isusually initialized in the assembly source file with the application
entry point. An absolute section containing the application’s entry point addressis
created at the reset vector address. To set the entry point of the application at address
$FFFA onthe Startup label thefollowing codeis needed (Listing 1.15 on

page 83).

Listing 1.15 Setting the Reset vector address

ORG SFFFA

DC.W spurious H

DC.W spurious ; SWI
DC.W _Startup ; Reset

The ABSENTRY directive is used to write the address of the application entry point in the generated
absolute file. To set the entry point of the application onthe _Startup label in the absolute file, the
following code is needed (Listing 1.16 on page 84).

HC(S)08 / RS08 Assembler Manual 83

Working with the Assembler
Directly generating an ABS file

Listing 1.16 Using ABSENTRY to enter the entry-point address

ABSENTRY _Startup

CAUTION We strongly recommend that you use separate sections for code,
(variable) data, and constants. All sections used in the assembler
application must be absolute and defined using the ORG directive. The
addresses for constant or code sections have to be located in the ROM
memory area, while the data sections have to be located in aRAM area
(according to the hardware that you intend to use). The programmer is
responsible for making sure that no section overlaps occur.

Reconfiguring CodeWarrior

From the Edit menu, open the Assembler for HCO8 preference panel. Select Edit >
<target_name> Settings... > Target > Assembler for HCO8. The Assembler preference

panel appears (Figure 1.61 on page 84)

Figure 1.61 Assembler for HC08 preference panel

i@ Standard Settings [Absolute.mcp]

= Target
- Target Settings
- Acoess Paths
- Build Extraz
- File Mappings
- Source Trees
- O5EK Sysgen
- Aggembler for HCOB
- Bumer for HCOB
- Compiler for HCO3
- |mparter for HCOS
- Linker for HCOS
= Editor
b Cuztom Keywords

|E Target Settings Panelz J |E Azzembler for HCOS

Command Line Arguments:
| Fa2

Messages Options

I~ Display generated commandlines in message window

[Use Decoder to generate Dizassembly Listing

About | Help |

Factary Settings| | Impart Parnel... | Export Panel... |

oK | Cancel | |

84

HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Directly generating an ABS file

Press the Options button. The HC08 Assembler Option Settings dialog box appears
(Figure 1.62 on page 85).

Figure 1.62 HC08 Assembler Option Settings dialog box

HCO08 Assembler Option Settings rg
Code Generation] Messages] Various]
Output l Input] Language] Host]

vl 2t File Formnat
Generate a listing file
[Configure listing file

[]Configure the address size in the Listing
100 ot print macro call in ligting file

100 not print macro definition in listing file
(0@ not print macro expanzion in listing file
[w] 0o not print included filez in lizting file
[“10bject file name specifization [enter [<filex])

-FlhiAZolA2120[2]: Object File Format

|ELF/DWARF 2.0 Absolut File =]

-FAZ -L="(TEXTPATH)%n st -Li

QK | Cancel Help

In the Output panel, select Object File Format > ELF/DWARF 2.0 Absolute File. Press
OK to close the dialog box. Now, select the Linker for HCO8 preference panel and select
Options. The Linker for HCO8 preference panel opens (Figure 1.63 on page 86).

HC(S)08 / RS08 Assembler Manual 85

Working with the Assembler
Directly generating an ABS file

Figure 1.63 Linker for HCO8 preference panel

i@ Standard Settings [Absolute.mcp]
|E Target Settings Panels J |E Linker for HCOZ

= Target Command Line Arguments:

- Target Settings
- hecess Pathe |
- Buid Extras |
- File Mappings

- Source Trees -

- OSEK Syzgen)
- Assembler for HCOS " Use Custam PRHM file | J
- Burmer for HCO8 " Use Template PRM fie |]

- Compiler for HCOS

- |mparter for HCOS " Use PRM file from project

™ Preprocess PRM file

Linker for HCOZ

. % Abzolute, Single-File Assembly project
= Editar

L Custom Kepwords Application Filename:

|Pr0iect.abs J
| |

Factony Settings| | Import Panel... | Export Panel.. |

ak. | Cancel | Apply |

Select the Absolute, Sngle-File Assembly project radio button and press OK. The
assembler is now configured to directly produce an absolute assembly *.abs output file.

Assembling and generating the application

All that is needed to produce the executable * . abs fileisto select Project > Make or
Project > Debug. CodeWarrior producesthe same * . abs and * . abs . s19 output files
that the Assembler and Linker generated for relocatable assembly.

The * . abs.s19 filegenerated in the bin subfolder of the project directory is astandard
S-Record File. You can burn thisfile directly into a ROM memory.

If you selected Project > Debug, the debugger opens and you can follow the execution of
the program while assembl e-stepping the Simulator. Y ou can single-step the simulator
through the program from the Run menu in the Simulator (Run > Assembly Step or Ctrl +
F11).

Using the Assembler build tool for absolute
assembly
Use the same project - Model T that was used for the relocatable assembly project. Use an

absolute assembly source file of the typelisted in Listing 1.13 on page 81, name thefile -
main.asm, and insert thisfileinto the Sources filein the project directory.

86

HC(S)08 / RS08 Assembler Manual

Working with the Assembler
Directly generating an ABS file

1. Start the Assembler. You can do this by opening the ahc08 . exe fileintheprog
folder in the HCO8 CodeWarrior installation. The Assembler opens. Close the Tip of
the Day dialog box.

2. Using File> Load Configuration, browse for project directory and set it to be the
current directory for the Assembler.

3. Select Assembler > Options. The Option Settings dial og box appears.

4. Inthe Output dialog box, select the check box in front of the label Object File Format.
The Assembler displays more information at the bottom of the dialog box.

5. Select the ELF/DWARF 2.0 Absolute File menuitem in the pull-down menu. Click OK.

6. Select the assembly source-code file that will be assembled: Select File > Assemble.
The Select File to Assemble dialog box appears (Figure 1.64 on page 87).

Figure 1.64 Select File to Assemble dialog box

Select File to Assemble E|§|

Look in: |_) Sources j . £k B

| [main. asm
rain_Standard. asm

File narme: |main.asm
Files of type: |assembler gource files [*.asm) ﬂ %

7. Browseto the absolute-assembly source-code file - main.asm. Click Open. The
Assembler now assembles the source code. Make sure that the GENPATH
configurations are set for the two include files needed for themain . asmfilein this
project in case they have not yet been previously set. Messages about the assembly
process are created in the assembler main window (Figure 1.65 on page 88).

HC(S)08 / RS08 Assembler Manual 87

Working with the Assembler
Directly generating an ABS file

Figure 1.65 Successful absolute assembly

HCO& Assembler E:Projects\WWodel Tiproject.ini

File Assembler Wiew Help

D ﬁ n ‘? k? |"E:\F'r0iects'\ModeIT\Sources\main.asm" j @ P = g

Changed current directory to E:\ProjectsiModel T
"E:yProjectsyModel Th3ources‘\main.asm"™
Command Line: '-FiZ -L=%(TEXTPATH)'%n.lst -Li "E:%ProjectsiModel T\ Sources‘\main.asm"™'

Top: E:\Projects\Model ThJourcesimain.asm

"E:%ProjectsiModel Th3ourceshderiwvative,inc™

"C:yProgram Filesh\Freescale\CWOS ¥5.0%1ibvheOdchinclude\MCGSHCS0GGP3E2. inc™
writing debuy listing to E:ZProjectsiModel Thymain.dhy

Generating SRecord File 'E:hZProjectsiModel Thmain.s='

Output file: "E:ZProjects\Model T\main.ahs"™

Code Size: 51

writing listing to E:\ProjectsiModel Thimain.lst

HCOS Aszsemhler: %% 0 error(s), 0 warning(s), 0 information message(s] *%+%
HCOS Assembler: ***% Processing ok *%%

| Ready 09:58:22

The messages indicate that:

* Anassembly source code (main.asm) file, plusderivative. inc and
MC68HC908GP32. inc fileswere read asinput.

e A debugging (main.dbg) file was generated in the project directory.

¢ An S-Record File was created, main. sx. Thisfile can be used to program ROM
memory.

« An absolute executable file was generated, main . abs.
¢ The Code Sizeis 51 bytes.
* Anassembly outlet listing file (main.1st) waswritten to the project directory.

Themain. abs file can be used as input to the Simulator, with which you can follow the
execution of your program.

88 HC(S)08 / RS08 Assembler Manual

2

Assembler Graphical User
Interface

The Macro Assembler runs under Windows 9X, Windows NT, 2000, XP, 2003, and
compatible operating systems.

This chapter covers the following topics:

« Starting the Assembler on page 89
¢ Assembler Main Window on page 90

« Editor Setting dialog box on page 96

¢ Save Configuration dialog box on page 102
¢ Option Settings dialog box on page 105

* Message settings dialog box on page 106

« About... dialog box on page 110

* Specifying the input file on page 110

* Message/Error feedback on page 111

Starting the Assembler

When you start the Assembler, the Assembler displays a standard Tip of the Day
(Figure 2.1 on page 90) window containing news and tips about the Assembler.

HC(S)08 / RS08 Assembler Manual 89

Assembler Graphical User Interface
Assembler Main Window

Figure 2.1 Tip of the Day dialog box

Tip of the Day

@ Did yvou know... -

WWelcome to the world of embedded spstems tools.
Wehe got a lot of great tips for getting the most out of
our tools, 20 leave Tip of the Day turned on for a while.
If wou turn Tip of the Day off, it is available from the Help
MREmL.

<

[+ Show Tips on Startp Hext Tip | Clase 4

Ready 01:35:;

Click Next Tip to see the next piece of information about the Assembler.
Click Close to close the Tip of the Day dialog box.

If you do not want the Assembler to automatically open the standard Tip of the Day
window when the Assembler is started, uncheck Show Tips on StartUp.

If you want the Assembler to automatically open the standard Tip of the Day window at
Assembler start up, choose Help > Tip of the Day.... The Assembler displaysthe Tip of the
Day dialog box. Check the Show Tips on SartUp check box.

Assembler Main Window

Thiswindow isonly visible on the screen when you do not specify any filename when you
start the Assembler.

The assembler window consists of awindow title, amenu bar, atoolbar, a content area,
and a status bar (Figure 2.2 on page 91).

90 HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Assembler Main Window

Figure 2.2 HC08 Assembler main window

i# HCOB Assembler E:\Projects\Model Thproject.ini

File Assembler Yiew Help

O = n ‘? k? |"E:'\Proiects'\ModeIT\Sources\main.asm" ﬂ @ }.. = ﬁ

Changed current directory to E:ZProjects\Model T
"E:yProjectsiModel T\Sources‘main.asm'
Conmand Line: '-FA4Z -L=%(TEXTPATH)%%n.lst -Li "E:‘Projecta\Model T)\5ources\main.asn™'

Top: E:ZProjects\Model ThSources‘\main.asm

"E:vProjectsiModel ThSourceshyderivative.inc™

"CihvProgram FileshFreescalesCWOS ¥5.0%1libvhcoOSchinclude\MC6EHCS0EGP3E. inc”
writing debug listing to E:%ProjectsyModel T\main.dbg

Fenerating SRecord File 'E:%FrojectzhModel Thmain. sx'

Output f£ile: "E:\Projects\Model Thmain.abs"™

Code 3ize: 51

writing listing to E:ZProjectzsiModel T.main.lst

HCO8 Assembler: *** 0 error(s), 0 warning(s), 0 information message(s) **¥
HCO8 Assembler: **% Processing ok **%

|Ready 09:58:22

Window title

The window title displays the Assembler name and the project name. If a project is not
loaded, the Assembler displays“Default Configuration” in the window title. An asterisk
(*) after the configuration name indicates that some settings have changed. The
Assembler adds an asterisk (*) whenever an option, the editor configuration, or the
window appearance changes.

Content area

The Assembler displays logging information about the assembly session in the content
area. Thislogging information consists of:

« the name of the file being assembled,

« the whole name (including full path specifications) of the files processed (main
assembly file and all included files),

« thelist of any error, warning, and information messages generated, and
« the size of the code (in bytes) generated during the assembly session.

When afileisdropped into the assembly window content area, the Assembler either loads
the corresponding file as a configuration file or the Assembler assembles the file. The
Assembler loads the file as a configuration if thefile hasthe * . ini extension. If the file
does not end with the * . ini extension, the Assembler assembles the file using the
current option settings.

HC(S)08 / RS08 Assembler Manual 91

Assembler Graphical User Interface
Assembler Main Window

All text in the assembler window content area can have context information consisting of
two items:

« afilenameincluding a position inside of afile and
¢ amessage number.

File context information is available for all output lines where a filename is displayed.
There are two ways to open the file specified in the file-context information in the editor
specified in the editor configuration:

« If afile context is available for aline, double-click on aline containing file-context
information.

¢ Click with the right mouse on the line and select “Open...”. Thisentry isonly
availableif afile context is available.

If the Assembler cannot open afile even though a context menu entry is present, then the
editor configuration information is incorrect (see the _on page 96Editor Setting dialog
box on page 96 section below).

The message number is available for any message output. There are three waysto open the
corresponding entry in the help file:

« Select oneline of the message and pressthe F1 key. If the selected line does not have
amessage number, the main help is displayed.

* Press shift-F1 and then click on the message text. If the point clicked does not
have a message number, the main help is displayed.

« Click the right mouse button on the message text and select Help on.... Thisentry is
only available if a message number is available.

Toolbar

The three buttons on the |eft hand side of the tqpl bar corresnond to the menu items of the
File menu. You can usetheNew 1 |, Load, 2 and Save E buttonsto reset, load and
save configuration files for the Macro Assembler.

The Help button % and the Context Hel p button K? alow you to open the Help file or
the Context Help.

When pressing K? the buttons above, the mouse cursor changes to a question mark
beside an arrow. The Assembler opens Help for the next item on which you click. You can
get specific Help on menus, toolbar buttons, or on the window area by using this Context
Help.

The editable combo box containsalist of the last commands which were executed. After a
command line has been selected or entered in this comhn hox, click the Assemble

button £ to execute this command. The Stop button becomes enabled whenever
some fileis assembled. When the Siop button is pressed, the assembler stops the assembly
process.

92

HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Assembler Main Window

Pressing the Options Dialog Box button }-‘ opens the Option Settings dialog box.
Pressing the Message Dialog Box button = opens the Message Settings dialog box.
Pressing the Clear button E clears the assembler window’ s content area.

Status bar

When pointing to a button in the tool bar or a menu entry, the message area displays the
function of the button or menu entry to which you are pointing.

Figure 2.3 Status bar

Processing ok 172200 él
MESSAYE area current time

Assembler menu bar

The following menus are available in the menu bar (Table 2.1 on page 93):

Table 2.1 Menu bar options

Menu Description
File menu on page 93 | Contains entries to manage Assembler configuration files
Assembler menu on Contains entries to set Assembler options
page 95
View menu on Contains entries to customize the Assembler window output
page 95
Help A standard Windows Help menu
File menu

With the file menu, Assembler configuration files can be saved or loaded. An Assembler
configuration file contains the following information:

« the assembler option settings specified in the assembler dialog boxes,
« thelist of thelast command line which was executed and the current command line,

 the window position, size, and font,

HC(S)08 / RS08 Assembler Manual 93

Assembler Graphical User Interface
Assembler Main Window

« the editor currently associated with the Assembler. This editor may be specifically
associated with the Assembler or globally defined for al Tools. (See the Editor

Setting dialog box on page 96.),

« the Tips of the Day settings, including its startup configuration, and what is the
current entry, and

« Configuration files are text fileswhich have the standard * . ini extension. You can
define as many configuration files as required for the project and can switch among
the different configuration files using the File > Load Configuration, File | Save
Configuration menu entries, or the corresponding toolbar buttons.

Table 2.2 File menu options

Menu entry Description

Assemble A standard Open File dialog box is opened, displaying
the list of all the *.asm files in the project directory. The
input file can be selected using the features from the
standard Open File dialog box. The selected file is
assembled when the Open File dialog box is closed by

clicking OK.

New/Default Resets the Assembler option settings to their default

Configuration values. The default Assembler options which are
activated are specified in the Assembler Options
chapter.

Load Configuration A standard Open File dialog box is opened, displaying

the list of all the *.ini files in the project directory. The
configuration file can be selected using the features
from the standard Open File dialog box. The
configuration data stored in the selected file is loaded
and used in further assembly sessions.

Save Configuration Saves the current settings in the configuration file
specified on the title bar.

Save Configuration A standard Save As dialog box is opened, displaying
As... the list of all the *.ini files in the project directory. The
name or location of the configuration file can be
specified using the features from the standard Save As
dialog box. The current settings are saved in the
specified configuration file when the Save As dialog box
is closed by clicking OK.

94 HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Assembler Main Window

Table 2.2 File menu options (continued)

Menu entry Description

Configuration... Opens the Configuration dialog box to specify the editor
used for error feedback and which parts to save with a
configuration.

See Editor Setting dialog box on page 96
and Save Configuration dialog box on page 102.

1. project.ini Recent project list. This list can be used to reopen a
2. ... recently opened project.
Exit Closes the Assembler.

Assembler menu

The Assembler menu (Table 2.3 on page 95) allows you to customize the Assembler. You
can graphically set or reset the Assembler options or to stop the assembling process.

Table 2.3 Assembler menu options

Menu entry Description

Options Defines the options which must be activated when assembling
an input file. (See Option Settings dialog box on page 105)

Messages Maps messages to a different message class (See Message
settings dialog box on page 106)

Stop assembling Stops the assembling of the current source file.

View menu

The View menu (Table 2.4 on page 95) lets you customize the assembler
window. Y ou can specify if the status bar or the toolbar must be displayed or be
hidden. Y ou can aso define the font used in the window or clear the window.

Table 2.4 View menu options

Menu entry Description
Toolbar Switches display from the toolbar in the assembler window.
Status Bar Switches display from the status bar in the assembler window.

HC(S)08 / RS08 Assembler Manual 95

Assembler Graphical User Interface
Editor Setting dialog box

Table 2.4 View menu options (continued)

Menu entry Description

Log... Customizes the output in the assembler window content area.
The following two entries in this table are available when Log...
is selected:

Change Font Opens a standard font dialog box. The options selected in the
font dialog box are applied to the assembler window content
area.

Clear Log Clears the assembler window content area.

Editor Setting dialog box

The Editor Setting dialog box has a main selection entry. Depending on the main type of
editor selected, the content below changes.

These are the main entries for the Editor configuration:
» “Global Editor (shared by all tools and projects)” on page 96
« “Local Editor (shared by all tools)” on page 97
« “Editor started with the command line” on page 98
« “Editor started with DDE” on page 99
e “CodeWarrior with COM” on page 100

Global Editor (shared by all tools and
projects)

This entry (Figure 2.4 on page 97) is shared by al tools (Compiler/Linker/Assembler/...)
for all projects. This setting is stored in the [Editor] section of themcutools.ini

global initialization file. Some Modifiers on page 101 can be specified in the editor
command line.

96 HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Editor Setting dialog box

Figure 2.4 Global Editor Configuration dialog box

Configuration

Editor Settings | 5ave Configuration | Erviranment |

+ Global Editor (Shared by all Tools and all Projects]
" Local Editar (Shared by all Tools)

(" Editar started with Command Line

" Editor Communication with DDE

" Codevw armion [with COM]

Editor Name |UItraEdit-32

Editar Executable |C:\F'rogram Filest\ DM Comnputer 5

Editar Arguments [z 2| 22

uze Zf far the filename, 21 for the line and % for the colurmn

0K | Cancel | Help |

Local Editor (shared by all tools)

This entry (Lon page 98) is shared by all tools (Compiler, Linker, Assembler, ...) for the
current project. This setting is stored in the [Editor] section of the local initialization
file, usually project . ini inthe current directory. Some Modifiers on page 101 can be
specified in the editor command line.

HC(S)08 / RS08 Assembler Manual 97

Assembler Graphical User Interface
Editor Setting dialog box

Figure 2.5 Local editor configuration dialog box

Configuration
Editor Settings l Save Configuration | Enviranment |

" Global Editor [Shared by all Tools and all Projects)

X]

Local Editar [Shared by all Tools]

e

(" Editor started with Command Line
" Editor Communication with DDE
~

Codetwarriar [with COM]

E ditor M ame |EditF'Ius 2

Editar Executable |E:\F'rogram FilesA\E ditPlus 2heditpl

Editar &rguments [% %

uze ZF for the filename, 21 for the line and % for the colurmn

ak | Cancel |

Help |

Editor started with the command line

When this editor typeis selected, a separate editor is associated with the Assembler for
error feedback. The editor configured in the shell is not used for error feedback.

Enter the command which should be used to start the editor (Eigure 2.6 on page 99).

The format from the editor command depends on the syntax which should be used to start
the editor. Modifiers can be specified in the editor command lineto refer to afilename and
line and column position numbers. (See the Madifiers on page 101 section below.)

98

HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Editor Setting dialog box

Figure 2.6 Command-Line Editor configuration

Configuration

X

Editar Settings l Save Configuration | Erviranment |

(™ Glabal Editor [Shared by all Tools and all Projectz]
Local Editor [Shared by all Tools)

~
(* Editor started with Comnmand Line
(™ Editor Communication with DDE

~

Codew/amor with COb)

Command Line

|E:\F'rogram FilezslD'M Computer Solutions\UltraE dit J

use %f for the filename, %I for the line and %c for the column

Ok | Cancel | Help |

Example of configuring a command-line editor

The following case portrays the syntax used for configuring an externa editors.
Listing 2.1 on page 99 can be used for the UltraEdit-32 editor.

Listing 2.1 UltraEdit-32 configuration

C:\UltraEdit32\uedit32.exe %f /#:%1

Editor started with DDE

Enter the service, topic and client name to be used for a DDE (Dynamic Data Exchange)
connection to the editor (Figure 2.7 on page 100). All entries can have modifiers for the
filename and line number, as explained in the Modifiers on page 101 section.

HC(S)08 / RS08 Assembler Manual 929

Assembler Graphical User Interface
Editor Setting dialog box

Figure 2.7 DDE Editor configuration

Configuration @

Editar Settings] Save Configurationl Envimnment]

" Global Editar [Shared by all Tools and all Projects)
" Lacal Editar [Shared by all Toalz)
(™ Editr started with Command Line
{* Editor Communication with DDE
~

Cadetwarrior [with COM)

Service Mame |deBV
Topic Hame |s_|,Jslem
Clignt Command |[open[2f]]

Use %f for the filename, X for the line and %c faor the

colurnn.

(1] Cancel | Help |

For the Microsoft Developer Studio, use the settingsin Listing 2.2 on page 100:

Listing 2.2 Microsoft Developer Studio configuration settings

Service Name: msdev
Topic Name: system
Client Command: [open(%f)]

CodeWarrior with COM

If CodeWarrior with COM is enabled, the CodeWarrior IDE (registered asa COM server
by the installation script) is used as the editor (Figure 2.8 on page 101).

100 HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Editor Setting dialog box

Figure 2.8 COM Editor Configuration

Configuration E|
E diter Settings] Save Eonfiguration] Environment]

" Global Editor [Shared by all Tools and all Projects)
" Local Editor [Shared by all Toalz]

(™ Editor started with Command Line

(™ Editor Communication with DDE

% Coderfammior with COM]

1].8 | Cancel Help

Modifiers

The configurations may contain some modifiersto tell the editor which file to open and at
which line and column.

« The £ modifier refers to the name of the file (including path and extension) where
the error has been detected.

« The %1 modifier refersto the line number where the message has been detected.
¢ The $c modifier refers to the column number where the message has been detected.

CAUTION The %1 modifier can only be used with an editor
which can be started with aline number as a parameter. Thisis not
the case for WinEdit version 3.1 or lower or for the Notepad. When you
work with such an editor, you can start it with the filename
as a parameter and then select the menu entry ‘Go to’ to jump
on the line where the message has been detected. In that case the editor
command looks like:
C:\WINAPPS\WINEDIT\Winedit.exe %f

HC(S)08 / RS08 Assembler Manual 101

Assembler Graphical User Interface
Save Configuration dialog box

NOTE Please check your editor manual to define the command line which should be
used to start the editor.

Save Configuration dialog box

The second index of the configuration dialog box contains all options for the save
operation (Figure 2.9 on page 102).

Figure 2.9 Save Configuration dialog box

Configuration &l

Editar Settings Save Configuration] Environment]

Itemns to Save
Save

v Optiots

[+ Editor Configuration Save ds

v Appearance [Position, Size, Fant]

v Erwironment Y ariables

v Save on Exit

All marked items are saved. Any unchanged items
remair valid,

ak | Cancel Help

In the Save Configuration index, there are four check boxes where you can choose which
items to saveinto a project file when the configuration is saved.

This dialog box has the following configurations:

« Options: Thisitem isrelated to the option and message settings. If this check box is
set, the current option and message settings are stored in the project file when the
configuration is saved. By disabling this check box, changes done to the option and
message settings are not saved, and the previous settings remain valid.

102 HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Save Configuration dialog box

« Editor Configuration: Thisitem isrelated to the editor settings. If you set this check
box, the current editor settings are stored in the project file when the configuration is
saved. If you disable this check box, the previous settings remain valid.

* Appearance: Thisitemisrelated to many partslike the window position (only loaded
at startup time) and the command-line content and history. If you set this check box,
these settings are stored in the project file when the current configuration is saved. If
you disable this check box, the previous settings remain valid.

« Environment Variables: With this set, the environment variable changes done in the
Environment property panel are also saved.

NOTE By disabling selective options only some parts of a configuration file can be
written. For example, when the best Assembler options are found, the save
option mark can be removed. Then future save commands will not modify the
options any longer.

« Saveon Exit: If thisoption is set, the Assembler writes the configuration on exit. The
Assembler does not prompt you to confirm this operation. If this option is not set, the
assembler does not write the configuration at exit, even if options or other parts of
the configuration have changed. No confirmation will appear in any case when
closing the assembler.

NOTE Almost all settings are stored in the project configuration file.
The only exceptions are:
- The recently used configuration list.
- All settings in the Save Configuration dialog box.

NOTE Theconfigurations of the Assembler can, and in fact are intended to, coexist in
the same file as the project configuration of other tools and the IDF. When an
editor is configured by the shell, the assembler can read this content out of the
project file, if present. The default project configuration filenameis
project.ini. The assembler automatically opens an existing
project.ini inthe current directory at startup. Also when using the -Prod:
Specify project file at startup assembler option at startup or loading the
configuration manually, a different name other than project . ini canbe
chosen.

Environment Configuration dialog box

The third page of the dialog box is used to configure the environment (Figure 2.10 on
page 104).

HC(S)08 / RS08 Assembler Manual 103

Assembler Graphical User Interface
Save Configuration dialog box

Figure 2.10 Environment Configuration dialog box

Configuration g|

EditorSettings] Save Configuration Enwiranment]

Warious Environment Wariables

|C:\F'mgram Files\FreezcalehOwW 0B WE.0MEYhc 0B

[_ecai] herae] [petee 05 | Do

C:\Program Files\FreescalehCw/08 W5, 04 b he08chine ud

1].8 Cancel Help

The content of the dialog box is read from the actual project file out of the
[Environment Variables] section.

The following variables are available (Table 2.5 on page 104):

Table 2.5 Path environment variables

Path Environment variable
General GENPATH

Object OBJPATH

Text TEXTPATH

Absolute ABSPATH

Header File LIBPATH

Various Environment Variables: other variables not covered in the above table.
The following buttons are available for the Configuration dialog box:

104 HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Option Settings dialog box

¢ Add: Adds anew line or entry

¢ Change: Changesaline or entry
* Delete: Deletesaline or entry

« Up: Movesalineor entry up

« Down: Moves aline or entry down

Note that the variables are written to the project file only if you press the Save button (or
using File-> Save Configuration or CTRL-S). In addition, it can be specified in the Save
Configuration dialog box if the environment is written to the project file or not.

Option Settings dialog box

Usethis dialog box (Figure 2.11 on page 105) to set or reset assembler options.

Figure 2.11 Option Settings dialog box

HCO8 Assembler, Option Settings

Code Generation]

Messages
Clutput l

Input]

Language]

X

] Warious]
Huost]

[10bject File Format
Generate a listing file
[Configure listing file
[]Configure the address size in the Listing
100 ot print macro call in ligting file
100 not prink macro deﬂmtmn in lighing file
C'o not pri i

listing file
M Lo ot print included =g
[10biect file name specification [enter [<f||e>]]

-Li: Do not print included files in listing file

L=%[TEXTPATH] % Ist -Li

=]

Cancel Help

HC(S)08 / RS08 Assembler Manual

105

Assembler Graphical User Interface
Message settings dialog box

The options available are arranged into different groups, and a sheet is available for each
of these groups. The content of the list box depends on the selected sheet (Table 2.6 on

page 106):

Table 2.6 Option Settings options

Group Description

Output Lists options related to the output files generation (which kind
of file should be generated).

Input Lists options related to the input files.

Language Lists options related to the programming language (ANSI-C,
C++, ...)

Host Lists options related to the host.

Code Generation Lists options related to code generation (memory models, ...).

Messages Lists options controlling the generation of error messages.

Various Lists various additional options (options used for compatibility,
)

An assembler option is set when the check box in front of it is checked. To obtain more
detailed information about a specific option, select it and pressthe F1 key or the Help
button. To select an option, click once on the option text. The option text is then displayed
inverted.

When the dialog box is opened and no option is selected, pressing the 71 key or the Help
button shows the help about this dialog box.

The available options are listed in the Assembler Options chapter.

Message settings dialog box

Y ou can use the Message Settings (Table 2.7 on page 107) dialog box to map messagesto
adifferent message class.

106 HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Message settings dialog box

Figure 2.12 Message Settings dialog box

HCO® Assembler Messape Settings §|
Dizabled] |nfarmatian] Warhing Error] Fatal]
47000; Conditional directive not clozed | [Moveta:
47007 Conditional elze not allowed here Diizahbled
A1002 CASE, DEFAULT or EMDSW detected outzide
: CASE or DEFAULT is missing | mformatian
acto hesting too deep. Possible recursion? S _—
] [n Warning
- Right parenthesiz expected _
£1053; Left parenthesiz expected
A1054: References on non-absolute objects are not al
A1055; Enor in expression
A105E: Eror at end of expression Default
A1058: egal floating paint operation
A1087: Floating Point format is not supported for this ¢ %
< > Reset Al
1].8 | Cancel | Help |

Some buttons in the dialog box may be disabled. For example, if an option cannot be
moved to an information message, the ‘ Move to: Information’ button is disabled. The
buttonsin Table 2.7 on page 107 are available in the Message Settings dialog box:

Table 2.7 Message Settings options

Button

Description

Move to: Disabled

The selected messages are disabled; they will no longer be
displayed.

Move to: Information

The selected messages are changed to information
messages.

Move to: Warning

The selected messages are changed to warning
messages.

Move to: Error

The selected messages are changed to error messages.

Move to: Default

The selected messages are changed to their default
message types.

Reset All

Resets all messages to their default message types.

OK

Exits this dialog box and saves any changes.

HC(S)08 / RS08 Assembler Manual

107

Assembler Graphical User Interface
Message settings dialog box

Table 2.7 Message Settings options (continued)

Button Description
Cancel Exits this dialog box without accepting any changes.
Help Displays online help about this dialog box.

A panel isavailable for each error message class and the content of the list box depends on
the selected panel (Table 2.8 on page 108):

Table 2.8 Message classes

Message group Description

Disabled Lists all disabled messages. That means that messages
displayed in the list box will not be displayed by the Assembler.

Information Lists all information messages. Information messages informs
about action taken by the Assembler.

Warning Lists all warning messages. When such a message is
generated, translation of the input file continues and an object
file will be generated.

Error Lists all error messages. When such a message is generated,
translation of the input file continues, but no object file will be
generated.

Fatal Lists all fatal error messages. When such a message is

generated, translation of the input file stops immediately. Fatal
messages cannot be changed. They are only listed to call
context help.

Each message has its own character (‘A’ for Assembler message) followed by a4- or
5-digit number. This number allows an easy search for the message on-line help.

Changing the class associated with a
message

Y ou can configure your own mapping of messages to the different classes. To do this, use
one of the buttons located on the right hand of the dialog box. Each button refersto a
message class. To change the class associated with a message, you have to select the
message in the list box and then click the button associated with the class where you want
to move the message.

108 HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Message settings dialog box

Example

To define the A2336: Value too big warning as an error message:
¢ Click the Warning sheet to display thelist of all warning messagesin the list box.
¢ Click on the A2336: Value too big string in the list box to select the message.

¢ Click Error to define this message as an error message. The ahc08 dialog box
appears. Press Yes to close the ahc08 dialog box (Figure 2.13 on page 109).

Figure 2.13 HC08 Assembler Message Settings dialog box

Dizabled | Information WaminglError]Fatal]

alue too big - Move to:

AZ351; Expected Comma to separate macrno angument Dizabled
A2384: |gnonng directive "<directives'
3 Information

A2 9 213 3pa _—
A2 _:/ Move selected messages 7 hddress : Errar
A2 dress sp —
i? e = | Default
a1 =
A1 b
4 | > Feset Al

1] | Cancel | Help |

NOTE Messages cannot be moved from or to the fatal error class.

NOTE The Move to buttons are enabled when all selected messages can be moved.
When one message is marked, which cannot be moved to a specific group, the
corresponding Move to button is disabled (grayed).

If you want to validate the modification you have performed in the error message
mapping, close the HCO8 Assembler Message Settings dialog box with the OK button. If
you close it using the Cancel button, the previous message mapping remains valid.

HC(S)08 / RS08 Assembler Manual 109

Assembler Graphical User Interface
About... dialog box

About... dialog box

The About... dialog box can be opened with the menu Help > About. The About... dialog
box contains much information including the current directory and the versions of
subparts of the Assembler. The main Assembler version is displayed separately on top of
the dialog box.

With the Extended Information button it is possible to get license information about all
software components in the same directory of the executable.

Press OK to close this dialog box.

NOTE During assembling, the subversions of the subparts cannot be requested. They
are only displayed if the Assembler is not processing files.

Specifying the input file

There are different ways to specify the input file which must be assembled. During
assembling of a sourcefile, the options are set according to the configuration performed
by the user in the different dialog boxes and according to the options specified on the
command line.

Before starting to assemble afile, make sure you have associated aworking directory with
your assembler.

Use the command line in the toolbar to
assemble

Y ou can use the command line to assemble a new file or to reassemble a previously
created file.

Assembling a new file

A new filename and additional assembler options can be entered in the command line. The
specified fileis assembled when you press the Assembl e button in the tool bar or when you
press the enter key.

Assembling a file which has already been
assembled

The commands executed previously can be displayed using the arrow on the right side of
the command line. A command is selected by clicking onit. It appears in the command

110

HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Message/Error feedback

line. The specified file will be processed when the button Assemble in the tool bar is
selected.

Use the File > Assemble... entry

When the menu entry File> Assemble... is selected a standard file Open File dialog box is
opened, displaying thelist of all the * . asm filesin the project directory. Y ou can browse
to get the name of thefile that you want to assemble. Select the desired file and click Open
in the Open File dialog box to assembl e the selected file.

Use Drag and Drop

A filename can be dragged from an external software (for example the File Manager/
Explorer) and dropped into the assembler window. The dropped file will be assembled
when the mouse button is rel eased in the assembler window. If afile being dragged hasthe
* ini extension, it is considered to be a configuration and it isimmediately |oaded and
not assembled. To assemble a source filewith the * . ini extension, use one of the other
methods.

Message/Error feedback

After assembly, there are several ways to check where different errors or warnings have
been detected. The default format of the error message is as_on page 111. A typical error

message is likethe onein Listing 2.4 on page 111.

Listing 2.3 Typical error feedback message

Default configuration of an error message

>> <FileName>, line <line number>, col <column numbers,
pos <absolute position in file>

<Portion of code generating the problem>

<message class><message number>: <Message strings

Listing 2.4 Error message example

>> in "C:\Freescale\demo\fiboerr.asm", line 18, col 0, pos 722
DC label

A

ERROR A1104: Undeclared user defined symbol: label

HC(S)08 / RS08 Assembler Manual 111

Assembler Graphical User Interface
Message/Error feedback

For different message formats, see the following Assembler options:
e -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode
* -WmsgFob: Message format for batch mode
e -WmsgFoi: Message format for interactive mode
* -WmsgFonf: Message format for no file information
¢ -WmsgFonp: Message format for no position information.

U_se information from the assembler
window

Once afile has been assembled, the assembler window content area displaysthe list of al
the errors or warnings detected.

The user can use his usual editor to open the source file and correct the errors.

Use a user-defined editor

The editor for Error Feedback can be configured using the Configuration dialog box.
Error feedback is performed differently, depending on whether or not the editor can be
started with aline number.

Line number can be specified on the
command line

Editors like UltraEdit-32 or WinEdit (V95 or higher) can be started with aline number in
the command line. When these editors have been correctly configured, they can be started
automatically by double clicking on an error message. The configured editor will be
started, the file where the error occurs is automatically opened and the cursor is placed on
the line where the error was detected.

Line number cannot be specified on the
command line

Editors like WinEdit v31 or lower, Notepad, or Wordpad cannot be started with aline
number in the command line. When these editors have been correctly configured, they can
be started automatically by double clicking on an error message. The configured editor
will be started, and the file is automatically opened where the error occurs. To scroll to the
position where the error was detected, you have to:

¢ Activate the assembler again.

112

HC(S)08 / RS08 Assembler Manual

Assembler Graphical User Interface
Message/Error feedback

« Click the line on which the message was generated. Thislineis highlighted on the
screen.

¢ Copy thelineinthe clipboard by pressing CTRL + C.

« Activate the editor again.

¢ Select Search > Find; the standard Find dialog box is opened.

 Paste the contents of the clipboard in the Edit box pressing CTRL + V.
¢ Click Forward to jJump to the position where the error was detected.

HC(S)08 / RS08 Assembler Manual 113

Assembler Graphical User Interface
Message/Error feedback

114 HC(S)08 / RS08 Assembler Manual

Environment

This part describes the environment variables used by the Assembler. Some of those
environment variables are also used by other tools (e.g., Linker or Compiler), so consult
al so the respective documentation.

There are three ways to specify an environment:

1) The current project file with the Environment Variables section. Thisfile may be

specified on Tool startup using the -Prod: Specify project file at startup assembler option.
This is the recommended method and is also supported by the IDE.

2) Anoptional ‘default.env’ fileinthecurrent directory. Thisfileis supported for
compatibility reasons with earlier versions. The name of thisfile may be specified using

the ENVIRONMENT: Environment file specification on page 126 environment variable.
Usingthedefault . env fileis not recommended.

3) Setting environment variables on system level (DOS level). Thisis also not
recommended.

Various parameters of the Assembler may be set in an environment using so-called
environment variables. The syntax is always the same (Listing 3.1 on page 115).

Listing 3.1 Syntax for setting environment variables

Parameter: KeyName=ParamDef

Listing 3.2 on page 115 is atypical example of setting an environment variable.

Listing 3.2 Setting the GENPATH environment variable

GENPATH=C: \INSTALL\LIB;D:\PROJECTS\TESTS; /usr/local/lib;
/home/me/my_project

These parameters may be defined in severa ways:
¢ Using system environment variables supported by your operating system.

 Putting the definitionsin afilecalled default . env (.hidefaults for UNIX)
in the default directory.

< Putting the definitionsin afile given by the value of the ENVIRONMENT system
environment variable.

HC(S)08 / RS08 Assembler Manual 115

Environment
Current directory

NOTE Thedefault directory mentioned above can be set viathe DEFAULTDIR
system environment variable.

When looking for an environment variable, all programs first search the system
environment, then the default.env (.hidefaults for UNIX) fileand finally the
global environment file given by ENVIRONMENT. If no definition can be found, a default
valueisassumed.

NOTE Theenvironment may also be changed using the -Env: Set environment
variable assembler option.

Current directory

The most important environment for all tools isthe current directory. The current
directory is the base search directory where the tool starts to search for files (e.g., for the
default.env or .hidefaults)

Normally, the current directory of alaunched tool is determined by the operating system
or by the program that launches another one (e.g., IDE, Make Utility, ...).

For the UNIX operating system, the current directory for an executableis also the current
directory from where the binary file has been started.

For MS Windows-based operating systems, the current directory definition is quite
complex:

« If thetool islaunched using the File Manager/Explorer, the current directory isthe
location of the launched executable tool.

« If thetool islaunched using an Icon on the Desktop, the current directory is the one
specified and associated with the Icon in its properties.

« If thetool islaunched by dragging afile on theicon of the executable tool on the
desktop, the directory on the desktop is the current directory.

« If thetool islaunched by another launching tool with its own current directory
specification (e.g., an editor as IDE, a Make tility, ...), the current directory isthe
one specified by the launching tool.

« When alocd project fileis loaded, the current directory is set to the directory which
contains the local project file. Changing the current project file also changes the
current directory if the other project fileisin adifferent directory. Note that
browsing for an assembly source file does not change the current directory.

To overwrite this behavior, the DEFAULTDIR: Default current directory on page 125
system environment variable may be used.

116 HC(S)08 / RS08 Assembler Manual

Environment
Environment macros

The current directory is displayed among other information with the -V: Prints the
Assembler version assembler option and in the About... box.

Environment macros

Itis possible to use macros (Listing 3.3 on page 117) in your environment settings.

Listing 3.3 Using a macro for setting environment variables

MyVAR=C: \test
TEXTPATH=$ (MyVAR) \txt
OBJPATH=3 {MyVAR}\obj

In the examplein Listing 3.3 on page 117, TEXTPATH isexpanded to ‘C: \test\txt’,
and OBJPATH isexpandedto ‘C: \test\obj’.

From the example above, you can see that you either canuse $ () or ${ }. However, the
variable referenced has to be defined somewhere.

In addition, the following specia variablesin Listing 3.4 on page 117 are allowed. Note
that they are case-sensitive and always surrounded by { }. Also the variable content
contains adirectory separator ‘ \’ aswell.

Listing 3.4 Special variables used with macros for setting environment variables

{Compiler}

Thisisthe path of the directory one level higher than the directory for executable tool. That is, if the
executableis 'C: \Freescale\prog\linker.exe’, thenthevariableis ‘C:\Freescale\’ .
Notethat {Compiler} isaso used for the Assembler.

{Project}
Path of the directory containing the current project file. For example, if the current project fileis
‘C:\demo\project.ini’, thevariablecontains ‘C:\demo\’ .

{system}
Thisisthe path were your Windows O/Sisinstalled, e.g., ' C: \WINNT\ .

Global initialization file - mctools.ini (PC
only)

All tools may store some global datainto themcutools. ini file Thetool first searches
for thisfilein the directory of the tool itself (path of the executable toal). If thereisno

HC(S)08 / RS08 Assembler Manual 117

Environment
Local configuration file (usually project.ini)

mcutools. ini fileinthisdirectory, thetool looksfor anmcutools. ini filelocated
in the MS Windows installation directory (e.g., C: \WINDOWS).

Listing 3.5 on page 118 shows two typical locations used for themcutools. ini files.

Listing 3.5 Usual locations for the mcutools.ini files

C:\WINDOWS\mcutools.ini
D:\INSTALL\prog\mcutools.ini

If atool isstarted intheD: \INSTALL\prog)\ directory, theinitiaization file located in
the same directory asthetool isused (D: \ INSTALL\prog\mcutools. ini).

But if thetool is started outside of the D: \ INSTALL\ prog directory, the initialization
filein the Windows directory isused (C: \WINDOWS\mcutools.ini).

Local configuration file (usually project.ini)

The Assembler does not changethe default . env filein any way. The Assembler only
readsthe contents. All the configuration properties are stored in the configuration file. The
same configuration file can and is intended to be used by different applications
(Assembler, Linker, etc.).

The processor name is encoded into the section name, so that the Assembler for different
processors can use the same file without any overlapping. Different versions of the same
Assembler are using the same entries. Thisusually only leads to a potential problem when
optionsonly availablein one version are stored in the configuration file. In such situations,
two files must be maintained for the different Assembler versions. If no incompatible
options are enabled when the file is last saved, the same file can be used for both
Assembler versions.

The current directory is always the directory that holds the configuration file. If a
configuration filein adifferent directory isloaded, then the current directory also changes.
When the current directory changes, the whole default . env fileis aso reloaded.
When a configuration file is loaded or stored, the options located in the ASMOPTIONS:
Default assembler options on page 123 environment variable are reloaded and added to
the project’ s options.

This behavior has to be noticed when in different directories different default.env
files exist which contain incompatible optionsin their ASMOPTIONS environment
variables. When aproject isloaded using the first default . env file, itSASMOPTIONS
options are added to the configuration file. If this configuration is then stored in adifferent
directory, whereadefault . env file exists with these incompatible options, the
Assembler adds the options and remarks the inconsi stency. Then a message box appearsto
inform the user that those options from the default . env file were not added. In such a

118

HC(S)08 / RS08 Assembler Manual

Environment
Local configuration file (usually project.ini)

situation, the user can either remove the options from the configuration file with the
advanced option dialog box or he can remove the option from the default . env file
with the shell or atext editor depending upon which options should be used in the future.

At startup, the configuration stored intheproject . ini filelocated in the current Paths
Local Configuration File Entries documents the sections and entries you can put in a
project.ini file

Most environment variables contain path lists telling where to look for files. A path listis
alist of directory names separated by semicolons following the syntax in Listing 3.6 on
page 119.

Listing 3.6 Syntax used for setting path lists of environment variables

PathList=DirSpec{";"DirSpec}
DirSpec=["*"]DirectoryName

Listing 3.7 on page 119 is atypical example of setting an environment variable.

Listing 3.7 Setting the paths for the GEBNPATH environment variable

GENPATH=C:\INSTALL\LIB;D: \PROJECTS\TESTS; /usr/local/Freescale/lib;/
home/me/my project

If adirectory nameis preceded by an asterisk (*), the programs recursively search that
whole directory tree for afile, not just the given directory itself. The directories are

searched in the order they appear in the path list. Listing 3.8 on page 119 shows the use of
an asterisk (*) for recursively searching the entire C drive for a configuration file with a

\INSTALL\LIB path.

Listing 3.8 Recursive search for a continuation line

LIBPATH=*C:\INSTALL\LIB

NOTE SomeDOS/UNIX environment variables (like GENPATH, LIBPATH, €tc.) are
used. For further details refer to Environment variables details on page 121.

We strongly recommend working with the Shell and setting the environment by means of
adefault.env fileinyour project directory. (This'project dir'canbesetinthe
Shdl's'configure' didog box). Doing it this way, you can have different projectsin
different directories, each with its own environment.

HC(S)08 / RS08 Assembler Manual 119

Environment
Line continuation

NOTE When starting the Assembler from an external editor, do not set the
DEFAULTDIR system environment variable. If you do so and this variable
does not contain the project directory given in the editor’s project
configuration, files might not be put where you expect them to be put!

A synonym aso exists for some environment variables. Those synonyms may be used for
older releases of the Assembler, but they are deprecated and thus they will be removed in
the future.

Line continuation

It is possible to specify an environment variable in an environment file (default . env
or.hidefaults) over multiple lines using the line continuation character ‘\’

(Listing 3.9 on page 120):

Listing 3.9 Using multiple lines for an environment variable

ASMOPTIONS=\
-W2\
-WmsgNe=10

Listing 3.9 on page 120 is the same as the alternate source code in Listing 3.10 on
page 120.

Listing 3.10 Alternate form of using multiple lines

ASMOPTIONS=-W2 -WmsgNe=10

But this feature may be dangerous when used together with paths (Listing 3.11 on
page 120).

Listing 3.11 A path is included by the line continuation character

GENPATH=. \

TEXTFILE=. \txt

will result in
GENPATH=.TEXTFILE=.\txt

In order to avoid such problems, we recommend that you use asemicolon’ ; * at the end of apath if there
isabackdash *\ ' at theend (Listing 3.12 on page 121 on page 121).

120 HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details

Listing 3.12 Recommended style whenever a backlash is present

GENPATH=. \ ;
TEXTFILE=.\txt

Environment variables details

The remainder of this section is devoted to describing each of the environment variables
availablefor the Assembler. The environment variables arelisted in a phabetical order and
each isdivided into severa sections (Table 3.1 on page 121).

Table 3.1 Topics used for describing environment variables

Topic

Description

Tools

Lists tools which are using this variable.

Synonym (where one

A synonym exists for some environment variables. These

exists) synonyms may be used for older releases of the Assembler but
they are deprecated and they will be removed in the future. A
synonym has lower precedence than the environment variable.

Syntax Specifies the syntax of the option in an EBNF format.

Arguments Describes and lists optional and required arguments for the

variable.

Default (if one exists)

Shows the default setting for the variable if one exists.

Description

Provides a detailed description of the option and its usage.

Example

Gives an example of usage and effects of the variable where
possible. An example shows an entry in the default.env for the
PC or in the .hidefaults for UNIX.

See also (if needed)

Names related sections.

HC(S)08 / RS08 Assembler Manual

121

Environment
Environment variables details

ABSPATH: Absolute file path

Tools

Compiler, Assembler, Linker, Decoder, or Debugger

Syntax
ABSPATH={<path>}

Arguments

<paths: Paths separated by semicolons, without spaces

Description

This environment variable is only relevant when absolute files are directly
generated by the Macro Assembler instead of relocatable object files. When this
environment variable is defined, the Assembler will store the absolute files it
producesin the first directory specified there. If ABSPATH is not set, the generated
absolute files will be stored in the directory where the source file was found.

Example

ABSPATH=\sources\bin;..\..\headers;\usr\local\bin

122

HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details

ASMOPTIONS: Default assembler options

Tools

Assembler

Syntax
ASMOPTIONS={<option>}

Arguments

<option>: Assembler command-line option

Description

If this environment variable is set, the Assembler appends its contents to its
command line each time afile is assembled. It can be used to globally specify
certain options that should always be set, so you do not have to specify them each
time afileis assembled.

Options enumerated there must be valid assembler options and are separated by
space characters.

Example
ASMOPTIONS=-W2 -L

See also
Assembler Options chapter

HC(S)08 / RS08 Assembler Manual 123

Environment
Environment variables details

COPYRIGHT: Copyright entry in object file

Tools

Compiler, Assembler, Linker, or Librarian

Syntax
COPYRIGHT=<copyright>

Arguments
<copyright>: copyright entry

Description
Each object file contains an entry for a copyright string. This information may be
retrieved from the object files using the Decoder.

Example
COPYRIGHT=Copyright

See also
Environment variables:

« USERNAME: User Namein object file on page 136
* INCLUDETIME: Creation time in the object file on page 131

124 HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details

DEFAULTDIR: Default current directory

Tools

Compiler, Assembler, Linker, Decoder, Debugger, Librarian, or Maker

Syntax
DEFAULTDIR=<directory>

Arguments

<directory>: Directory to be the default current directory

Description

The default directory for al tools may be specified with this environment variable.
Each of the tools indicated above will take the directory specified asits current
directory instead of the one defined by the operating system or launching tool (e.g.,
editor).

NOTE Thisisan environment variable on the system level (global environment
variable). It cannot be specified in adefault environment file (default.env
or.hidefaults).

Example
DEFAULTDIR=C:\INSTALL\PROJECT

See also
“Current directory” on page 116

“All tools may store some global data into the mcutools.ini file.The tool first
searches for thisfile in the directory of the tool itself (path of the executable tool).
If there is no mcutools.ini file in this directory, the tool looks for an meutools.ini
file located in the MS Windows installation directory (e.g., C\WINDOWS).”

HC(S)08 / RS08 Assembler Manual 125

Environment
Environment variables details

ENVIRONMENT: Environment file specification

Tools

Compiler, Assembler, Linker, Decoder, Debugger, Librarian, or Maker

Synonym
HIENVIRONMENT

Syntax
ENVIRONMENT=<file>

Arguments

<files: filename with path specification, without spaces

Description

This variable has to be specified on the system level. Normally the Assembler
looksin the current directory for an environment file named default .env
(.hidefaults on UNIX). Using ENVIRONMENT (e.g., setin the
autoexec.bat (DOS) or . cshrc (UNIX)), adifferent filename may be
specified.

NOTE Thisisan environment variable on the system level (global environment
variable). It cannot be specified in adefault environment file (default . env
or.hidefaults).

Example

ENVIRONMENT=\Freescale\prog\global.env

126 HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details

ERROREFILE: Filename specification error

Tools

Compiler, Assembler, or Linker

Syntax
ERRORFILE=<filename>

Arguments

<filenames: Filename with possible format specifiers

Default
EDOUT

Description

The ERRORFILE environment variable specifies the name for the error file (used
by the Compiler or Assembler).

Possible format specifiers are:
« 'sn": Substitute with the filename, without the path.
« 'sp": Substitute with the path of the source file.

e 'sf': Substitute with the full filename, i.e., with the path and name (the same as
'sp%n’).

In case of an improper error filename, a notification box is shown.

Examples

Listing 3.13 on page 127 lists dl errorsinto theMyErrors . err filein the
current directory.

Listing 3.13 Naming an error file

ERRORFILE=MyErrors.err

Listing 3.14 on page 128 lists all errorsintotheerrors fileinthe \ tmp
directory.

HC(S)08 / RS08 Assembler Manual 127

Environment
Environment variables details

Listing 3.14 Naming an error file in a specific directory

ERRORFILE=\tmp\errors

Listing 3.15 on page 128 lists all errorsinto afile with the same name as the source
file, but with extension * . err, into the same directory asthe sourcefile, eg., if
wecompileafile \sources\test.c,anerrorlistfile\sources\test.err
will be generated.

Listing 3.15 Naming an error file as source filename

ERRORFILE=%f.err

Foratest.c sourcefile,a\dirl\test.err error list file will be generated
(Listing 3.16 on page 128).

Listing 3.16 Naming an error file as source filename in a specific directory

ERRORFILE=\dirl\%n.err

Fora\diri\dir2\test.c sourcefile,a\diri\dir2\errors.txt error
list file will be generated (Listing 3.17 on page 128).

Listing 3.17 Naming an error file as a source filename with full path

ERRORFILE=%p\errors.txt

If the ERRORFILE environment variableisnot set, errors are written to the default
error file. The default error filename depends on the way the Assembler is started.

If afilenameis provided on the assembler command line, the errors are written to
the EDOUT filein the project directory.

If no filename is provided on the assembler command line, the errors are written to
theerr. txt filein the project directory.

Another example (Listing 3.18 on page 129) shows the usage of this variable to
support correct error feedback with the WinEdit Editor which looks for an error file
caled EDOUT:

128 HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details

Listing 3.18 Configuring error feedback with WinEdit

Installation directory: E:\INSTALL\prog
Project sources: D:\SRC
Common Sources for projects: E:\CLIB

Entryindefault.env (D:\SRC\default.env) :
ERRORFILE=E:\ INSTALL\prOg\EDOUT

Entry in WinEdit.ini (in Windows directory):
OUTPUT=E: \INSTALL\prog\EDOUT

NOTE Be careful to set thisvariableif the WinEdit Editor is used, otherwise the editor
cannot find the EDOUT file.

HC(S)08 / RS08 Assembler Manual 129

Environment
Environment variables details

GENPATH: Search path for input file

Tools

Compiler, Assembler, Linker, Decoder, or Debugger

Synonym
HIPATH

Syntax
GENPATH={<path>}

Arguments
<paths: Paths separated by semicolons, without spaces.

Description

The Macro Assembler will look for the sources and included filesfirst in the
project directory, then in the directories listed in the GENPATH environment
variable.

NOTE If adirectory specification in this environment variables starts with an asterisk
(*), the whole directory treeis searched recursive depth first, i.e., al
subdirectories and their subdirectories and so on are searched. Within onelevel
in the tree, the search order of the subdirectoriesis indeterminate.

Example
GENPATH=\sources\include;..\..\headers;\usr\local\lib

130

HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details

INCLUDETIME: Creation time in the object file

Tools
Compiler, Assembler, Linker, or Librarian

Syntax
INCLUDETIME= (ON|OFF)

Arguments
ON: Include time information into the object file.
OFF: Do not include time information into the object file.

Default
ON

Description

Normally each object file created contains a time stamp indicating the creation
time and data as strings. So whenever anew fileis created by one of the toals, the
new file gets a new time stamp entry.

This behavior may be undesired if for SQA reasons abinary file compare hasto be
performed. Even if the information in two object files is the same, the files do not
match exactly because the time stamps are not the same. To avoid such problems
this variable may be set to OFF. In this case the time stamp stringsin the object file
for date and time are “none” in the object file.

The time stamp may be retrieved from the object files using the Decoder.

Example
INCLUDETIME=OFF

See also
Environment variables:
* COPYRIGHT: Copyright entry in object file on page 124

« USERNAME: User Name in object file on page 136

HC(S)08 / RS08 Assembler Manual 131

Environment
Environment variables details

OBJPATH: Object file path

Tools

Compiler, Assembler, Linker, or Decoder

Syntax
OBJPATH={<path>}

Arguments
<paths: Paths separated by semicolons, without spaces

Description

This environment variable is only relevant when object files are generated by the
Macro Assembler. When this environment variable is defined, the Assembler will
store the object filesit produces in the first directory specified in path. If
OBJPATH is not set, the generated object files will be stored in the directory the
source file was found.

Example
OBJPATH=\sources\bin;..\..\headers;\usr\local\bin

132 HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details

SRECORD: S-Record type

Tools

Assembler, Linker, or Burner

Syntax

SRECORD=<RecordType>

Arguments

<RecordType>: Forcesthe type for the S-Record File which must be generated.
This parameter may takethevalue *s1’, *S2,0r *'S3".

Description

This environment variable is only relevant when absolute files are directly
generated by the Macro Assembler instead of object files. When this environment
variable is defined, the Assembler will generate an S-Record File containing
records from the specified type (S1 recordswhen S1 isspecified, S2 recordswhen
S2 is specified, and S3 records when S3 is specified).

NOTE If the SRECORD environment variableis set, it is the user’ s responsibility to
specify the appropriate type of S-Record File. If you specify S1 while your
codeisloaded above 0xFFFF, the S-Record File generated will not be correct
because the addresses will all be truncated to 2-byte values.

When this variable is not set, the type of S-Record File generated will depend on
the size of the address, which must be loaded there. If the address can be coded on
2 bytes, an s1 record is generated. If the addressis coded on 3 bytes, an S2 record
is generated. Otherwise, an S3 record is generated.

Example
SRECORD=82

HC(S)08 / RS08 Assembler Manual 133

Environment
Environment variables details

TEXTPATH: Text file path

Tools

Compiler, Assembler, Linker, or Decoder

Syntax
TEXTPATH={<path>}

Arguments
<paths: Paths separated by semicolons, without spaces.

Description
When this environment variable is defined, the Assembler will store the listing
filesit producesin the first directory specified in path. If TEXTPATH is not set,
the generated listing files will be stored in the directory the source file was found.
Example

TEXTPATH=\sources\txt;..\..\headers;\usr\local\txt

134 HC(S)08 / RS08 Assembler Manual

Environment
Environment variables details

TMP: Temporary directory

Tools

Compiler, Assembler, Linker, Debugger, or Librarian

Syntax

TMP=<directory>

Arguments

<directory>: Directory to be used for temporary files

Description

If atemporary file has to be created, normally the ANSI function tmpnam () is
used. This library function stores the temporary files created in the directory
specified by this environment variable. If the variable is empty or does not exist,
the current directory is used. Check this variableif you get an error message
“Cannot create temporary file”.

NOTE TMP isan environment variable on the system level (globa environment
variable). It CANNOT be specified in a default environment file (default . env
or .hidefaults).

Example
TMP=C: \TEMP

See also
Current directory on page 116 section

HC(S)08 / RS08 Assembler Manual 135

Environment
Environment variables details

USERNAME: User Name in object file

Tools

Compiler, Assembler, Linker, or Librarian

Syntax
USERNAME=<user>

Arguments

<users>: Name of user

Description
Each object file contains an entry identifying the user who created the object file.
Thisinformation may be retrieved from the object files using the decoder.
Example
USERNAME=PowerUser

See also
Environment variables:
¢ COPYRIGHT: Copyright entry in object file on page 124
« INCLUDETIME: Creation timein the object file on page 131

136 HC(S)08 / RS08 Assembler Manual

Files

This chapter covers these topics:
¢ |Input files on page 137
¢ Output files on page 137
¢ Output files on page 137

Input files

Input filesto the Assembler:

e Sourcefiles on page 137
* Object files on page 138

Source files

The Macro Assembler takes any file asinput. It does not require the filename to have a
specia extension. However, we suggest that al your source filenames have the * . asm
extension and all included files have the * . inc.extension. Source files will be searched
first in the project directory and then in the directories enumerated in GENPATH: Search

path for input file

Include files

The search for include files is governed by the GENPATH environment variable. Include
files are searched for first in the project directory, then in the directories given in the
GENPATH environment variable. The project directory is set viathe Shell, the Program
Manager, or the DEFAULTDIR: Default current directory environment variable.

Output files

Output files from the Assembler:

¢ Object files on page 138

« Absolutefiles on page 138
¢ S-Record Files on page 138

HC(S)08 / RS08 Assembler Manual 137

Files
Output files

¢ Listing files on page 139
¢ Debug ligting files on page 139
* Error listing file on page 139

Object files

After a successful assembling session, the Macro Assembler generates an object file
containing the target code as well as some debugging information. Thisfile iswritten to
the directory given in the OBJPATH: Object file path environment variable. If that
variable contains more than one path, the object file is written in the first directory given;
if thisvariableis not set at all, the object file is written in the directory the source file was
found. Object files always get the * . o extension.

Absolute files

When an application is encoded in a single module and al the sections are absolute
sections, the user can decide to generate directly an absolute file instead of an object file.
Thisfileiswritten to the directory given in the ABSPATH: Absolutefile path
environment variable. If that variable contains more than one path, the absolute fileis
written in the first directory given; if this variable is not set at al, the absolute fileis
written in the directory the source file was found. Absolute files always get the * . abs
extension.

S-Record Files

When an application is encoded in a single module and al the sections are absolute
sections, the user can decide to generate directly an ELF absolute file instead of an object
file. In that case an S-Record File is generated at the same time. Thisfile can be burnt into
an EPROM. It containsinformation stored in al the READ_ONLY sectionsin the
application. The extension for the generated S-Record File depends on the setting from the
SRECORD: S-Record type environment variable.

e If SRECORD = S1, the S-Record File getsthe * . s1 extension.
e If SRECORD = S2, the S-Record File getsthe * . s2 extension.
¢ If SRECORD = S3, the S-Record File getsthe * . s3 extension.
¢ If SRECORD isnot set, the S-Record File getsthe * . sx extension.

Thisfile iswritten to the directory given in the ABSPATH environment variable. If that
variable contains more than one path, the S-Record File is written in the first directory
given; if thisvariableis not set at al, the S-Record File is written in the directory the
source file was found.

138

HC(S)08 / RS08 Assembler Manual

Files
Output files

Listing files
After successful assembling session, the Macro Assembler generates alisting file
containing each assembly instruction with their associated hexadecimal code. This
fileis always generated when the -L : Generate alisting file assembler optionis
activated (even when the Macro Assembler generates directly an absolute file).
Thisfileiswritten to the directory given in the TEXTPATH: Text file
path.environment variable. If that variable contains more than one path, the listing
fileiswritten in thefirst directory given; if this variable is not set at al, thelisting
fileiswritten in the directory the source file was found. Listing files always get the
* . 1st extension. The format of the listing fileis described in the Assembler

Listing File chapter.

Debug listing files

After successful assembling session, the Macro Assembler generates a debug listing file,
which will be used to debug the application. Thisfileis always generated, even when the
Macro Assembler directly generates an absolute file. The debug listing file isaduplicate
from the source, where all the macros are expanded and the include files merged. Thisfile
iswritten to the directory given in the OBJPATH: Object file path environment variable.
If that variable contains more than one path, the debug listing file is written in the first
directory given; if thisvariable is not set at all, the debug listing fileis written in the
directory the source file was found. Debug listing files always get the * . dbg extension.

Error listing file

If the Macro Assembler detects any errors, it does not create an object file but does create
an error listing file. Thisfile is generated in the directory the source file was found (see
ERRORFILE: Filename specification error.

If the Assembler’ swindow is open, it displaysthe full path of al include files read. After
successful assembling, the number of code bytes generated is displayed, too. In case of an
error, the position and filename where the error occursiis displayed in the assembler
window.

If the Assembler is started from the IDE (with '$ £' given on the command line) or
CodeWright (with 'sb%e' given on the command line), this error fileis not produced.
Instead, it writes the error messages in a special Microsoft default format in afile called
EDOUT. Use WinEdit's Next Error or CodeWright's Find Next Error command to see
both error positions and the error messages.

HC(S)08 / RS08 Assembler Manual 139

Files
File Processing

Interactive mode (Assembler window open)
If ERRORFILE is set, the Assembler creates a message file named as specified in this
environment variable.

If ERRORFILE isnot set, adefault file named err . txt isgenerated in the current
directory.

Batch mode (Assembler window not open)

If ERRORFILE is set, the Assembler creates a message file named as specified in this
environment variable.

If ERRORFILE isnot set, adefault file named EDOUT is generated in the current
directory.

File Processing

Figure 4.1 on page 140 shows the priority levels for the various files used by the
Assembler.

Figure 4.1 Files used with the Assembler

asm 1. current dir ine 1. current dir
2. GENPATH 2. GENPATH
iy,
Assembler
ERRORFILE
o | 1. OBIPATH 1st | 1. TEXTPATH | ERR.TXT
dbg | 2. Source file 2. Source file or
path path EDOUT
abs | 1. ABSPATH
2. Source file
path

140 HC(S)08 / RS08 Assembler Manual

Files
File Processing

HC(S)08 / RS08 Assembler Manual 141

Files
File Processing

142 HC(S)08 / RS08 Assembler Manual

Assembler Options

Types of assembler options

The Assembler offers a number of assembler options that you can use to control the
Assembler’ s operation. Options are composed of adash/minus(-) followed by one or
more |etters or digits. Anything not starting with a dash/minus is supposed to be the name
of asourcefileto be assembled. Assembler options may be specified on the command line

or inthe ASMOPTIONS: Default assembler options (Table 5.1 on page 143) environment
variable. Typically, each Assembler option is specified only once per assembling session.

Command-line options are not case-sensitive. For example, "-Li" isthe sameas
"-1i". Itispossibleto coaescing optionsin the same group, i.e., one might also write
"-Lei"instead of "-Lc -Li". However such ausageis not recommended as it make
the command line less readable and it does also create the danger of name conflicts. For
example "-Li -Lc"isnotthesameas " -Lic" becausethisisrecognized asaseparate,
independent option on its own.

NOTE Itisnot possibleto coalesce optionsin different groups, e.g.,
"-Lc -W1" cannot be abbreviated by theterms "-1.c1" or "-LCW1".

Table 5.1 ASMOPTIONS environment variable

ASMOPTIONS If this environment variable is set, the Assembler appends its
contents to its command line each time a file is assembled. It can
be used to globally specify certain options that should always be
set, so you do not have to specify them each time a file is assem-
bled.

HC(S)08 / RS08 Assembler Manual 143

Assembler Options
Types of assembler options

Assembler options (Table 5.2 on page 144) are grouped by:
Output, Input, Language, Host, Code Generation, Messages, and Various.

Table 5.2 Assembler option categories

Group Description

Output Lists options related to the output files generation (which kind of
file should be generated).

Input Lists options related to the input files.

Language Lists options related to the programming language (ANSI-C,
C++, ...)

Host Lists options related to the host.

Code Generation Lists options related to code generation (memory models, ...).

Messages Lists options controlling the generation of error messages.

Various Lists various options.

The group corresponds to the property sheets of the graphical option settings.

Each option has also a scope (Table 5.3 on page 144)

Table 5.3 Scopes for assembler options

Scope Description

Application This option has to be set for all files (assembly units) of an
application. A typical example is an option to set the memory model.
Mixing object files will have unpredictable results.

Assembly Unit This option can be set for each assembling unit for an application
differently. Mixing objects in an application is possible.

None The scope option is not related to a specific code part. A typical
example are options for the message management.

The options available are arranged into different groups, and atab selection is available
for each of these groups. The content of the list box depends upon the tab that is selected.

144 HC(S)08 / RS08 Assembler Manual

Assembler Options
Assembler Option details

Assembler Option details

The remainder of this section is devoted to describing each of the assembler options
available for the Assembler. The options are listed in alphabetical order and eachis
divided into several sections (Table 5.4 on page 145).

Table 5.4 Assembler option details

Topic

Description

Group

Output, Input, Language, Host, Code Generation, Messages, or Various.

Scope

Application, Assembly Unit, Function, or None.

Syntax

Specifies the syntax of the option in an EBNF format.

Arguments

Describes and lists optional and required arguments for the option.

Default

Shows the default setting for the option.

Description

Provides a detailed description of the option and how to use it.

Example

Gives an example of usage, and effects of the option where possible.
Assembler settings, source code and/or Linker PRM files are displayed
where applicable. The examples shows an entry in the default.env
for the PC orinthe .hidefaults for UNIX.

See also (if
needed)

Names related options.

Using special modifiers

With some optionsit is possible to use special modifiers. However, some modifiers may
not make sense for all options. This section describes those modifiers.

The following modifiers are supported (Table 5.5 on page 145)

Table 5.5 Special modifiers for assembler options

Modifier

Description

%p

Path including file separator

%N

Filename in strict 8.3 format

HC(S)08 / RS08 Assembler Manual 145

Assembler Options
Assembler Option details

Table 5.5 Special modifiers for assembler options (continued)

Modifier | Description

%n Filename without its extension

%E Extension in strict 8.3 format

%e Extension

%f Path + filename without its extension

%" A double quote () if the filename, the path or the extension contains a
space

%’ A single quote (") if the filename, the path, or the extension contains a
space

%(ENV) Replaces it with the contents of an environment variable

%% Generates a single ‘%’

Examples using special modifiers

The assumed path and filename (filename base for the modifiers) used for the examples
Listing 5.2 through Listing 5.13 is displayed in Listing 5.1 on page 146.

Listing 5.1 Example filename and path used for the following examples

C:\Freescale\my demo\TheWholeThing.myExt

Using the $p modifier asin Listing 5.2 on page 146 displays the path with afile separator
but without the filename.

Listing 5.2 %p gives the path only with the final file separator

C:\Freescale\my demo\

Using the $N modifier only displays the filenamein 8.3 format but without the file
extension (Listing 5.3 on page 147).

146 HC(S)08 / RS08 Assembler Manual

Assembler Options
Assembler Option details

Listing 5.3 %N results in the filename in 8.3 format (only the first 8 characters)

TheWhole

The $n modifier returns the entire filename but with no file extension (Listing 5.4 on
page 147.

Listing 5.4 %n returns just the filename without the file extension

TheWholeThing

Using $E as amodifier returns the first three charactersin the file extension (Listing
5.5 on page 147).

Listing 5.5 %E gives the file extension in 8.3 format (only the first 3 characters)

myE

If you want the entire file extension, use the $e modifier (Listing 5.6 on page 147).

Listing 5.6 %e is used for returning the whole extension

myExt

The % £ modifier returns the path and the filename but without the file extension
(Listing 5.7 on page 147).

Listing 5.7 %f gives the path plus the filename (no file extension)

C:\Freescale\my demo\TheWholeThing

HC(S)08 / RS08 Assembler Manual 147

Assembler Options
Assembler Option details

The path in Listing 5.1 on page 146 contains a space, therefore using $” or %’ is
recommended

(Listing 5.8 on page 148 or Listing 5.9 on page 148).

Listing 5.8 Use %" %f%” in case there is a space in its path, filename, or extension

“C:\Freescale\my demo\TheWholeThing”

Listing 5.9 Use %'%f%’ where there is a space in its path, filename, or extension

‘C:\Freescale\my demo\TheWholeThing’

Using & (envVariable) an environment variable may be used. A file separator
following % (envvariable) isignored if the environment variable is empty or does not
exist. If TEXTPATH isset asin Listing 5.10 on page 148, then $(TEXTPATH)\myfile.txt
isexpressed asin Listing 5.11 on page 148.

Listing 5.10 Example for setting TEXTPATH

TEXTPATH=C: \Freescale\txt

Listing 5.11 $(TEXTPATH)\myfile.txt where TEXTPATH is defined

C:\Freescale\txt\myfile.txt

However, if TEXTPATH does not exist or is empty, then $(TEXTPATH)\myfile.txt is
expressed asin Listing 5.12 on page 148).

Listing 5.12 $(TEXTPATH)\myfile.txt where TEXTPATH does not exist

myfile.txt

148 HC(S)08 / RS08 Assembler Manual

Assembler Options
List of Assembler options

It is also possible to display the percent sign by using %%. %e%% allows the expression
of apercent sign after the extension asin Listing 5.13 on page 149.

Listing 5.13 %% allows a percent sign to be expressed

List of Assembler options

The following table lists each command line option you can use with the Assembler
(Table 5.6 on page 149).

Table 5.6 Assembler options

Assembler option

-Ci: Switch case sensitivity on label names OFF on page 152

-CMacAngBrack: Angle brackets for grouping Macro Arguments on page 154

-CMacBrackets: Square brackets for macro arguments grouping on page 155

-Compat: Compatibility modes on page 156

-CS08/-C08/-CRS08: Derivative family on page 159

-D: Define Label on page 161

-Env: Set environment variable on page 163
-F (-Fh, -F20, -FA20, -F2, -FA2): Output-file format on page 164

-H: Short Help on page 166

-I: Include file path on page 167

-L: Generate a listing file on page 168

-Lasmc: Configure listing file on page 171

-Lasms: Configure the address size in the listing file on page 173

-Lc: No Macro call in listing file on page 175

-Ld: No macro definition in listing file on page 178

HC(S)08 / RS08 Assembler Manual 149

Assembler Options
List of Assembler options

Table 5.6 Assembler options (continued)

Assembler option

-Le: No Macro expansion in listing file on page 181

-Li: No included file in listing file on page 184

-Lic: License information on page 186

-LicA: License information about every feature in directory on page 187

-LicBorrow: Borrow license feature on page 188

-LicWait: Wait until floating license is available from floating License Server on page 190

-LI: Show label statistics on page 191

-M (-Ms, -Mt): Memory model on page 193

-MacroNest: Configure maximum macro nesting on page 195

-MCUasm: Switch compatibility with MCUasm ON on page 196

-N: Display notify box on page 197

-NoBeep: No beep in case of an error on page 198

-NoDebuglInfo: No debug information for ELF/DWARF files on page 199

-NoEnv: Do not use environment on page 200

-ObjN: Object filename specification on page 201

-Prod: Specify project file at startup on page 203

-Struct: Support for structured types on page 204

-V: Prints the Assembler version on page 205

-View: Application standard occurrence on page 206

-W1: No information messages on page 208

-W2: No information and warning messages on page 209

-WErrFile: Create "err.log" error file on page 210

-Wmsg8x3: Cut filenames in Microsoft format to 8.3 on page 211

-WmsgCE: RGB color for error messages on page 212

-WmsgCF: RGB color for fatal messages on page 213

150

HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

Table 5.6 Assembler options (continued)

Assembler option

-WmsgCl: RGB color for information messages on page 214

-WmsgCU: RGB color for user messages on page 215

-WmsgCW: RGB color for warning messages on page 216

-WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode on
page 217

-WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode on
page 219

-WmsgFob: Message format for batch mode on page 221

-WmsgFoi: Message format for interactive mode on page 223

-WmsgFonf: Message format for no file information on page 225

-WmsgFonp: Message format for no position information on page 227

-WmsgNe: Number of error messages on page 229

-WmsgNi: Number of Information messages on page 230

-WmsgNu: Disable user messages on page 231

-WmsgNw: Number of Warning messages on page 233

-WmsqgSd: Setting a message to disable on page 234

-WmsgSe: Setting a message to Error on page 235

-WmsgSi: Setting a message to Information on page 236

-WmsgSw: Setting a Message to Warning on page 237

-WOutFile: Create error listing file on page 238

-WStdout: Write to standard output on page 239

Detailed listing of all assembler options

The remainder of the chapter is a detailed listing of all assembler options arranged in
aphabetical order.

HC(S)08 / RS08 Assembler Manual 151

Assembler Options
Detailed listing of all assembler options

-Ci: Switch case sensitivity on label names OFF

Group
Input

Scope
Assembly Unit

Syntax
-Ci

Arguments

None

Default
None

Description

This option turns off case sensitivity on label names. When this option is activated,
the Assembler ignores case sensitivity for label names. If the Assembler generates
object files but not absolute files directly (- FA2 assembler option), the case of
exported or imported labels must still match. Or, the - Ci assembler option should
be specified in the linker as well.

152 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

Example

When case sensitivity on label namesis switched off, the Assembler will not
generate an error message for the assembly source codein Listing 5.14 on

page 153.

Listing 5.14 Example assembly source code

ORG $200
entry: NOP
BRA Entry

Theinstruction *BRA Entry’ branchesonthe ‘entry’ label. The default
setting for case sensitivity is ON, which means that the Assembler interprets the
labels ‘Entry’ and ‘entry’ astwo distinct labels.

See also
-F (-Fh, -F20, -FA20, -F2, -FA2): Output-file format on page 164 assembler option

HC(S)08 / RS08 Assembler Manual 153

Assembler Options
Detailed listing of all assembler options

-CMacAngBrack: Angle brackets for grouping Macro Ar-
guments

Group
Language

Scope
Application

Syntax
-CMacAngBrack (ON | OFF)

Arguments
ON Or OFF

Default

None

Description

This option controls whether the < > syntax for macro invocation argument
grouping is available. When it is disabled, the Assembler does not recognize the
special meaning for < in the macro invocation context. There are cases where the
angle brackets are ambiguous. New code should usethe [? 2] syntax instead.

See also

Macro argument grouping

-CMacBrackets: Square brackets for macro arguments grouping on page 155
option

154 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-CMacBrackets: Square brackets for macro arguments grouping

Group
Language

Scope
Application

Syntax
-CMacBrackets (ON|OFF)

Arguments
ON or OFF

Default
ON

Description

This option control whether the [? 2] syntax for macro invocation argument
grouping is available. When it is disabled, the Assembler does not recognize the
special meaning for [? in the macro invocation context.

See also
Macro argument grouping

-CMacAngBrack: Angle brackets for grouping Macro Arguments on page 154
option

HC(S)08 / RS08 Assembler Manual 155

Assembler Options
Detailed listing of all assembler options

-Compat: Compatibility modes

Group
Language

Scope
Application

Syntax
-Compat [={!|=|c|s|f]|$|a|b}

Arguments
See below.

Default
None

Description

This option controls some compatibility enhancements of the Assembler. The goal
is not to provide 100% compatibility with any other Assembler but to make it
possible to reuse as much as possible. The various suboptions control different
parts of the assembly:

e =: Operator ! = means equal

The Assembler takes the default value of the ! = operator asnot equal, asitisin
the C language. For compatibility, this behavior can be changed to equal with
this option. Because the danger of this option for existing code, amessage is
issued for every ! = whichistreated as equal.

e 1 Support additional ! operators
The following additional operators are defined when this option is used:
— 1™ exponentiation
— !'m: modulo
— l@: signed greater or equal
— !g:signed greater

156

HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

o

— 1%:signed less or equal

— It:signed lessthan

— I'$:unsigned greater or equal
— 1S:unsigned greater

— !&: unsigned less or equal

— 11:unsigned less

— In: one complement

— !'w: low operator

— ''h: high operator

NOTE Thedefault valuesfor the following ! operators are defined:
! .: binary AND
1x: exclusive OR
!+: binary OR

¢ c: Alternate comment rules

With this suboption, comments implicitly start when a space is present after the
argument list. A specia character isnot necessary. Be careful with spaceswhen
this option is given because part of the intended arguments may be taken asa
comment. However, to avoid accidenta comments, the Assembler does issue a
warning if such acomment does not start witha"*" ora";".

Examples

Listing 5.15 on page 157 demonstrates that when - Compat=c, comments can
start with a *.

Listing 5.15 Comments starting with an asterisk (*)

NOP * Anything following an asterisk is a comment.

When the - Compat=c assembler option is used, thefirst DC . B directivein
Listing 5.16 on page 158 has "+ 1 , 1" asacomment. A warningisissued
because the "comment” does not start witha " ; " or a " *". With - Compat=c,
this code generates awarning and three bytes with constant values 1, 2, and 1.
Without it, this code generates four 8-bit constants of 2, 1, 2, and 1.

HC(S)08 / RS08 Assembler Manual 157

Assembler Options
Detailed listing of all assembler options

Listing 5.16 Implicit comment start after a space

DC.B 1 + 1
DC.B 1+1,1

’

1

s: Symbol prefixes

With this suboption, some compatibility prefixes for symbols are supported.
With this option, the Assembler accepts “pgz: ” and “byte:” prefixed for
symbolsin XDEFs and XREFs. They correspond to XREF . B or XDEF . B with
the same symbols without the prefix.

£: Ignore FF character at line start

With this suboption, an otherwise improper character recognized from feed
character isignored.

$: Support the $ character in symbols
With this suboption, the Assembler supportsto start identifierswith a $ sign.
a: Add some additional directives

With this suboption, some additional directives are added for enhanced
compatibility.

The Assembler actually supports a SECT directive as an alias of the usual
SECTION - Declare Relocatable Section assembly directive. The SECT
directive takes the section name asits first argument.

b: support the FOR directive

With this suboption, the Assembler supports a FOR - Repeat assembly block
assembly directive to generate repeated patterns more easily without having to
USe recursive macros.

158

HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-CS08/-C08/-CRS08: Derivative family

Group

Code Generation

Scope
Application

Syntax
-C08|-CS08|-CRS08

Arguments

none

Default
-Cos

Description

The Assembler supports 3 different HCO8 derived cores. The HCO8 itself (-Cc08),
the enhanced HCSO08 (- ¢S 08) and the reduced RSO8 (-CRS08).

The HCS08 family supports additional addressing modes for the CPHX, LDHX, and
STHX instructions and also anew BGND instruction. All these enhancements are
allowed when the -CS08 option is specified. All instructions and addressing modes
available for the HCO8 are also available for the HCS08 so that this core remains
binary compatible with its predecessor.

The RS08 family does not support al instructions and addressing modes of the
HCO08. Also, the encoding of the supported instructionsis not binary compatible.

HC(S)08 / RS08 Assembler Manual 159

Assembler Options
Detailed listing of all assembler options

Table 5.7 Tableof new instructions or addressing modes for the HCS08

Instruction Addr. mode Description

LDHX EXT load from a 16-bit absolute address
1X load HX via 0,X
IX1 load HX via 1,X...255,X
1X2 load HX via old HX+ any offset
SP1 load HX from stack

STHX EXT store HX to a 16-bit absolute address
SP1 store HX to stack

CPHX EXT compare HX with a 16-bit address
SP1 compare HX with the stack

BGND enter the Background Debug Mode

160 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-D: Define Label

Group
Input

Scope
Assembly Unit

Syntax

-D<LabelName> [=<Value>]

Arguments

<LabelName>: Name of |abel.
<Values>: Vauefor label. 0 if not present.

Default
0 for value.

Description

Thisoption behaves asif a“Label: EQU Value” would be at the start of the
main source file. When no explicit valueis given, O is used as the defaullt.

This option can be used to build different versions with one common sourcefile.

Example

Conditional inclusion of acopyright notice. SeeListing 5.17 on page 161 and
Listing 5.18 on page 162.

Listing 5.17 Source code that conditionally includes a copyright notice

YearAsString: MACRO

DC.B $30+(\1 /1000)%10

()
DC.B $30+(\1 / 100)%10
DC.B $30+(\1 / 10)%10
DC.B $30+(\1 / 1)%10
ENDM

HC(S)08 / RS08 Assembler Manual 161

Assembler Options
Detailed listing of all assembler options

ifdef ADD COPYRIGHT
ORG $1000

DC.B "Copyright by "
DC.B "John Doe"
ifdef YEAR

DC.B " 1999-"
YearAsString YEAR
endif

DC.B 0

endif

When assembled with the option "-dADD COPYRIGHT -dYEAR=2005",
Listing 5.18 on page 162 is generated:

Listing 5.18 Generated list file

1 1 YearAsString: MACRO
2 2 DC.B $30+(\1 /1000)%10
3 3 DC.B $30+(\1 / 100)%10
4 4 DC.B $30+(\1 / 10)%10
5 5 DC.B $30+(\1 / 1)%10
6 6 ENDM
7 7
8 8 0000 0001 ifdef ADD COPYRIGHT
9 9 ORG $1000
10 10 a001000 436F 7079 DC.B "Copyright by "
001004 7269 6768
001008 7420 6279
00100C 20
11 11 a00100D 4A6F 686E DC.B "John Doe"
001011 2044 6F65
12 12 0000 0001 ifdef YEAR
13 13 a001015 2031 3939 DC.B " 1999-"
001019 392D
14 14 YearAsString YEAR
15 2m a00101B 32 + DC.B $30+ (YEAR /1000)%10
16 3m a00101C 30 + DC.B $30+ (YEAR / 100)%10
17 4m a00101D 30 + DC.B $30+(YEAR / 10)%10
18 5m a00101E 31 + DC.B $30+ (YEAR / 1)%10
19 15 endif
20 16 a00101F 0O DC.B 0
21 17 endif

162 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-Env: Set environment variable
Group
Host

Scope
Assembly Unit

Syntax

-Env<EnvironmentVariable>=<VariableSetting>

Arguments

<EnvironmentVariables: Environment variable to be set
<VariableSettings: Setting of the environment variable

Default
None

Description

This option sets an environment variable.

Example
ASMOPTIONS=-EnvOBJPATH=\sources\obj

Thisisthe same as:
OBJPATH=\sources\obj

inthedefault.env file.

See also

“Environment variables details’ on page 121

HC(S)08 / RS08 Assembler Manual 163

Assembler Options
Detailed listing of all assembler options

-F (-Fh, -F20, -FA20, -F2, -FA2): Output-file format

Group
Output

Scope
Application

Syntax
-F(h|20|A20]|2]|A2)

Arguments
h: HIWARE object-file format; thisis the default
20: Compatible ELF/DWARF 2.0 object-file format
A20: Compatible ELF/DWARF 2.0 absolute-file format
2: ELF/IDWARF 2.0 object-file format
A2: ELF/DWAREF 2.0 absolute-file format

Default
-F2

Description
Defines the format for the output file generated by the Assembler:

« With the - Fh option set, the Assembler uses a proprietary (HIWARE) object-
file format.

* Withthe -F2 option set, the Assembler produces an ELF/DWARF object file.
This object-file format may also be supported by other Compiler or Assembler
vendors.

« Withthe -FA2 option set, the Assembler produces an ELF/DWARF absolute
file. Thisfile format may also be supported by other Compiler or Assembler
vendors.

Note that the ELF/DWARF 2.0 file format has been updated in the current version
of the Assembler. If you are using HI-WAVE version 5.2 (or an earlier version),

164 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-F2o or -FA20 must be used to generate the ELF/DWARF 2.0 object fileswhich
can be loaded in the debugger.

Example
ASMOPTIONS=-F2

NOTE For the RS08 the HIWARE object file format is not available.

HC(S)08 / RS08 Assembler Manual 165

Assembler Options
Detailed listing of all assembler options

-H: Short Help

Group

Various

Scope
None

Syntax
-H

Arguments
None

Default

None

Description

The -H option causes the Assembler to display ashort list (i.e., help list) of
available options within the assembler window. Options are grouped into Output,
Input, Language, Host, Code Generation, Messages, and Various.

No other option or source files should be specified when the -H option is invoked.

Example
Listing 5.19 on page 166 is a portion of the list produced by the -H option:

Listing 5.19 Example Help listing

MESSAGE:

-N Show natification box in case of errors

-NoBeep No beep in case of an error

-W1 Do not print INFORMATION messages

-W2 Do not print INFORMATION or WARNING messages

-WErrFile Create "err.log" Error File

166 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-I: Include file path
Group
Input

Scope
None

Syntax
-I<paths>

Arguments
<paths: File path to be used for includes

Default
None

Description
With the - T option it is possible to specify afile path used for include files.

Example

-Id:\mySources\include

HC(S)08 / RS08 Assembler Manual 167

Assembler Options
Detailed listing of all assembler options

-L: Generate a listing file

Group
Output

Scope
Assembly unit

Syntax
-L[=<dest>]

Arguments
<dest>: the name of the listing file to be generated.

It may contain specia modifiers (see“Using special modifiers’ on page 145).

Default
No generated listing file

Description

Switches on the generation of thelisting file. If dest is not specified, the listing
file will have the same name as the source file, but with extension * . 1st. The
listing file contains macro definition, invocation, and expansion lines as well as
expanded include files.

Example
ASMOPTIONS=-L

In the following example of assembly code (Listing 5.20 on page 169), the cpChar
macro accepts two parameters. The macro copiesthe value of the first parameter to
the second one.

When the -1 option is specified, the portion of assembly source codein
Listing 5.20 on page 169, together with the code from an include file (Listing
5.21 on page 169) generates the output listing in Listing 5.22 on page 169.

168 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

Listing 5.20 Example assembly source code

XDEF Start
MyData: SECTION
charl: DS.B 1
char2: DS.B 1
INCLUDE "macro.inc"
CodeSec: SECTION
Start:
cpChar charl, char2
NOP

Listing 5.21 Example source code from an include file

cpChar: MACRO
LDA \1
STA \2
ENDM

Listing 5.22 Assembly output listing

Abs. Rel. Loc Obj. code Source line

1 1 XDEF Start

2 2 MyData: SECTION

3 3 000000 charl: DS.B 1

4 4 000001 char2: DS.B 1

5 5 INCLUDE "macro.inc"
6 1i cpChar: MACRO

7 21 LDA \1

8 31 STA \2

9 41 ENDM

10 6 CodeSec: SECTION

11 7 Start:
12 8 cpChar charl, char2
13 2m 000000 C6 xXxxxX + LDA charl
14 3m 000003 C7 xXXXX + STA char2
15 9 000006 9D NOP

The Assembler stores the content of included filesin the listing file. The
Assembler also stores macro definitions, invocations, and expansionsin thelisting
file.

HC(S)08 / RS08 Assembler Manual 169

Assembler Options
Detailed listing of all assembler options

For a detailed description of thelisting file, see the Assembler Listing File chapter.

See also
Assembler options:
¢ -Lasmc: Configurelisting file on page 171

¢ -Lasms: Configure the address sizein the listing file on page 173
e -Lc: No Macro call in listing file on page 175

¢ -Ld: No macro definition in listing file on page 178
¢ -Le: No Macro expansion in listing file on page 181

e -Li: Noincluded fileinlisting file on page 184

170 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-Lasmc: Configure listing file

Group
Output

Scope
Assembly unit

Syntax

-Lasme={s|r|m|1l|k|i|c|a}

Arguments
s - Do not write the source column
r - Do not write the relative column (Rel.)
m - Do not write the macro mark
1 - Do not write the address (Loc)
k - Do not write the location type
i - Do not write the include mark column
c - Do not write the object code
a - Do not write the absolute column (Abs.)

Default

Write al columns.

Description

The default-configured listing file shows alot of information. With this option, the
output can be reduced to columns which are of interest. This option configures
which columns are printed in alisting file. To configure which linesto print, see
the following assembler options: -Lc: No Macro call in listing file on page 175, -
Ld: No macro definition in listing file on page 178, -Le: No Macro expansion in
listing file on page 181, and -Li: No included filein listing file on page 184.

HC(S)08 / RS08 Assembler Manual 171

Assembler Options
Detailed listing of all assembler options

Example
For the following assembly source code, the Assembler generates the default-
configured output listing (Listing 5.23 on page 172):

DC.B "Hello World"
DC.B 0

Listing 5.23 Example assembler output listing

1 000000 4865 6C6C DC.B "Hello World"
000004 6F20 576F
000008 726C 64

2 00000B 00 DC.B 0

In order to get this output without the source file line numbers and other irrelevant
partsfor thissimple DC . B example, the following option is added:
" -Lasmc=ramki". This generates the output listing in Listing 5.24 on page 172:

Listing 5.24 Example output listing

Loc Obj. code Source line
000000 4865 6C6C DC.B "Hello World"
000004 6F20 576F
000008 726C 64
00000B 00 DC.B 0
For adetailed description of thelisting file, see the Assembler Listing File chapter.
See also
Assembler options:
e -L: Generatealisting file on page 168
e -Lc: No Macro call in listing file on page 175
¢ -Ld: No macro definition in listing file on page 178
¢ -Le: No Macro expansion in listing file on page 181
e -Li: Noincluded fileinlisting file on page 184
* -Lasms: Configure the address size in the listing file on page 173
172

HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-Lasms: Configure the address size in the listing file

Group
Output

Scope
Assembly unit

Syntax
-Lasms{1]2|3]4}

Arguments
1- The address sizeis xx
2 - The address size is xxxx
3 - The address size is XXXXXX

4 - The address Size iS XXXXXXXX

Default

-Lasms3

Description

The default-configured listing file shows alot of information. With this option, the
size of the address column can be reduced to the size of interest. To configure
which columns are printed, see the -Lasmc: Configure listing file on page 171
option. To configure which lines to print, see the -Lc: No Macro call in listing
file on page 175, -Ld: No macro definition in listing file on page 178, -Le: No

Macro expansion in listing file on page 181, and
-Li: Noincluded filein listing file on page 184 assembler options.

Example
For the following instruction:
NOP

HC(S)08 / RS08 Assembler Manual 173

Assembler Options
Detailed listing of all assembler options

the Assembler generates this default-configured output listing (Listing 5.25 on
page 174):

Listing 5.25 Example assembler output listing

Abs. Rel. Loc Obj. code Source line

1 1 000000 XX NOP

In order to change the size of the address column the following option is added:
" -Lasms1". This changes the address size to two digits.

Listing 5.26 Example assembler output listing configured with -Lasms1

Abs. Rel. Loc Obj. code Source line
1 1 00 XX NOP
See also

Assembler Listing File chapter
Assembler options:

¢ -Lasmc: Configurelisting file on page 171
¢ -L: Generate alisting file on page 168

e -Lc: NoMacro cal in listing file on page 175

e -Ld: No macro definition in listing file on page 178

¢ -Le: No Macro expansion in listing file on page 181
e -Li: Noincluded filein listing file on page 184

174 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-Lc: No Macro call in listing file

Group
Output

Scope
Assembly unit

Syntax
-Lc

Arguments
none

Default
none

Description

Switches on the generation of the listing file, but macro invocations are not present
inthe listing file. The listing file contains macro definition and expansion lines as
well as expanded include files.

Example
ASMOPTIONS=-Lc

In the following example of assembly code, the cpChar macro accept two
parameters. The macro copies the value of the first parameter to the second one.

When the -Lc option is specified, the following portion of assembly source codein
Listing 5.27 on page 175:

Listing 5.27 Example assembly source code

XDEF Start
MyData: SECTION
charl: DS.B 1
char2: DS.B 1

HC(S)08 / RS08 Assembler Manual 175

Assembler Options
Detailed listing of all assembler options

CodeSec:

Start:

INCLUDE
SECTION

cpChar charl,

NOP

"macro.inc"

char2

along with additional source code (Listing 5.28 on page 176) from the
macro . inc includefile generatesthe following output in the assembly listing file
(Listing 5.29 on page 176):

Listing 5.28 Example source code from the macro.inc file

cpChar:

MACRO
LDA \1
STA \2
ENDM

Listing 5.29 Output assembly listing

Abs. Rel Loc Obj. code Source line
1 1 XDEF Start
2 2 MyData: SECTION
3 3 000000 charl: DS.B 1
4 4 000001 char2: DS.B 1
5 5 INCLUDE "macro.inc"
6 1i cpChar: MACRO
7 21 LDA \1
8 31 STA \2
9 41 ENDM
10 6 CodeSec: SECTION
11 7 Start:
13 2m 000000 C6 xxxx + LDA charl
14 3m 000003 C7 xxXxx + STA char2
15 9 000006 9D NOP
The Assembler stores the content of included filesin the listing file. The
Assembler also stores macro definitions, invocations, and expansionsin thelisting
file.
The listing file does not contain the line of source code that invoked the macro.
For a detailed description of thelisting file, see the Assembler Listing File chapter.
176 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

See also
Assembler options:
e -L: Generate alisting file on page 168
e -Ld: No macro definition in listing file on page 178
e -Le: No Macro expansion in listing file on page 181
e -Li: Noincluded filein listing file on page 184

HC(S)08 / RS08 Assembler Manual 177

Assembler Options
Detailed listing of all assembler options

-Ld: No macro definition in listing file

Group
Output

Scope
Assembly unit

Syntax
-1d

Arguments
None

Default

None

Description

Instructs the Assembler to generate a listing file but not including any macro
definitions. The listing file contains macro invocation and expansion lines as well
as expanded includefiles.

Example
ASMOPTIONS=-Ld

In the following example of assembly code, the cpChar macro accepts two
parameters. The macro copies the value of the first parameter to the second one.

When the -1Ld option is specified, the assembly source codein Listing 5.30 on
page 178 along with additional source code (Listing 5.31 on page 179) from the
macro. inc file generates an assembler output listing (Listing 5.32 on page 179)
file:

Listing 5.30 Example assembly source code

XDEF Start

MyData: SECTION
charl: DS.B 1
char2: DS.B 1
178 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

INCLUDE
CodeSec: SECTION

Start:

cpChar charl,

NOP

"macro.inc"

char2

Listing 5.31 Example source code from an include file

cpChar: MACRO
LDA \1
STA \2

ENDM

Listing 5.32 Example assembler output listing

Abs. Rel Loc Obj. code Source line
1 1 XDEF Start
2 2 MyData: SECTION
3 3 000000 charl: DS.B 1
4 4 000001 char2: DS.B 1
5 5 INCLUDE "macro.inc"
6 1i cpChar: MACRO
10 6 CodeSec: SECTION
11 7 Start:
12 8 cpChar charl, char2
13 2m 000000 C6 xXxxxX LDA charl
14 3m 000003 C7 xxXxx STA char2
15 9 000006 9D NOP
The Assembler stores that content of included filesin thelisting file. The
Assembler also stores macro invocation and expansion in the listing file.
The listing file does not contain the source code from the macro definition.
For adetailed description of the listing file, see the Assembler Listing File chapter.
See also

Assembler options:

e -L: Generatealisting file on page 168
e -Lc: No Macro call in listing file on page 175

¢ -Le: No Macro expansion in listing file on page 181

HC(S)08 / RS08 Assembler Manual

179

Assembler Options
Detailed listing of all assembler options

e -Li: Noincluded filein listing file on page 184

180 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-Le: No Macro expansion in listing file

Group
Output

Scope
Assembly unit

Syntax
-Le

Arguments

None

Default
None

Description

Switches on the generation of thelisting file, but macro expansions are not present
in the listing file. The listing file contains macro definition and invocation lines as
well as expanded include files.

Example
ASMOPTIONS=-Le
In the following example of assembly code, the cpChar macro accepts two
parameters. The macro copies the value of the first parameter to the second one.

When the -Le option is specified, the assembly code in Listing 5.33 on page 181
along with additional source code (Listing 5.34 on page 182) from the

macro. inc file generates an assembly output listing file (Listing 5.35 on

page 182):

Listing 5.33 Example assembly source code

XDEF Start
MyData: SECTION
charl: DS.B 1

HC(S)08 / RS08 Assembler Manual 181

Assembler Options
Detailed listing of all assembler options

char2: DS.B 1
INCLUDE "macro.inc"
CodeSec: SECTION
Start:
cpChar charl, char2
NOP

Listing 5.34 Example source code from an included file

cpChar: MACRO

DA \1
STA \2
ENDM

Listing 5.35 Example assembler output listing

Abs. Rel. Loc Obj. code Source line
1 1 XDEF Start
2 2 MyData: SECTION
3 3 000000 charl: DS.B 1
4 4 000001 char2: DS.B 1
5 5 INCLUDE "macro.inc"
6 1i cpChar: MACRO
7 21 LDA \1
8 31 STA \2
9 41 ENDM
10 6 CodeSec: SECTION
11 7 Start:
12 8 cpChar charl, char2
15 9 000006 9D NOP
The Assembler stores the content of included filesin the listing file. The
Assembler also stores the macro definition and invocation in the listing file.
The Assembler does not store the macro expansion linesin thelisting file.
For adetailed description of thelisting file, see the Assembler Listing File chapter.
See also
-L: Generate alisting file on page 168
-Lc: No Macro call inlisting file on page 175
182 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-Ld: No macro definition in listing file on page 178-Li: No included filein listing
file on page 184

HC(S)08 / RS08 Assembler Manual 183

Assembler Options
Detailed listing of all assembler options

-Li: No included file in listing file

Group
Output

Scope
Assembly unit

Syntax
-Li

Arguments
None

Default

None

Description

Switches on the generation of the listing file, but include files are not expanded in
thelisting file. Thelisting file contains macro definition, invocation, and expansion
lines.

Example
ASMOPTIONS=-Li

In the following example of assembly code, the cpChar macro accepts two
parameters. The macro copies the value of the first parameter to the second one.

When -Li option is specified, the assembly source codein Listing 5.36 on
page 184 along with additional source code (Listing 5.37 on page 185) from the
macro. inc file generates the following output in the assembly listing file:

Listing 5.36 Example assembly source code

XDEF Start

MyData: SECTION
charl: DS.B 1
char2: DS.B 1
INCLUDE "macro.inc"
184 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

CodeSec:
Start:

SECTION

cpChar charl,

NOP

char2

Listing 5.37 Example source code in an include file

cpChar: MACRO
LDA \1
STA \2

ENDM

Listing 5.38 Example assembler output listing

Abs. Rel Loc Obj. code Source line
1 1 XDEF Start
2 2 MyData: SECTION
3 3 000000 charl: DS.B 1
4 4 000001 char2: DS.B 1
5 5 INCLUDE "macro.inc"
10 6 CodeSec: SECTION
11 7 Start:
12 8 cpChar charl, char2
13 2m 000000 C6 xxxxX LDA charl
14 3m 000003 C7 xxxXX STA char2
15 9 000006 9D NOP
The Assembler stores the macro definition, invocation, and expansion in the listing
file
The Assembler does not store the content of included filesin thelisting file.
For a detailed description of thelisting file, see the Assembler Listing File chapter.
See also

Assembler options:

¢ -L: Generatealisting file on page 168

e -Lc: NoMacrocal inlisting file on page 175
* -Ld: No macro definition in listing file on page 178

¢ -Le: No Macro expansion in listing file on page 181

HC(S)08 / RS08 Assembler Manual

185

Assembler Options
Detailed listing of all assembler options

-Lic: License information

Group

Various

Scope
None

Syntax

-Lic

Arguments

None

Default
None

Description
The -Lic option printsthe current license information (e.g., if it isademo
version or afull version). Thisinformation is also displayed in the About... box.
Example
ASMOPTIONS=-Lic

See also
Assembler options:

e -LicA: Licenseinformation about every feature in directory on page 187
e -LicBorrow: Borrow license feature on page 188

e -LicWait: Wait until floating license is available from floating License
Server on page 190

186 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-LicA: License information about every feature in directo-
ry

Group
Various

Scope

None

Syntax
-LicA

Arguments

None

Default
None

Description

The -Lica option prints the license information of every tool or DLL in the
directory where the executable is (e.g., if tool or feature isademo version or afull
version). Because the option hasto analyze every singlefile in the directory, this
may take along time.

Example
ASMOPTIONS=-LicA

See also
Assembler options:

e -Lic: License information on page 186
¢ -LicBorrow: Borrow license feature on page 188

e -LicWait: Wait until floating license is available from floating License
Server on page 190

HC(S)08 / RS08 Assembler Manual 187

Assembler Options
Detailed listing of all assembler options

-LicBorrow: Borrow license feature

Group
Host

Scope
None

Syntax

-LicBorrow<features>[;<version>] :<Date>

Arguments

<features: the feature name to be borrowed (e.g., HI100100).
<versions>: optional version of the feature to be borrowed (e.g., 3.000).
<dates: date with optional time until when the feature shall be borrowed (e.g.,
15-Mar-2005:18:35).

Default

None

Defines
None

Pragmas
None

Description

This option lets you borrow alicense feature until a given date/time. Borrowing
allows you to use afloating license even if disconnected from the floating license
server.

Y ou need to specify the feature name and the date until you want to borrow the
feature. If the feature you want to borrow is a feature belonging to the tool where
you use this option, then you do not need to specify the version of the feature
(because the tool is aware of the version). However, if you want to borrow any
feature, you need to specify the feature’ s version number.

188

HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

Y ou can check the status of currently borrowed featuresin the tool’s About . . .
box.

NOTE Youonly can borrow featuresif you have afloating license and if your floating
license is enabled for borrowing. See the provided FL EXIm documentation
about details on borrowing.

Example
-LicBorrowHI100100;3.000:12-Mar-2005:18:25

See also
Assembler options:
e -Lic: License information on page 186
e -LicA: License information about every feature in directory on page 187

e -LicWait: Wait until floating license is available from floating License
Server on page 190

HC(S)08 / RS08 Assembler Manual 189

Assembler Options
Detailed listing of all assembler options

-LicWait: Wait until floating license is available from floating

License Server

Group
Host

Scope

None

Syntax

-LicWait

Arguments

None

Default
None

Description

If alicenseis not available from the floating license server, then the default
condition is that the application will immediately return. Withthe -LicWait
assembler option set, the application will wait (blocking) until alicenseisavailable
from the floating license server.

Example
ASMOPTIONS=-LicWait

See also
Assembler options:

e -Lic: License information on page 186
¢ -LicA: Licenseinformation about every feature in directory on page 187

e -LicBorrow: Borrow license feature on page 188

190 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-LI: Show label statistics

Group
OUTPUT

Scope
Assembly unit

Syntax
n_p

Arguments
None

Default
No label statistics

Description

Appends a section to the listing file that shows how much space would be gained if
acertain label were in the short (or tiny) memory area. The statistics take into
consideration the relocatable symbols only (labels defined by an EQU directive are
not taken into consideration). This option has no effect if no listing fileis generated
(i.e. -L isnot active too). Thisisan RS08 specific option, and is not supported for
any other HCO8 derivative.

Example:

XREF label a, label b
MY CODE_SECTION: SECTION
label c:

LDA label a

STA label b

INCA

ADD label b

LDA label c

HC(S)08 / RS08 Assembler Manual 191

Assembler Options

Detailed listing of all assembler options

Assembling the code above (with -1 -1.1) resultsin the following listing file:

Freescale HCO08-Assembler
(c) Copyright Freescale 1987-2006

Abs. Rel Loc
1 1
2 2
3 3
4 4 000000
5 5 000002
6 6 000004
7 7 000005
8 8 000007
9 9

Freescale Assembler
Ind. Name

1 1label a
2 label b
3 1label c¢

B6
B7
4C
BB
B6

XX
XX

XX
XX

tiny

Source line

XREF label a, label b
MY CODE_SECTION: SECTION
label c:

LDA label a

STA label b

INCA

ADD label b

LDA label c

short
1 1
2 1
1 1

Thetable at the end of the listing file shows that:

1) If label_a one were either in the tiny or short memory area, one byte would be
gained in terms of code size (since the LDA at line 4 would use the short
addressing mode in either of the two cases).

2) If label_b were in the tiny memory area, two bytes would be gained since the
STA at line 5 would use the short addressing mode and the ADD at line 7 would
use the tiny addressing mode.

3) If label_c were in the short (or tiny) memory area one byte would be gained
since the LDA at line 8 would use the short addressing mode.

192

HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-M (-Ms, -Mt): Memory model

Group

Code Generation

Scope
Application

Syntax
-M(s|b|t)

Arguments
s: small memory model
t: tiny memory model

Default
-Ms

Description

The Assembler for the MC68HC(S)08 supports two different memory models. The
default is the small memory model, which corresponds to the normal setup, i.e., a
64kB code-address space. The tiny memory model corresponds to the situation
where the default RAM isin the zero page.

NOTE For the Assembler, the memory model does not matter at all. The memory
model is used by the compiler to specify the default allocation of variable and
functions. The Assembler has this option only to generate “compatibl€e’ object
files for the memory model consistency check of the linker.

NOTE Inthetiny memory model, the default for the compiler is to use zero-page
addressing. The default for the Assembler isto still use extended-addressing
modes. See the Using the direct addressing mode to access symbols section to
see how to generate zero-page accesses.

HC(S)08 / RS08 Assembler Manual 193

Assembler Options
Detailed listing of all assembler options

Example
ASMOPTIONS=-Mt

194 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-MacroNest: Configure maximum macro nesting

Group
Language

Scope
Assembly Unit

Syntax

-MacroNest<Value>

Arguments

<Value>: max. alowed nesting level

Default
3000

Description

This option controls how deep macros calls can be nested. Its main purposeisto
avoid endless recursive macro invocations.

Example
See the description of message A1004 for an example.

See also
Message A1004 (available in the Online Help)

HC(S)08 / RS08 Assembler Manual 195

Assembler Options
Detailed listing of all assembler options

-MCUasm: Switch compatibility with MCUasm ON

Group

Various

Scope
Assembly Unit

Syntax
-MCUasm

Arguments

None

Default
None

Description

This switches ON compatibility mode with the MCUasm Assembler. Additional
features supported, when this option is activated are enumerated in the
MCUasm Compatibility chapter in the Appendices.

Example
ASMOPTIONS=-MCUasm

196 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-N: Display notify box

Group
M essages

Scope
Assembly Unit

Syntax
-N

Arguments
None

Default
None

Description

Makes the Assembler display an alert box if there was an error during assembling.
Thisis useful when running a makefile (please see the manual about Build Tools)
because the Assembler waits for the user to acknowledge the message, thus
suspending makefile processing. (The 'N' standsfor “Notify”.)

Thisfeature is useful for halting and aborting a build using the Make Utility.

Example
ASMOPTIONS=-N

If an error occurs during assembling, an alert dialog box will be opened.

HC(S)08 / RS08 Assembler Manual 197

Assembler Options
Detailed listing of all assembler options

-NoBeep: No beep in case of an error

Group
M essages

Scope
Assembly Unit

Syntax
-NoBeep

Arguments

None

Default
None

Description
Normally thereisa‘beep’ notification at the end of processing if there was an
error. To have asilent error behavior, this ‘beep’ may be switched off using this
option.

Example
ASMOPTIONS=-NoBeep

198 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-NoDebugInfo: No debug information for ELF/DWARF files

Group
Language

Scope
Assembly Unit

Syntax
-NoDebugInfo

Arguments
None

Default
None

Description

By default, the Assembler produces debugging info for the produced
ELF/DWARF files. This can be switched off with this option.

Example
ASMOPTIONS=-NoDebugInfo

HC(S)08 / RS08 Assembler Manual 199

Assembler Options
Detailed listing of all assembler options

-NoEnv: Do not use environment

Group
Startup (This option cannot be specified interactively.)

Scope
Assembly Unit

Syntax

-NoEnv

Arguments
None

Default
None

Description

This option can only be specified at the command line while starting the
application. It cannot be specified in any other circumstances, including the
default.env file, the command line or whatever.

When this option is given, the application does not use any environment
(default.env, project.ini ortipsfile).

Example

xx.exe -NoEnv

(Use the actua executable name instead of “xx”

See also
Environment chapter

200 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-ObjN: Object filename specification

Group
Output

Scope
Assembly Unit

Syntax
-ObjN<FileName>

Arguments
<FileName>: Name of the binary output file generated.

Default

-0ObjN%n.o when generating arelocatable file or
-0bjN%n.abs when generating an absolutefilefile.

Description

Normally, the object file has the same name than the processed sourcefile, but with
the ™. o” extension when relocatable code is generated or the » . abs” extension
when absolute code is generated. This option allows aflexible way to define the
output filename. The modifier *%n” can also be used. It isreplaced with the source
filename. If <£ile> inthisoption contains a path (absolute or relative), the
OBJPATH environment variableisignored.

Example

For ASMOPTIONS=-0ObjNa.out, the resulting object file will be “a.out”. If
the OBJPATH environment variableisset to “\src\obj”, the object filewill be
“\src\obj\a.out”.

For fibo.c -ObjN%n.obj, theresulting object file will be *fibo.obj".

Formyfile.c -ObjN..\objects\ %n.obj,theobject filewill be named
relative to the current directory to . . \objects\ myfile.obj. Notethat the
environment variable OBJPATH isignored, because <file> contains apath.

HC(S)08 / RS08 Assembler Manual 201

Assembler Options
Detailed listing of all assembler options

See also
OBJPATH: Object file path environment variable

202 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-Prod: Specify project file at startup

Group
None (This option cannot be specified interactively.)

Scope
None

Syntax

-Prod=<file>

Arguments

<files: name of aproject or project directory

Default
None

Description

This option can only be specified at the command line while starting the
application. It cannot be specified in any other circumstances, including the
default.env file, the command line or whatever.

When this option is given, the application opens the file as configuration file.
When the filename does only contain a directory, the default name
project.ini isappended. When the loading fails, a message box appears.

Example
assembler.exe -Prod=project.ini

(Use the Assembler’ s executable name instead of “*assembler”.)

See also
Environment chapter

HC(S)08 / RS08 Assembler Manual 203

Assembler Options
Detailed listing of all assembler options

-Struct: Support for structured types

Group
Input

Scope
Assembly Unit

Syntax

-Struct

Arguments

None

Default
None

Description
When this option is activated, the Macro Assembler a so support the definition and
usage of structured types. Thisisinteresting for application containing both
ANSI-C and Assembly modules.

Example
ASMOPTIONS=-Struct

See also
Mixed C and Assembler Applications chapter

204 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-V: Prints the Assembler version

Group
Various

Scope
None

Syntax
-V

Arguments
None

Default

None

Description
Prints the Assembler version and the current directory.

NOTE Usethisoption to determine the current directory of the Assembler.

Example
-V produces the following listing (Listing 5.39 on page 205):

Listing 5.39 Example of a version listing

Command Line '-v'
Assembler V-5.0.8, Jul 7 2005
Directory: C:\Freescale\demo

Common Module V-5.0.7, Date Jul 7 2005

User Interface Module, V-5.0.17, Date Jul 7 2005
Assembler Kernel, V-5.0.13, Date Jul 7 2005
Assembler Target, V-5.0.8, Date Jul 7 2005

HC(S)08 / RS08 Assembler Manual

205

Assembler Options
Detailed listing of all assembler options

-View: Application standard occurrence

Group
Host

Scope
Assembly Unit

Syntax

-View<kind>

Arguments
<kinds> isone of the following:
¢ “Window”: Application window has the default window size.
e “Min”: Application window is minimized.
e “Max”: Application window is maximized.
e “Hidden”: Application window is not visible (only if there are arguments).

Default
Application is started with arguments: Minimized.
Application is started without arguments: Window.

Description

Normally, the application (e.g., Assembler, Linker, Compiler, ...) is started with a
normal window if no arguments are given. If the application is started with
arguments (e.g., from the Maker to assemble, compile, or link afile), then the
application is running minimized to allow for batch processing. However, the
application’ s window behavior may be specified with the View option.

Using -ViewWindow, the application is visible with its normal window. Using
-ViewMin theapplicationisvisibleiconified (inthetask bar). Using - vViewMax,
the application is visible maximized (filling the whole screen). Using
-ViewHidden, the application processes arguments (e.g., filesto be compiled or
linked) completely invisible in the background (no window or icon visible in the
task bar). However, for example, if you are using the -N: Display notify box on
page 197 assembler option, adialog box is still possible.

206

HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

Example

C:\Freescale\prog\linker.exe -ViewHidden fibo.prm

HC(S)08 / RS08 Assembler Manual 207

Assembler Options
Detailed listing of all assembler options

-W1: No information messages

Group
M essages

Scope
Assembly Unit

Syntax
-W1

Arguments

None

Default
None

Description

Inhibits the Assembler’s printing INFORMATION messages. Only WARNING
and ERROR messages are written to the error listing file and to the assembler
window.

Example
ASMOPTIONS=-W1

208 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-W2: No information and warning messages

Group
M essages
Scope

Assembly Unit

Syntax
-W2

Arguments
None

Default
None

Description

Suppresses al messages of INFORMATION or WARNING types. Only ERROR
messages are written to the error listing file and to the assembler window.

Example
ASMOPTIONS=-W2

HC(S)08 / RS08 Assembler Manual 209

Assembler Options
Detailed listing of all assembler options

-WErrFile: Create "err.log" error file

Group
M essages

Scope
Assembly Unit

Syntax

-WErrFile (On|Off)
Arguments

None

Default
An err.logfileiscreated or deleted.

Description

The error feedback from the Assembler to called toolsis now done with areturn
code. In 16-bit Windows environments this was not possible. So in case of an error,
an “err.log” file with the numbers of written errors was used to signal any errors.
Toindicate no errors, the “err.log”file woul d be deleted. Using UNIX or WIN32, a
return code is now available. Therefore, thisfileis no longer needed when only
UNIX or WIN32 applications areinvolved. To use a 16-bit Maker with thistool, an
error file must be created in order to signal any error.

Example
e -WErrFileOn
err.log iscreated or deleted when the application is finished.
e -WErrFileOff
existing err . 1og is not modified.

See also

-WStdout: Write to standard output on page 239
-WOutFile: Create error listing file on page 238

210 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-Wmsg8x3: Cut filenames in Microsoft format to 8.3

Group
M essages

Scope
Assembly Unit

Syntax
-Wmsg8x3

Default
None

Description

Some editors (e.g., early versions of WinEdit) are expecting the filenamein the
Microsoft message format in a strict 8.3 format. That means the filename can have
at most 8 characters with not more than a 3-character extension. Using Win95,
WinNT, or anewer Windows O/S, longer file names are possible. With this option
the filename in the Microsoft message is truncated to the 8.3 format.

Example

x:\mysourcefile.c(3): INFORMATION C2901: Unrolling loop

With the -Wmsg8x3 option set, the above message will be
x:\mysource.c(3): INFORMATION C2901: Unrolling loop

See also
¢ -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode on
page 217

o -WmsgFi (-WmsgFiv, -WmsgFim): Set m e file format for interactive
mode on page 219

¢ -WmsgFoi: Message format for interactive mode on page 223
* -WmsgFob: Message format for batch mode on page 221 Option

HC(S)08 / RS08 Assembler Manual 211

Assembler Options
Detailed listing of all assembler options

* --WmsgFonp: Message format for no position information on page 227

212 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-WmsgCE: RGB color for error messages

Group
M essages

Scope
Compilation Unit

Syntax
-WmsgCE<RGB>

Arguments
<RGB>: 24-bit RGB (red green blue) value.

Default
-WmsgCE16711680 (rFF g00 b00, red)

Description

It is possible to change the error message color with this option. The value to be
specified has to be an RGB (Red-Green-Blue) value and has to be specified in
decimal.

Example
-WmsgCE255 changes the error messages to blue.

HC(S)08 / RS08 Assembler Manual 213

Assembler Options
Detailed listing of all assembler options

-WmsgCF: RGB color for fatal messages

Group
M essages

Scope
Compilation Unit

Syntax
-WmsgCF<RGB>

Arguments
<RGB>: 24-bit RGB (red green blue) value.

Default
-WmsgCF8388608 (r80 g00 b00, dark red)

Description

It is possible to change the fatal message color with this option. The value to be
specified has to be an RGB (Red-Green-Blue) value and has to be specified in
decimal.

Example
-WmsgCF255 changes the fatal messages to blue.

214 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-WmsgCl: RGB color for information messages

Group
M essages

Scope
Compilation Unit

Syntax
-WmsgCI<RGB>

Arguments
<RGB>: 24-bit RGB (red green blue) value.

Default
-WmsgCI32768 (r00 g80 b00, green)

Description

It is possible to change the information message color with this option. The value
to be specified hasto be an RGB (Red-Green-Blue) value and hasto be specified in
decimal.

Example
-WmsgCI255 changes the information messages to blue.

HC(S)08 / RS08 Assembler Manual 215

Assembler Options
Detailed listing of all assembler options

-WmsgCU: RGB color for user messages

Group
M essages

Scope
Compilation Unit

Syntax
-WmsgCU<RGB>

Arguments
<RGB>: 24-bit RGB (red green blue) value.

Default
-WmsgCUO (r00 g00 b00, black)

Description

It is possible to change the user message color with this option. The value to be
specified has to be an RGB (Red-Green-Blue) value and has to be specified in
decimal.

Example
-WmsgCU255 changes the user messages to blue.

216 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-WmsgCW: RGB color for warning messages

Group
M essages

Scope
Compilation Unit

Syntax
-WmsgCW<RGB>

Arguments
<RGB>: 24-bit RGB (red green blue) value.

Default
-WmsgCW255 (r00 g00 bFF, blue)

Description

It is possible to change the warning message col or with this option. The value to be
specified has to be an RGB (Red-Green-Blue) value and has to be specified in
decimal.

Example
-WmsgCWO changes the warning messages to black.

HC(S)08 / RS08 Assembler Manual 217

Assembler Options
Detailed listing of all assembler options

-WmsgFb (-WmsgFbv, -WmsgFbm): Set message file for-
mat for batch mode

Group
Messages

Scope
Assembly Unit

Syntax
-WmsgFb [v|m]

Arguments
v: Verbose format.
m: Microsoft format.

Default
-WmsgFbm

Description

The Assembler can be started with additional arguments (e.g., filesto be assembled
together with assembler options). If the Assembler has been started with arguments
(e.g., from the Make tool), the Assembler works in the batch mode. That is, no
assembler window isvisible and the Assembler terminates after job completion.

If the Assembler isin batch mode, the Assembler messages are written to afile and
are not visible on the screen. Thisfile only contains assembler messages (see
examples below).

The Assembler uses a Microsoft message format as the default to write the
assembler messages (errors, warnings, or information messages) if the Assembler
isin the batch mode.

With this option, the default format may be changed from the Microsoft format
(with only line information) to a more verbose error format with line, column, and
source information.

218 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

Example

Assume that the assembly source codein Listing 5.40 on page 218 isto be
assembled in the batch mode.

Listing 5.40 Example assembly source code

varl: equ 5
var2: equ 5
if (varl=var2)
NOP
endif
endif

The Assembler generates the error output (Listing 5.41 on page 218) in the
assembler window if it is running in batch mode:

Listing 5.41 Example error listing in the Microsoft (default) format for batch mode

X:\TW2.ASM(12) :ERROR: Conditional else not allowed here.

If the format is set to verbose, more information is stored in the file:

Listing 5.42 Example error listing in the verbose format for batch mode

ASMOPTIONS=-WmsgFbv
>> in "C:\tw2.asm", line 6, col 0, pos 81
endif

A

ERROR A1001: Conditional else not allowed here

See also

ERRORFILE: Filename specification error

-WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive
mode on page 219

-WmsgFob: Message format for batch mode on page 221

-WmsgFoi: Message format for interactive mode on page 223
-WmsgFonf: Message format for no file information on page 225
-WmsgFonp: Message format for no position information on page 227

HC(S)08 / RS08 Assembler Manual 219

Assembler Options
Detailed listing of all assembler options

-WmsgFi (-WmsgFiv, -WmsgFim): Set message file for-
mat for interactive mode

Group
Messages

Scope
Assembly Unit

Syntax
-WmsgFi [v|m]

Arguments
v: Verbose format.
m: Microsoft format.

Default
-WmsgFiv

Description

If the Assembler is started without additional arguments (e.g., filesto be assembled
together with Assembler options), the Assembler isin the interactive mode (that is,
awindow isvisible).

Whilein interactive mode, the Assembler uses the default verbose error file format
to write the assembler messages (errors, warnings, information messages).

Using this option, the default format may be changed from verbose (with source,
line and column information) to the Microsoft format (which displays only line
information).

NOTE Using the Microsoft format may speed up the assembly process because the
Assembler has to write lessinformation to the screen.

220 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

Example

If the Assembler isrunning in interactive mode, the default error output isshownin
the assembler window asin Listing 5.44 on page 220.

Listing 5.43 Example error listing in the default mode for interactive mode

>> in "X:\TWE.ASM", line 12, col 0, pos 215
endif
endif

A

ERROR A1001: Conditional else not allowed here

Setting the format to Microsoft, less information is displayed:

Listing 5.44 Example error listing in Microsoft format for interactive mode

ASMOPTIONS=-WmsgFim
X:\TWE.ASM(12) : ERROR: conditional else not allowed here

See also

ERRORFILE: Filename specification error environment variable
Assembler options:

e -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode on
page 217

* -WmsgFob: Message format for batch mode on page 221

¢ -WmsgFoi: Message format for interactive mode on page 223

* -WmsgFonf: Message format for no file information on page 225

* -WmsgFonp: Message format for no position information on page 227

HC(S)08 / RS08 Assembler Manual 221

Assembler Options

Detailed listing of all assembler options

-WmsgFob: Message format for batch mode

Group
M essages

Scope
Assembly Unit

Syntax

-WmsgFob<string>

Arguments

<string>: format string (see below).

Default

-WmsgFob"%f%e (%1) : %K %d: %m\n”

Description

With this option it is possible to modify the default message format in the batch
mode. The formats in Listing 5.45 on page 221 are supported (assumed that the
sourcefileisx: \Freescale\sourcefile.asmx).

Listing 5.45 Supported formats for messages in the batch node

Format

%s Source Extract
%P Path

st Path and name
$n Filename

%e Extension

$N File (8 chars)
%$E Extension (3 chars)
%1 Line

%c Column

%0 Pos

$K Uppercase kind
%k Lowercase kind

Description Example

x:\Freescale\
x:\Freescale\sourcefile
sourcefile

.asmx

sourcefi
.asm

3

47

1234
ERROR
error

222

HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

sd Number Al1051
Fm Message text
%% Percent %
\n New line

Example

ASMOPTIONS=-WmsgFob”%f%e (%1) : %k %d: %m\n”

produces amessage displayedinListing 5.46 on page 222 usingthe
format in Listing 5.45 on page 221. The options are set for producing the path of a
file with its filename, extension, and line

Listing 5.46 Error message

x:\Freescale\sourcefile.asmx (3) : error A1051: Right parenthesis
expected

See also
Assembler options:

e -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode on
page 217

¢ -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive
mode on page 219

¢ -WmsgFoi: Message format for interactive mode on page 223
* -WmsgFonf: Message format for no file information on page 225
« -WmsgFonp: Message format for no position information on page 227

HC(S)08 / RS08 Assembler Manual 223

Assembler Options
Detailed listing of all assembler options

-WmsgFoi: Message format for interactive mode

Group
M essages

Scope
Assembly Unit

Syntax

-WmsgFoi<string>

Arguments

<strings>: format string (see below)

Default

-WmsgFoi"\n>> in \"%f%e\", line %l, col %c, pos %0\n%s\n%K %d: %m\n"

Description

With this option it is possible modify the default message format in interactive
mode. The following formats are supported (supposed that the source fileis
x:\Freescale\sourcefile.asmx):

Listing 5.47 Supported message formats - interactive mode

Format Description

%s Source Extract

$p Path x:\Freescale\

Sf Path and name x:\Freescale\sourcefile
%N Filename sourcefile

%e Extension .asmx

SN File (8 chars) sourcefi

$E Extension (3 chars) .asm

%1 Line 3

%c Column 47

%0 Pos 1234

$K Uppercase kind ERROR

224 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

%k Lowercase kind error
%d Number Al1051
Fm Message text
%% Percent %
\n New line

Example

ASMOPTIONS=-WmsgFoi”%f%e (%1): %k %d: %m\n”

produces a message in following format (Listing 5.48 on page 224):

Listing 5.48 Error message resulting from the statement above

x:\Freescale\sourcefile.asmx(3) :

expected

error Al1051: Right parenthesis

See also

ERRORFILE: Filename specification error environment variable
Assembler options:

e -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode on

page 217

e -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive
mode on page 219

¢ -WmsgFob: Message format for batch mode on page 221
¢ -WmsgFonf: Message format for no file information on page 225
* -WmsgFonp: Message format for no position information on page 227

HC(S)08 / RS08 Assembler Manual

225

Assembler Options
Detailed listing of all assembler options

-WmsgFonf: Message format for no file information

Group
M essages

Scope
Assembly Unit

Syntax

-WmsgFonf<strings>

Arguments

<strings>: format string (see below)

Default

-WmsgFonf"%$K %d: %sm\n"

Description

Sometimes there is no file information available for a message (e.g., if amessage
not related to a specific file). Then this message format string is used. The
following formats are supported:

Listing 5.49

Format Description Example
$K Uppercase kind ERROR
%k Lowercase kind error
%d Number L10324
Fm Message text

%% Percent %

\n New line

226 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

Example
ASMOPTIONS=-WmsgFonf”%k %d: $m\n”

produces a message in following format:

information L10324: Linking successful

See also

ERRORFIL E: Filename specification error environment variable

Assembler options:

e -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode on
page 217

e -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive
mode on page 219

* -WmsgFob: Message format for batch mode on page 221
* -WmsgFoi: Message format for interactive mode on page 223
« -WmsgFonp: Message format for no position information on page 227

HC(S)08 / RS08 Assembler Manual 227

Assembler Options
Detailed listing of all assembler options

-WmsgFonp: Message format for no position information

Group
M essages

Scope
Assembly Unit

Syntax

-WmsgFonp<strings>

Arguments

<strings>: format string (see below)

Default

-WmsgFonp"%$f%e: %K %d: %m\n"

Description

Sometimes there is no position information available for amessage (e.g., if a
message not related to a certain position). Then this message format string is used.
The following formats are supported (supposed that the source fileis
x:\Freescale\sourcefile.asmx)

Listing 5.50 Supported message formats for when there is no position information

Format Description Example

$p Path x:\Freescale\

Sf Path and name x:\Freescale\sourcefile
%n Filename sourcefile

%e Extension .asmx

$N File (8 chars) sourcefi

$E Extension (3 chars) .asm

$K Uppercase kind ERROR

%k Lowercase kind error

sd Number L10324

Fm Message text

228 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

%% Percent %
\n New line
Example

ASMOPTIONS=-WmsgFonf”%k %d: $m\n”
produces a message in following format:

information L10324: Linking successful

See also

ERRORFIL E: Filename specification error environment variable

Assembler options:

e -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode on
page 217

e -WmsgFi (-WmsgFiv, -WmsgFim): Set m e file format for interactive
mode on page 219

« -WmsgFob: Message format for batch mode on page 221
* -WmsgFoi: Message format for interactive mode on page 223
« -WmsgFonf: Message format for no file information on page 225

HC(S)08 / RS08 Assembler Manual 229

Assembler Options
Detailed listing of all assembler options

-WmsgNe: Number of error messages

Group
M essages

Scope
Assembly Unit

Syntax

-WmsgNe<number>

Arguments

<number>: Maximum number of error messages.

Default
50

Description

With this option the amount of error messages can be reported until the Assembler
stops assembling. Note that subsequent error messages which dependson a
previous one may be confusing.

Example
ASMOPTIONS=-WmsgNe?2

The Assembler stops assembling after two error messages.

See also
Assembler options:
¢ -WmsgNi: Number of Information messages on page 230
e -WmsgNw: Number of Warning messages on page 233

230 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-WmsgNi: Number of Information messages

Group
M essages
Scope

Assembly Unit

Syntax

-WmsgNi<numbers>

Arguments

<number>: Maximum number of information messages.

Default
50

Description

With this option the maximum number of information messages can be set.

Example
ASMOPTIONS=-WmsgNi1l0

Only ten information messages are logged.

See also
Assembler options:
* -WmsgNe: Number of error messages on page 229
e -WmsgNw: Number of Warning messages on page 233

HC(S)08 / RS08 Assembler Manual 231

Assembler Options
Detailed listing of all assembler options

-WmsgNu: Disable user messages

Group
M essages

Scope
None

Syntax
-WmsgNu [={a|b|c|d}]

Arguments
a: Disable messages about include files
b: Disable messages about reading files
c: Disable messages about generated files
d: Disable messages about processing statistics
e: Disableinformal messages

Default
None

Description

The application produces some messages which are not in the normal message
categories (WARNING, INFORMATION, ERROR, or FATAL). With this option
such messages can be disabled. The purpose for this option is to reduce the amount
of messages and to simplify the error parsing of other tools:

* a: The application provides information about all included files. With this
suboption this option can be disabled.

« Db: With this suboption messages about reading files e.g., the files used asinput
can be disabled.

« c: Disables messages informing about generated files.

¢ d: At the end of the assembly, the application may provide information about
statistics, e.g., code size, RAM/ROM usage, and so on. With this suboption this
option can be disabled.

232

HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

« e: With this option, informal messages (e.g., memory model, floating point
format, ...) can be disabled.

NOTE Depending on the application, not all suboptions may make sense. In this case
they arejust ignored for compatibility.

Example
-WmsgNu=c

HC(S)08 / RS08 Assembler Manual 233

Assembler Options
Detailed listing of all assembler options

-WmsgNw: Number of Warning messages

Group
M essages
Scope

Assembly Unit

Syntax

-WmsgNw<number>

Arguments

<number>: Maximum number of warning messages.

Default
50

Description

With this option the maximum number of warning messages can be set.

Example
ASMOPTIONS=-WmsgNwl5

Only 15 warning messages are logged.

See also
Assembler options:
* -WmsgNe: Number of error messages on page 229
¢ -WmsgNi: Number of Information messages on page 230

234 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-WmsgSd: Setting a message to disable

Group
M essages

Scope
Assembly Unit

Syntax
-WmsgSd<number>

Arguments
<number>: Message number to be disabled, eg., 1801

Default
None

Description
With this option amessage can be disabled so it does not appear in the error outpuit.

Example
-WmsgSd1801

See also
Assembler options:
* -WmsgSe: Setting a message to Error on page 235
e -WmsgSi: Setting a message to |nformation on page 236
e -WmsgSw: Setting a Message to Warning on page 237

HC(S)08 / RS08 Assembler Manual 235

Assembler Options
Detailed listing of all assembler options

-WmsgSe: Setting a message to Error

Group
M essages

Scope
Assembly Unit

Syntax

-WmsgSe<number>

Arguments

<number>: Message number to be an error, e.g., 1853

Default
None

Description

Allows changing a message to an error message.

Example
-WmsgSel853

See also
Assembler options:
e -WmsgSd: Setting a message to disable on page 234
e -WmsgSi: Setting a message to |nformation on page 236
e -WmsgSw: Setting a Message to Warning on page 237

236 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-WmsgSi: Setting a message to Information

Group
M essages

Scope
Assembly Unit

Syntax

-WmsgSi<numbers>

Arguments

<number>: Message number to be an information, e.g., 1853

Default
None

Description
With this option a message can be set to an information message.

Example
-WmsgSi1853

See also
Assembler options:
e -WmsgSd: Setting a message to disable on page 234
¢ -WmsgSe: Setting a message to Error on page 235
e -WmsgSw: Setting a Message to Warning on page 237

HC(S)08 / RS08 Assembler Manual 237

Assembler Options
Detailed listing of all assembler options

-WmsgSw: Setting a Message to Warning

Group
M essages

Scope
Assembly Unit

Syntax

-WmsgSw<number>

Arguments

<number>: Error number to beawarning, eg., 2901

Default
None

Description
With this option a message can be set to a warning message.

Example
-WmsgSw2901

See also
Assembler options:
e -WmsgSd: Setting a message to disable on page 234
¢ -WmsgSe: Setting a message to Error on page 235
e -WmsgSi: Setting a message to Information on page 236

238 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

-WOutFile: Create error listing file

Group
M essages

Scope
Assembly Unit

Syntax
-WOutFile (On|Off)

Arguments
None

Default
Error listing fileis created.

Description

This option controls if aerror listing file should be created at al. The error listing
file contains alist of al messages and errors which are created during a assembly
process. Since the text error feedback can now also be handled with pipesto the
calling application, it is possible to obtain this feedback without an explicit file.
The name of the listing file is controlled by the environment variable

ERRORFILE: Filename specification error.

Example
-WOutFileOn
The error fileis created as specified with ERRORFILE.
-WErrFileOff
No error fileis created.

See also
Assembler options:
« -WErrFile: Create "err.log" error file on page 210
e -WStdout: Write to standard output on page 239

HC(S)08 / RS08 Assembler Manual 239

Assembler Options
Detailed listing of all assembler options

-WStdout: Write to standard output

Group
M essages

Scope
Assembly Unit

Syntax
-WStdout (On|Off)

Arguments
None

Default

output iswritten to stdout

Description

With Windows applications, the usual standard streams are available. But text
written into them does not appear anywhere unless explicitly requested by the
calling application. With this option is can be controlled if the text to error file
should also be written into stdout.

Example
-WStdoutOn

All messages are written to stdout.

-WErrFileOff
Nothing iswritten to stdout.

See also
Assembler options:
» -WErrFile: Create "err.log" error file on page 210
* -WOutFile: Create error listing file on page 238

240 HC(S)08 / RS08 Assembler Manual

Assembler Options
Detailed listing of all assembler options

HC(S)08 / RS08 Assembler Manual 241

Assembler Options
Detailed listing of all assembler options

242 HC(S)08 / RS08 Assembler Manual

Sections

Sections are portions of code or data that cannot be split into smaller elements. Each
section has a name, atype, and some attributes.

Each assembly source file contains at least one section. The number of sectionsin an
assembly source file is only limited by the amount of memory available on the system at
assembly time. If several sections with the same name are detected inside of asingle
source file, the code is concatenated into one large section.

Sections from different modules, but with the same name, will be combined into asingle
section at linking time.

Sections are defined through Section attributes on page 241 and Section types on
page 242. The last part of the chapter deals with the merits of using relocatable sections.

(See “Relocatable vs. absolute sections’ on page 247.)

Section attributes

An attribute is associated with each section according to its content. A section may be:
e adatasection,
e aconstant data section, or
¢ acode section.

Code sections

A section containing at least one instruction is considered to be a code section. Code
sections are always allocated in the target processor’s ROM area.

Code sections should not contain any variable definitions (variables defined using the DS
directive). You do not have any write access on variables defined in a code section. In
addition, variables in code sections cannot be displayed in the debugger as data.

Constant sections

A section containing only constant data definition (variables defined using the DC or DCB
directives) is considered to be a constant section. Constant sections should be allocated in
the target processor’ sSROM area, otherwise they cannot be initialized at application loading
time.

HC(S)08 / RS08 Assembler Manual 241

Sections
Section types

Data sections

A section containing only variables (variables defined using the DS directive) is
considered to be adata section. Data sections are always allocated in the target processor’'s
RAM area.

NOTE A section containing variables (DS) and constants (DC) or codeis not a data
section. The default for such a section with mixed DC and code content isto
put that content into ROM.

We strongly recommend that you use separate sections for the definition of variables and
constant variables. Thiswill prevent problems in the initialization of constant variables.

Section types

First of al, you should decide whether to use relocatable or absolute code in your
application. The Assembler allows the mixing of absolute and relocatable sectionsin a
single application and also in asingle source file. The main difference between absolute
and relocatable sections is the way symbol addresses are determined.

This section covers these two types of sections:

* Absolute sections on page 242
¢ Relocatable sections on page 244

Absolute sections

The starting address of an absolute section is known at assembly time. An absolute section
is defined through the ORG - Set L ocation Counter assembler directive. The operand
specified in the ORG directive determines the start address of the absolute section. See
Listing 6.1 on page 242 for an example of constructing absol ute sections using the ORG
assembler directive.

Listing 6.1 Example source code using ORG for absolute sections

XDEF entry

ORG $8000 ; Absolute constant data section.
cstl: DC.B $26
cst2: DC.B SBC

ORG $080 ; Absolute data section.
var: DS.B 1

ORG $8010 ; Absolute code section.

242 HC(S)08 / RS08 Assembler Manual

Sections
Section types

entry:
LDA cstl ; Loads value in cstl
ADD cst2 ; Adds value in cst2
STA var ; Stores result into var

BRA entry

In the previous example, two bytes of storage are allocated starting at address $A00. The
constant variable - cst 1 - will be alocated one byte at address $8000 and another
constant - cst2 - will be allocated one byte at address $8001. All subsequent
instructions or data allocation directives will be located in this absol ute section until
another section is specified using the ORG or SECTION directives.

When using absolute sections, it is the user’ sresponsibility to ensure that thereis no
overlap between the different absolute sections defined in the application. In the previous
example, the programmer should ensure that the size of the section starting at address
$8000 isnot bigger than $10 bytes, otherwise the section starting at $8000 and the
section starting at $8010 will overlap.

Even applications containing only absolute sections must be linked. In that case, there
should not be any overlap between the address ranges from the absol ute sections defined
in the assembly file and the address ranges defined in the linker parameter (PRM) file.

The PRM file used to link the example above, can be defined asin Listing 6.2 on page 243.

Listing 6.2 Example PRM file for Listing 6.1 on page 242

LINK test.abs /* Name of the executable file generated. */
NAMES test.o /* Name of the object file in the application */
END
SECTIONS
/* READ_ONLY memory area. There should be no overlap between this
memory area and the absolute sections defined in the assembly
source file. */
MY ROM = READ ONLY 0x8000 TO OxFDFF;
/* READ WRITE memory area. There should be no overlap between this
memory area and the absolute sections defined in the assembly
source file. */

MY RAM = READ WRITE 0x0100 TO O0x023F;
END
PLACEMENT
/* Relocatable variable sections are allocated in MY RAM. */

DEFAULT_RAM, SSTACK INTO MY RAM;

/* Relocatable code and constant sections are allocated in MY ROM. */
DEFAULT_ ROM INTO MY ROM;

END

HC(S)08 / RS08 Assembler Manual 243

Sections

Section types

STACKSTOP $014F /* Initializes the stack pointer */
INIT entry /* entry is the entry point to the application. */
VECTOR ADDRESS OXFFFE entry /* Initialization for Reset vector.*/

Thelinker PRM file contains at |east:

The name of the absolute file (LINK command).
The name of the object file which should be linked (NAMES command).

The specification of amemory area where the sections containing variables must be
allocated. At least the predefined DEFAULT RAM (or itsELF dlias * .data’)
section must be placed there. For applications containing only absolute sections,
nothing will be allocated (SECTIONS and PLACEMENT commands).

The specification of amemory areawhere the sections containing code or constants
must be allocated. At least the predefined section DEFAULT ROM (or its ELF alias
‘.data’) must be placed there. For applications containing only absolute
sections, nothing will be allocated (SECTIONS and PLACEMENT commands).

The specification of the application entry point (INIT command)
The definition of the reset vector (VECTOR ADDRESS command)

Relocatable sections

The starting address of arelocatable section is evaluated at linking time according to the
information stored in the linker parameter file. A relocatable section is defined through the
SECTION - Declare Relocatable Section assembler directive. See Listing 6.3 on page 244
for an example using the SECTION directive.

Listing 6.3 Example source code using SECTION for relocatable sections

XDEF entry
constSec: SECTION ; Relocatable constant data section.
cstl: DC.B SA6
cst2: DC.B $BC
dataSec: SECTION ; Relocatable data section.
var: DS.B 1
codeSec: SECTION ; Relocatable code section.
entry:
LDA cstl ; Load value into cstl
ADD cst2 ; Add value in cst2
STA var ; Store into var
BRA entry
244 HC(S)08 / RS08 Assembler Manual

Sections
Section types

In the previous example, two bytes of storage are allocated in the constSec section. The
constant cst 1 isallocated at the start of the section at address $A00 and another constant
cst2 isalocated at an offset of 1 byte from the beginning of the section. All subsequent
instructions or data allocation directives will be located in the relocatable constSec
section until another section is specified using the ORG or SECTION directives.

When using relocatable sections, the user does not need to care about overlapping
sections. The linker will assign a start address to each section according to the input from
the linker parameter file.

The user can decide to define only one memory areafor the code and constant sections and
another one for the variable sections or to split the sections over several memory aress.
Example: Defining one RAM and one ROM area.

When all constant and code sections as well as data sections can be allocated
consecutively, the PRM file used to assemble the example above can be defined asin

Listing 6.4 on page 245.

Listing 6.4 PRM file for Listing 6.3 on page 244 defining one RAM area and one ROM area

LINK test.abs/* Name of the executable file generated. */
NAMES test.o /* Name of the object file in the application */
END

SECTIONS

/* READ ONLY memory area. */
MY ROM = READ ONLY 0x8000 TO OxFDFF;

/* READ WRITE memory area. */
MY RAM = READ WRITE 0x0100 TO O0x023F;

END

PLACEMENT

/* Relocatable variable sections are allocated in MY RAM. */
DEFAULT RAM, dataSec , SSTACK INTO MY RAM;

/* Relocatable code and constant sections are allocated in MY ROM. */
DEFAULT_ROM, constSec INTO MY ROM;

END

INIT entry /* entry is the entry point to the application. */

VECTOR ADDRESS OxXFFFE entry /* Initialization for Reset vector.*/

Thelinker PRM file contains at least:

¢ The name of the absolute file (LINK command).
e The name of the object files which should be linked (NAMES command).

HC(S)08 / RS08 Assembler Manual 245

Sections
Section types

e The specification of amemory areawhere the sections containing variables must be
allocated. At least the predefined DEFAULT RAM section (or itSELF alias
‘.data’) must be placed there (SECTIONS and PLACEMENT commands).

e The specification of amemory areawhere the sections containing code or constants
must be allocated. At least, the predefined DEFAULT _ROM section (or itsELF alias
‘. text’) must be placed there (SECTIONS and PLACEMENT commands).

¢ Constants sections should be defined in the ROM memory areain the PLACEMENT
section (otherwise, they are alocated in RAM).

* The specification of the application entry point (INIT command).

e Thedefinition of the reset vector (VECTOR ADDRESS command).
According to the PRM file above:

* thedatasSec section will be alocated starting at 0x0080.

¢ the codesec section will be allocated starting at 0x0B00.

e theconstSec section will be allocated next to the codeSec section.

Example: Defining multiple RAM and ROM areas

When all constant and code sections as well as data sections cannot be all ocated
consecutively, the PRM file used to link the example above can be defined asin

Listing 6.5 on page 246:

Listing 6.5 PRM file for Listing 6.3 on page 244 defining multiple RAM and ROM areas

LINK test.abs /* Name of the executable file generated. */
NAMES

test.o /* Name of the object file in the application. */
END
SECTIONS

/* Two READ ONLY memory areas */
ROM_AREA 1= READ ONLY 0x8000 TO 0x800F;
ROM_AREA 2= READ ONLY 0x8010 TO OxFDFF;
/* Three READ WRITE memory areas */
RAM AREA 1= READ WRITE 0x0040 TO O0x00FF; /* zero-page memory area */
RAM AREA 2= READ WRITE 0x0100 TO OxO01FF;

MY STK = READ WRITE 0x0200 TO O0x023F; /* Stack memory area */
END
PLACEMENT
/* Relocatable variable sections are allocated in MY RAM. */

dataSec INTO RAM AREA 2;

DEFAULT RAM INTO RAM AREA 1;

SSTACK INTO MY STK; /* Stack allocated in MY STK */

/* Relocatable code and constant sections are allocated in MY ROM. */
constSec INTO ROM_AREA 2;
codeSec, DEFAULT ROM INTO ROM AREA 1;

246 HC(S)08 / RS08 Assembler Manual

Sections
Relocatable vs. absolute sections

END
INIT entry

/* Application’s entry point. */

VECTOR 0 entry /* Initialization of the reset vector. */

Thelinker PRM file contains at |east:

The name of the absolute file (LINK command).
The name of the object files which should be linked (NAMES command).

The specification of memory areas where the sections containing variables must be
allocated. At least, the predefined DEFAULT RAM section (or its ELF alias
‘.data’) must be placed there (SECTIONS and PLACEMENT commands).

The specification of memory areas where the sections containing code or constants
must be allocated. At |east the predefined DEFAULT ROM section (or itsELF alias
‘. text’) must be placed there (SECTIONS and PLACEMENT commands).

Constants sections should be defined in the ROM memory areain the PLACEMENT
section (otherwise, they are alocated in RAM).

The specification of the application entry point (INIT command)
The definition of the reset vector (VECTOR command)

According to the PRM filein Listing 6.5 on page 246,

the dataSec sectionis allocated starting at 0x0100.

the constSec sectionis alocated starting at 0x8000.

the codeSec sectionis alocated starting at 0x8010.

64 bytes of RAM are allocated in the stack starting at 0x0200.

Relocatable vs. absolute sections

Generally, we recommend devel oping applications using relocatable sections. Relocatable
sections offer several advantages.

Modularity

An application is more modular when programming can be divided into smaller units
called sections. The sections themselves can be distributed among different source files.

Multiple developers

When an application is split over different files, multiple developers can beinvolved inthe
development of the application. To avoid major problems when merging the different
files, attention must be paid to the following items:

HC(S)08 / RS08 Assembler Manual 247

Sections

Relocatable vs. absolute sections

¢ Anincludefile must be available for each assembly sourcefile, containing XREF
directives for each exported variable, constant and function. In addition, the
interface to the function should be described there (parameter passing rules as well
as the function return value).

¢ When accessing variables, constants, or functions from another module, the
corresponding include file must be included.

« Variables or constants defined by another developer must always be referenced by
their names.

« Beforeinvoking afunction implemented in another file, the devel oper should
respect the function interface, i.e., the parameters are passed as expected and the
return valueis retrieved correctly.

Early development

The application can be devel oped before the application memory map is known. Often the
application’s definitive memory map can only be determined once the size required for
code and data can be evaluated. The size required for code or data can only be quantified
once the major part of the application isimplemented. When absol ute sections are used,
defining the definitive memory map is an iterative process of mapping and remapping the
code. The assembly files must be edited, assembled, and linked several times. When
relocatabl e sections are used, this can be achieved by editing the PRM file and linking the
application.

Enhanced portability

Asthe memory map is not the same for each derivative (MCU), using relocatable sections
allow easy porting of the code for another MCU. When porting rel ocatable code to another
target you only need to link the application again with the appropriate memory map.

Tracking overlaps

When using absol ute sections, the programmer must ensure that there is no overlap
between the sections. When using rel ocatable sections, the programmer does not need to
be concerned about any section overlapping another. The labels' offsets are all evaluated
relatively to the beginning of the section. Absolute addresses are determined and assigned
by the linker.

Reusability

When using relocatabl e sections, code implemented to handle a specific 1/0 device (seria
communication device), can be reused in another application without any modification.

248

HC(S)08 / RS08 Assembler Manual

Assembler Syntax

An assembler source program is a sequence of source statements. Each source statement is
coded on one line of text and can be either a:

¢ Comment line on page 249 or a
¢ Source line on page 249.

Comment line

A comment can occupy an entire line to explain the purpose and usage of ablock of
statements or to describe an algorithm. A comment line contains a semicolon followed by
atext (Listing 7.1 on page 249). Comments are included in the assembly listing, but are
not significant to the Assembler.

An empty lineis also considered to be a comment line.

Listing 7.1 Examples of comments

; This is a comment line followed by an empty line and non comments

(non comments)

Source line

Each source statement includes one or more of the following four fields:

« alabel field on page 250,
¢ an Operation field on page 250,

« oneor severa operands, or
*« acomment.

Characters on the source line may be either upper or lower case. Directives and
instructions are case-insensitive, whereas symbols are case-sensitive unless the assembler
option for case insensitivity on label names (-Ci: Switch case sensitivity on label names
OFF) is activated.

HC(S)08 / RS08 Assembler Manual 249

Assembler Syntax

Source line

Label field

Thelabel field isthefirst field in asource line. A label isasymbol followed by acolon.
Labelscanincludeletters ("A’..‘Z’ or ‘a.. ‘Z'), underscores, periods and numbers. The
first character must not be a number.

NOTE For compatibility with other Assembler vendors, an identifier starting on
column 1is considered to be alabel, even when it is not terminated by a colon.
When the -M CUasm: Switch compatibility with MCUasm ON assembler
option is activated, you MUST terminate labels with a colon. The Assembler
produces an error message when alabdl is not followed by a colon.

Labels are required on assembler directives that define the value of asymbol (SET or
EQU). For these directives, |abels are assigned the value corresponding to the expression
in the operand field.

Labels specified in front of another directive, instruction or comment are assigned the
vaue of the location counter in the current section.

NOTE When the Macro Assembler expands amacro it generatesinternal symbols
starting with an underscore * . Therefore, to avoid potential conflicts, user
defined symbols should not begin with an underscore

NOTE For the Macro Assembler, a . B or . W at the end of alabel has a specific
meaning. Therefore, to avoid potential conflicts, user- defined symbols should
not end with .B or . W.

Operation field

The operation field follows the label field and is separated from it by a white space. The
operation field must not begin in the first column. An entry in the operation field is one of
the following:

¢ aninstruction’s mnemonic - an abbreviated, case-insensitive name for amember in
the Instruction sets on page 250

¢ aDirective on page 265 name, or
* aMacro on page 265 name.

Instruction sets

Executable instructions for the M68HCO08 processor are defined in the “CPU08 Reference
Manua”.

250

HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line

HCO8 instruction set
Table 7.2 on page 259 presents an overview of the instructions available for the HCO8:

Table 7.1 HCO8 instruction set
Instruction | Addressing modes Description
ADC #<expression> Add with Carry
<expression>
<expression>,X
X
<expression>,SP
ADD #<expression> Add without carry
<expression>
<expression>,X
X
<expression>,SP
AIS #<expression> Add Immediate value (signed) to
Stack Pointer
AIX #<expression> Add Immediate value (signed) to
Index register H:X
AND #<expression> Logical AND
<expression>
<expression>,X
X
<expression>,SP
ASL <expression> Arithmetic Shift Left
<expression>,X
X
<expression>,SP
ASLA Arithmetic Shift Left Accumulator
ASLX Arithmetic Shift Left register X
ASR <expression> Arithmetic Shift Right
<expression>,X
X
<expression>,SP
ASRA Arithmetic Shift Right Accumulator
ASRX Arithmetic Shift Right register X

HC(S)08 / RS08 Assembler Manual

251

Assembler Syntax
Source line

Table 7.1 HCO8 instruction

set (continued)

Instruction | Addressing modes Description
BCC <label> Branch if Carry bit Clear
BCLR BitNumber, <expression> Clear one Bit in memory
BCS <label> Branch if Carry bit Set
BEQ <label> Branch if Equal
BGE <label> Branch if Greater Than or Equal to
BGND Enter Background Debug Mode.
only available for HCS08 (-CS08
option)
BGT <label> Branch if Greater Than
BHCC <label> Branch if Half Carry bit Clear
BHCS <label> Branch if Half Carry bit Set
BHI <label> Branch if Higher
BHS <label> Branch if Higher or Same
BIH <label> Branch if /IRQ Pin High
BIL <label> Branch if /IRQ Pin Low
BIT #<expression> Bit Test
<expression>
<expression>,X
X
<expression>,SP
BLE <label> Branch if Less Than or Equal To
BLO <label> Branch if Lower (same as BCS)
BLS <label> Branch if Lower or Same
BLT <label> Branch if Less Than
BMC <label> Branch if interrupt Mask Clear
BMI <label> Branch if Minus
BMS <label> Branch If interrupt Mask Set

252

HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line

Table 7.1 HCO8 instruction

set (continued)

Instruction | Addressing modes Description
BNE <label> Branch if Not Equal
BPL <label> Branch if Plus
BRA <label> Branch Always
BRCLR BitNumber, <expression>, <label> | Branch if Bit is Clear
BRN <label> Branch Never
BRSET BitNumber, <expression>, <label> | Branch if Bit Set
BSET BitNumber,<expression> Set Bit in memory
BSR <label> Branch to Subroutine
CBEQ <expression>,<label> Compare and Branch if Equal
<expression>,X+,<label>
X+,<label>
<expression>,SP <label>
CBEQA #<expression>,<label>
CBEQX #<expression>,<label>
CLC Clear Carry bit
CLI Clear Interrupt mask bit
CLR <expression> Clear memory
<expression>,X
X
<expression>,SP
CLRA Clear Accumulator A
CLRH Clear index Register H
CLRX Clear index Register X
CMP #<expression> Compare accumulator with
<expression> memory
<expression>,X
X
<expression>,SP

HC(S)08 / RS08 Assembler Manual

253

Assembler Syntax
Source line

Table 7.1 HCO8 instruction

set (continued)

Instruction | Addressing modes Description
COM <expression> One’s complement on memory
<expression>,X location
X
<expression>,SP
COMA One’s complement on
accumulator A
COMX One’s complement on register X
CPHX #<expression> Compare index register H:X with
<expression> memory
<expression>,SP Stack pointer and Extended
addressing modes only available
for HCS08 (-CS08 option)
CPX #<expression> Compare index register X with
<expression> memory
<expression>,X
X
<expression>,SP
DAA Decimal Adjust Accumulator
DBNZ <expression>,<label> Decrement counter and Branch if
<expression>,X,<label> Not Zero
X,<label>
<expression>,SP <label>
DBNZA <label>
DBNZX <label>
DEC <expression> Decrement memory location
<expression>,X
X
<expression>,SP
DECA Decrement Accumulator
DECX Decrement Index register
DIV Divide

254

HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line

Table 7.1 HCO8 instruction

set (continued)

Instruction | Addressing modes Description

EOR #<expression> Exclusive OR Memory with
<expression> accumulator
<expression>,X
X
<expression>,SP

INC <expression> Increment memory location
X
<expression>,X
<expression>,SP

INCA Increment Accumulator

INCX Increment register X

JMP <expression> Jump to label
<expression>,X
X

JSR <expression> Jump to Subroutine
<expression>,X
X

LDA #<expression> Load Accumulator
<expression>
<expression>,X
X
<expression>,SP

LDHX #<expression> Load Index register H:X from
<expression> memory
<expression>,X Indexed, Stack pointer and
X extended addressing modes are
<expression>,SP only available for HCS08 (-CS08

option).

LDX #<expression> Load index Register X from
<expression> memory
<expression>,X
X
<expression>,SP

LSL <expression> Logical Shift Left in memory
<expression>,X
X
<expression>,SP

HC(S)08 / RS08 Assembler Manual

255

Assembler Syntax
Source line

Table 7.1 HCO8 instruction

set (continued)

Instruction | Addressing modes Description
LSLA Logical Shift Left Accumulator
LSLX Logical Shift Left register X
LSR <expression> Logical Shift Right in memory
<expression>,X
X
<expression>,SP
LSRA Logical Shift Right Accumulator
LSRX Logical Shift Right register X
MOV <expression>,<expression> Memory-to-memory byte Move
<expression>,X+
#<expression>,<expression>
X+,<expression>
MUL Unsigned multiply
NEG <expression> Two’s complement in memory
<expression>,X
X
<expression>,SP
NEGA Two’s complement on
Accumulator
NEGX Two’s complement on register X
NOP No operation
NSA Nibble Swap Accumulator
ORA #<expression> Inclusive OR between
<expression> Accumulator and memory
<expression>,X
X
<expression>,SP
PSHA Push Accumulator onto stack
PSHH Push index register H onto stack
PSHX Push index register X onto stack
PULA Pull Accumulator from stack

256

HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line

Table 7.1 HCO8 instruction

set (continued)

Instruction | Addressing modes Description
PULH Pull index register H from stack
PULX Pull index register X from stack
ROL <expression> Rotate memory Left
<expression>,X
X
<expression>,SP
ROLA Rotate Accumulator Left
ROLX Rotate register X Left
ROR <expression> Rotate memory Right
<expression>,X
X
<expression>,SP
RORA Rotate Accumulator Right
RORX Rotate register X Right
RSP Reset Stack Pointer
RTI Return from Interrupt
RTS Return from Subroutine
SBC #<expression> Subtract with Carry
<expression>
<expression>,X
X
<expression>,SP
SEC Set Carry bit
SEI Set Interrupt mask bit
STA <expression> Store Accumulator in Memory
<expression>,X
X
<expression>,SP

HC(S)08 / RS08 Assembler Manual

257

Assembler Syntax
Source line

Table 7.1 HCO8 instruction

set (continued)

Instruction | Addressing modes Description
STHX <expression> Store Index register H:X
<expression>,SP Stack pointer and extended
addressing modes are only
available for HCS08 (-CS08
option)
STOP Enable /IRQ pin and Stop
oscillator
STX <expression> Store index register X in memory
<expression>,X
X
<expression>,SP
SUB #<expression> Subtract
<expression>
<expression>,X
X
<expression>,SP
SWI Software Interrupt
TAP Transfer Accumulator to CCR
TAX Transfer Accumulator to index
Register X
TPA Transfer CCR to Accumulator
TST <expression> Test memory for negative or zero
<expression>,X
X
<expression>,SP
TSTA Test Accumulator for negative or
zero
TSTX Test register X for negative or
zero
TSX Transfer SP to index register H:X
TXA Transfer index register X to
Accumulator

258

HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line

Table 7.1 HCO8 instruction set (continued)

Instruction

Addressing modes

Description

TXS

Transfer index register X to SP

WAIT

Enable interrupts; stop processor

Special HCSO08 instructions

The HCSO08 core provides the following instructions in addition to the HCO8 core
instructions (Table 7.4 on page 265):

Table 7.2 Special HC(S)08 instructions

Instruction

Addressing modes

Description

BGND

Enter Background Debug Mode.
only available with the -CS08/-
C08/-CRS08: Derivative family
assembler options.

CPHX

#<expression>
<expression>
<expression>,SP

Compare index register H:X with
memory

Stack pointer and extended
addressing modes are only
available with the -CS08, -C08, or
-CRS08 assembler options.

LDHX

#<expression>
<expression>
<expression>,X
X
<expression>,SP

Load index register H:X from
memory

Indexed, stack pointer, and
extended addressing modes are
only available with the -CS08
option

STHX

<expression>
<expression>,SP

Store index register H:X

Stack pointer and extended
addressing modes are only
available with the -CS08 option.

RSO08 instruction set
Table 7.3 on page 260 presents an overview of the instructions available for the RS08.

HC(S)08 / RS08 Assembler Manual

259

Assembler Syntax

Source line

Table 7.3 RS08 instructions

Instruction | Addressing Modes Description
ADC #<expression> Add with Carry
<expression>
X
D[X]
X
ADCX Alias for ADC X
ADD #<expression> Add without Carry
<expression>
X
D[X]
X
ADDX Alias for ADD X
AND #<expression> Logical AND
<expression>
X
DIX]
X
ANDX Alias for AND X
ASLA Arithmetic Shift Left Accumulator
(alias for LSLA)
BCC <label> Branch if Carry Bit Clear
BCLR BitNumber, <expression> Clear one Bit in Memory
BitNumber,D[X]
BitNumber,X
BCS <label> Branch if Carry Bit Set
BEQ <label> Branch if Equal
BGND Background
BHS <label> Branch if Higher or Same
BLO <label> Branch if Lower
BNE <label> Branch if Not Equal
BRN <label> Branch Never (Alias for BRA *+$2)

260

HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line

Table 7.3 RS08 instructions (continued)

Instruction

Addressing Modes

Description

BRCLR

BitNumber, <expression>,
<label>
BitNumber,D[X],<label>
BitNumber,X,<label>

Branch if Bit is Clear

BRSET

BitNumber, <expression>,
<label>
BitNumber,D[X],<label>
BitNumber,X,<label>

Branch if Bit Set

BSET

BitNumber,<expression>
BitNumber,D[X]
BitNumber,X

Set Bit in Memory

BSR

<label>

Branch to Subroutine

CBEQ

<expression>,<label>
#<expression>,<label>
X,<label>
D[X],<label>

X,<label>

Compare and Branch if Equal

CBEQA

<label>

CBEQX

<label>

CLC

Clear Carry Bit

CLR

<expression>
X

D[X]

X

Clear Memory

CLRX

Clear Index Register X

CMP

#<expression>
<expression>
X

D[X]

X

Compare Accumulator with Memory

COMA

Complement (One’s Complement)

HC(S)08 / RS08 Assembler Manual

261

Assembler Syntax
Source line

Table 7.3 RSO08 instructions (continued)

Instruction | Addressing Modes Description
DBNZ <expression>,<label> Decrement Counter and Branch if
X,<label> Not Zero
D[X],<label>
X,<label>
DBNZA <label>
DBNZX <label>
DEC <expression> Decrement Memory Location
X
D[X]
X
DEC <$13 Force tiny addressing (will use $03)
DECA Decrement Accumulator
DECX Decrement Index Register
EOR #<expression> Exclusive OR Memory with
<expression> Accumulator
D[X]
X
X
EORX Exclusive OR (index register and
accumulator)
INC <expression> Increment Memory Location
X
DIX]
X
INC >$01 Force direct addressing
INCA Increment Accumulator
INCX Increment Register X
JMP <label> Jump to Label
JSR <label> Jump to Subroutine

262

HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line

Table 7.3 RS08 instructions (continued)

Instruction | Addressing Modes Description
LDA #<expression> Load Accumulator indexed
<expression>
X
D[X]
X
LDA <$0FF Force short addressing (will use $1F)
LDX #<expression> Load Index Register X from Memory
<expression>
X
DIX]
X
LDX $OFF Load Direct
LSLA Logical Shift Left Accumulator
LSRA Logical Shift Right Accumulator
MOV <expression>,<expression> Memory to Memory Byte Move
#<expression>,<expression>
D[X],<expression>
<expression>,D[X]
#<expression>,D[X]
NOP No Operation
ORA #<expression> Inclusive OR between Accumulator
<expression> and Memory
X
D[X]
X
ORAX Inclusive OR between Accumulator
and Index Register
ROLA Rotate Accumulator Left
RORA Rotate Accumulator Right
RTS Return from Subroutine

HC(S)08 / RS08 Assembler Manual

263

Assembler Syntax

Source line

Table 7.3 RSO08 instructions (continued)

Instruction

Addressing Modes

Description

SBC

#<expression>
<expression>
X

D[X]

X

Subtract with Carry

SBCX

Substract with Carry (Index Register
content from Accumulator)

SEC

Set Carry Bit

SHA

Swap Shadow PC High with A

SLA

Swap Shadow PC Low with A

STA

<expression>
X

DIX]

X

Store Accumulator in Memory

STOP

Stop Processing

STX

<expression>

Store Index Register X in Memory

SUB

#<expression>
<expression>
X

D[X]

Subtract

SUBX

TAX

Transfer Accumulator to Index
Register X

TST

#<expression>
<expression>
X

D[X]

Test for zero (alias for MOV
<expression>,<expression>)

TSTA

Test Accumulator (alias for ORA #0)

TSTX

Test Index Register X (alias for MOV
X, X)

264

HC(S)08 / RS08 Assembler Manual

Assembler Syntax

Source line
Table 7.3 RS08 instructions (continued)
Instruction | Addressing Modes Description
TXA Transfer Index Register X to
Accumulator
WAIT Enable Interrupts; Stop Processor

NOTE For RS08 both D[X] and ,X notations refer to the memory location $000E. The
X notation is supported for compatibility reasons with HC(S)08. Wherever ,X
is supported, D[X] is also supported. In situations where the use of ,X would
lead to double commas (e.g. BCLR 0,,X) the use of ,X is not allowed.

Directive

Assembler directives are described in the “ Assembler Directives’ chapter of this manual.

Macro

A user-defined macro can be invoked in the assembler source program. Thisresultsin the
expansion of the code defined in the macro. Defining and using macros are described in
the “Macros’ chapter in this manual.

Operand field: Addressing modes (HCO8 /
HCS08)

The operand fields, when present, follow the operation field and are separated from it by a
white space. When two or more operand subfields appear within a statement, a comma
must separate them.

The following addressing mode notations are allowed in the operand field (Table 7.4 on
page 265):

Table 7.4 HC(S)08 addressing mode notation

Addressing Mode Notation Example
Inherent on page 266 No operands RSP
Immediate on page 267 #<expression> ADC #3$01

HC(S)08 / RS08 Assembler Manual 265

Assembler Syntax

Source line

Table 7.4 HC(S)08 addressing mode notation (continued)

page 268

Addressing Mode Notation Example
Direct on page 267 <expression> ADC byte
Extended on page 268 <expression> ADC word
Indexed, no offset on X ADC X

lIndexed, 8-bit offset on
page 269t

<expression>,X

ADC Offset,X

Indexed, 16-bit offset on
page 270

<expression>,X

ADC Offset,X

Relative on page 270

<label>

BRA Label

Stack Pointer, 8-bit offset on
page 271

<expression>,SP

ADC Offset,SP

Stack Pointer, 16-bit offset on

page 271

<expression>,SP

ADC Offset,SP

Memory-to-memory
immediate-to-direct on
page 272

#<expression>,<expressio
n>

MOV #8$05,MyDataByte

Memory-to-memory direct-to-
direct on page 272

<expression>,<expression
>

MOV DatLoc1,DatlLoc2

Memory-to-memory indexed-
to-direct with post-
increment on page 273t

X+,<expression>

MOV X+,<expression>

Memory-to-memory direct-to-
indexed with post-
increment on page 274

<expression>,X+

MOV <expression>,X+

Indexed with post-
increment on page 274

X+

CBEQ X+, Data

Indexed, 8-bit offset, with

post-increment on page 275

#<expression>,X+

CBEQ #offset,X+,Data

Inherent

Instructions using this addressing mode do not have any associated instruction fetch
(Listing 7.2 on page 266). Some of them are acting on data in the CPU registers.

266

HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line

Listing 7.2 Inherent addressing-mode instructions

CLRA
DAA

Immediate

The opcode contains the value to use with the instruction rather than the address of this
value.

The effective address of the instruction is specified using the # character asin the
Listing 7.3 on page 267.

Listing 7.3 Immediate addressing mode

initStack:

MyData:
data:

MyCode :
Entry:

main:

XDEF Entry
EQU $0400

SECTION

DS.B 1

SECTION

LDHX #initStack ; init Stack Pointer

TXS ; with value $400-1 = S$SO3FF

LDA #100 ; load register A with (decimal) 100

BRA main

In this example, the hexadecimal value $0400 isloaded in valuein the register HX and
the decimal value 100 isloaded into register A.

Direct

The direct addressing mode is used to address operands in the direct page of the memory
(location $0000 to SOOFF).

For most of the direct instructions, only two bytes are required: the first byteis the opcode
and the second byte is the operand address located in page zero. See Listing 7.4 on
page 267 for an example of the direct addressing mode.

HC(S)08 / RS08 Assembler Manual 267

Assembler Syntax
Source line

Listing 7.4 Direct addressing mode

XDEF Entry
initStack: EQU $0400

MyData: SECTION SHORT
data: DS.B 1
MyCode : SECTION
Entry:
LDHX #initStack ; init Stack Pointer
TXS ; with value $400 - 1 = S$O03FF
main: LDA #3S55

STA data
BRA main

In thisexample, the value $55 is stored in the variable data, which is located on the direct
page. The MyData section must be defined in the direct page in the linker parameter file.
The opcode generated for the STA data instruction is two byteslong.

Extended

The extended addressing mode is used to access memory location located above the direct

page in a 64-kiloByte memory map.

For the extended instructions, three bytes are required: the first byte is the opcode and the
second and the third bytes are the most and least significant bytes of the operand address.
See Listing 7.5 on page 268 for an example of the extended addressing mode.

Listing 7.5 Extended addressing mode

XDEF Entry

initStack: EQU $0400
ORG SBOO
data: DS.B 1
MyCode : SECTION
Entry:
LDHX #initStack ; init Stack Pointer
TXS ; with value $400-1 = $O03FF
main: LDA #3S55
STA data
BRA main
268 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line

In this example, the value $55 is stored in the variable data. This variableislocated at
address $0B00 in the memory map. The opcode of the STA data instruction is then
three bytes long.

Indexed, no offset

This addressing mode is used to access data with variable addresses through the HX index
register of the HCO8 controller. The X index register contains the least significant byte of
the operand while the H index register contains the most significant byte.

Indexed, no offset instructions are one byte long. See Listing 7.6 on page 269 for an
example of using the indexed (no offset) addressing mode.

Listing 7.6 Indexed (no offset) addressing mode

Entry:

LDHX #S$SOFFE
LDA , X

JMP X

The value stored in memory location SOFFE isloaded into accumulator A. The JMP
instruction causes the program to jump to the address pointed to by the HX register.

Indexed, 8-bit offset

This addressing mode is useful when selecting the k-th element in an n-element table. The
size of the table islimited to 256 bytes.

Indexed, 8-bit offset instructions are two byte long. The first byteis the opcode and the
second byte contains the index register offset byte. See Listing 7.7 on page 269 for an
example of using the indexed (8-hit offset) addressing mode.

Listing 7.7 Index (8-bit offset) addressing mode

initStack:
MyData:
data:
MyCode :
Entry:

XDEF Entry
EQU $0400
SECTION SHORT
DS.B 8
SECTION

HC(S)08 / RS08 Assembler Manual 269

Assembler Syntax
Source line

LDHX #initStack ; init Stack Pointer

TXS ; with value $400-1 = S$SO3FF
main:

LDHX #data

LDA 5 ,X

JMP SFF,X

The value contained in the memory at the location cal culated using the address of data
(pointed to by the HX register) + 5 isloaded in accumulator A. The JMP instruction causes
the program to jump to the address pointed to by the HX register + SFF.

Indexed, 16-bit offset

This addressing mode is useful when selecting the k-th element in an n-element table. The
size of thetableislimited to SFFFF bytes.

Indexed,16-bit offset instructions are three byte long. The first byte contains the opcode
and the second and the third the high and low index register offset bytes. See Listing
7.8 on page 270 for an example of using the indexed (16-bit offset) addressing mode.

Listing 7.8 Indexed (16-bit offset) addressing mode

XDEF Entry
initStack: EQU $0400

MyData: SECTION
data: DS.B 8
MyCode: SECTION
Entry:

LDHX #initStack ; init Stack Pointer

TXS ; with value $400-1 = S$O03FF
main:

LDHX #table

STA $500 ,X

JMP $1000,X

The value contained in the memory at the location cal culated using the address of data
(pointed to by register HX) + $500 is loaded in accumulator A. The JMP instruction causes
the program to jump to the address pointed to by the HX register + $1000.

270 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line

Relative

This addressing mode is used by all branch instructions to determine the destination
address. The signed byte following the opcode is added to the contents of the program
counter.

Asthe offset is coded on asigned byte, the branching rangeis -127 to +128. The

destination address of the branch instruction must be in thisrange. See Listing 7.9 on
page 271 for an example of using the relative addressing mode.

Listing 7.9 Relative addressing mode

main:

NOP
NOP
BRA main

Stack Pointer, 8-bit offset

Stack Pointer, 8-hit offset instructions behave the same way than Indexed 8-bit offset
instructions, except that the offset is added to the Stack Pointer SP in place of the HX

Index register.
This addressing mode allow easy access of the data on the stack. If the interrupts are

disabled, the Stack pointer can also be used as a second Index register. See Listing 7.10 on
page 271 for an example of using the Stack Pointer *8-bit offset) addressing mode.

Listing 7.10 Stack Pointer (8-bit offset) addressing mode

entry:

LDHX #S$0500 ; init Stack Pointer to 04FF
TXS

LDA #3540

STA $50, SP ; Location $54F = $40

In this example, stack pointer, 8-bit offset mode is used to store the value $4 0 in memory
location $54F.

HC(S)08 / RS08 Assembler Manual 271

Assembler Syntax
Source line

Stack Pointer, 16-bit offset

Stack Pointer, 16-bit offset instructions behave the same way than Indexed, 16-bit offset
instructions, except that the offset is added to the Stack Pointer (SP) in place of the HX
Index register.

This addressing mode allow easy access of the data on the stack. If the interrupts are
disabled, the Stack pointer can also be used as a second Index register. See Listing 7.11 on
page 271 for an example of using the Stack Pointer (16-bit offset) addressing mode.

Listing 7.11 Stack Pointer (16-bit offset) addressing mode

entry:

LDHX #S$0100 ; init Stack Pointer to OOFF
TXS

LDA $0500, SP ; Content of memory location $5FF is loaded in A

In this example, stack pointer, 16-bit offset mode is used to store the value in memory
location $5FF in accumulator A.

Memory-to-memory immediate-to-direct

This addressing mode is generally used to initialize variables and registers in page zero.
Theregister 2 isnot affected. See Listing 7.12 on page 272 for an example for using the
memory-to- memory immediate-to-direct addressing mode.

Listing 7.12 Memory-to-memory immediate-to-direct addressing mode

MyData:
entry:

EQU $50

MOV #$20, MyData

TheMOV #$20,MyData instruction storesthe value $20 in memory location $50
‘MyData’.

Memory-to-memory direct-to-direct

This addressing mode is generally used to transfer variables and registers in page zero.
The A register is not affected. See Listing 7.13 on page 272 for an example of using the
memory-to- memory direct-to-direct addressing mode.

272

HC(S)08 / RS08 Assembler Manual

Assembler Syntax

Source line
Listing 7.13 Memory-to-memory direct-to-direct addressing mode
MyDatal: EQU $50
MyData2: EQU $51
entry:
MOV #$10, MyDatal
MOV MyDatal, MyData2
TheMOV #$10,MyDatal instruction storesthe value $10 in memory location $50
‘MyDatal’ using the memory-to-memory Immediate-to-Direct addressing mode. The
MOV MyDatal, MyData2 instruction moves the content of MyDatal into MyData2
using memory to memory Direct-to-Direct addressing mode. The content of MyData2
(memory location $51) isthen $10.
Memory-to-memory indexed-to-direct with post-
increment
Thisaddressing mode is generally used to transfer tables addressed by theindex register to
aregister in page zero.
The operand addressed by the HX index register is stored in the direct page location
addressed by the byte following the opcode. The HX index register is automatically
incremented. The A register isnot affected. See Listing 7.14 on page 273 for an example
of using the memory-to-memory indexed to direct with post-increment addressing mode.
Listing 7.14 Memory-to-memory indexed-to-direct with post increment addressing
mode.
XDEF Entry
ConstSCT: SECTION
Const: pDC.B 1,11,21,31,192,12,0
DataSCT: SECTION SHORT
MyReg: DS.B 1
CodeSCT: SECTION
Entry: LDHX #SOOFF
TXS
main:
LDHX #Const
LOOP: MOV X+, MyReg

BEQ main

HC(S)08 / RS08 Assembler Manual 273

Assembler Syntax

Source line
BRA LOOP
In this example, the table Const contains seven bytes defined in a constant section in
ROM. Thelast value of thistableis zero.
The HX register isinitialized with the address of Const. All the values of thistable are
stored one after another in page-zero memory location MyReg using the MOV X+,
MyReg instruction. When the value 0 is encountered, the HX register is reset with the
address of thefirst element of the #Const table.
Memory-to-memory direct-to-indexed with post-
increment
This addressing mode is generally used to fill tables addressed by the index register from
registersin page zero.
The operand in the direct page location addressed by the byte following the opcode is
stored in the memory location pointed to by the HX index register. The HX index register
isautomatically incremented. The A register is not affected. See Listing 7.15 on page 274
for an example of using the memory-to-memory direct-to-indexed with post-increment
addressing mode.

Listing 7.15 Memory-to-memory direct-to-indirect with post-increment addressing mode
XDEF entry

MyData: SECTION SHORT

MyRegl: DS.B 1

MyReg2: DS.B 1

MyCode : SECTION

entry:
LDA #s502
STA MyRegl
INCA
STA MyReg2
LDHX #$1000
MOV MyRegl, X+
MOV MyReg2, X+

main: BRA main
The page-zero memory locations MyRegl and MyReg2 arefirst respectively initialized
with $02 and $03. The contents of those data are then written in memory location
$1000 and $1001. The HX register pointsto memory location $1002.

274 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line

Listing 7.16

Indexed with post-increment
The operand is addressed then the HX register isincremented.

This addressing mode is useful for searchesin tables. It is only used with the CBEQ
instruction. See Listing 7.16 on page 275 for an example of an example of using the
indexed with post-increment addressing mode.

Example of the indexed with post-increment addressing mode

data:
CodeSCT:
Entry:

main:

LOOP:

IS EQUAL:

XDEF Entry
ORG SF000
pc.B 1,11,21,31,%C0,12

SECTION

LDHX #S$00FF
TXS

LDA #5CO

LDHX #data
CBEQ X+,IS EQUAL

BRA LOOP

Using this addressing mode, it is possible to scan the memory to find alocation containing
aspecific value.

The valuelocated at the memory location pointed to by HX iscompared to the valuein the
A register. If thetwo values match, the program branchesto IS EQUAL. HX pointsto the
memory location next to the one containing the searched value.

Inthisexample, thevalue $C0 is searched starting at memory location $F000. Thisvalue
isfound at the memory location $F 004, the program branchesto IS_EQUAT, and the HX
register contains $SF005.

Indexed, 8-bit offset, with post-increment

The address of the operand is the sum of the 8-bit offset added to the value in register HX.
The operand is addressed, then the HX register isincremented.

This addressing mode is useful for searches in tables. It is only used with the CBEQ
instruction. See Listing 7.17 on page 275 for an example of the indexed (8-bit offset) with
post-increment addressing mode.

HC(S)08 / RS08 Assembler Manual 275

Assembler Syntax

Source line

Listing 7.17 Indexed (8-bit offset) with post-increment addressing mode

data:

CodeSCT:
Entry:

main:

LOOP:

IS EQUAL:

XDEF Entry
ORG SF000
DCB.B $40,$00

pc. 1,11,21,31,%C0,12 ;

SECTION
LDHX #SO0O0FF
TXS

LDA #$CO

LDHX #data

CBEQ $30,X+,IS EQUAL

BRA LOOP

SCO is located at S$SF000+$40+4

Table 7.5 Operand Field RS08 Addressing Modes

Using this addressing mode, it is possible to scan the memory to find alocation containing
aspecific value starting at a specified location to which is added an offset.

The value located at memory location pointed to by HX + $30 iscompared to the value
inthe A register. If the two values match, program branchto IS_EQUAL. HX pointsto
memory location next to the one containing the searched value.

In this example, the value $C0 is searched starting at memory location
$F000+$30=3$F030. Thisvaueisfound at memory location $F044, the program
branchesto IS EQUAL. The HX register contains the memory location of the searched
value minus the offset, incremented by one: $F044-$30+1=$F015.

Operand Field: Addressing Modes (RS08)

The following addressing mode notations are allowed in the operand field for the RS08:

Inherent No operands RTS

Tiny <expression> ADD fourbits
Short <expression> CLR fivebits
Direct <expression> ADC byte
Extended <expression> JSR word

276

HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line

Table 7.5 Operand Field RS08 Addressing Modes (continued)

Relative <label> BRA Label
Immediate #<expression> ADC #$01
Indexed D[X] or ,X ADC D[X] or ADC ,X

Inherent (RS08)

Instructions using this addressing mode don’t have any instruction fetch associated. Some
of them are acting on data in the CPU registers.

Example:
CLRA
INCA
NOP
Tiny
The tiny addressing mode is used to access only the first 16 bytes of the memory map
(addresses from $0000 to $000F). Theinstructions using this addressing mode are
encoded using one byte only. This addressing mode is available for INC, DEC, ADD and
SUB instructions.
Example:
XDEF Entry
MyData: SECTION RS08 TINY
data: DS.B 1
MyCode : SECTION
Entry:
main: ADD data
BRA main

In this example, the value of the variable data is added to the accumulator. The datais
located in the tiny memory area, so the encoding of the ADD instruction will be one byte
long. Note that the tiny section has to be placed into the tiny memory area at link time.

Short

The RS08 short addressing mode is used to access only the first 32 bytes of the memory
map (addresses from $0000 to $001F). The instructions using this addressing mode are

HC(S)08 / RS08 Assembler Manual 277

Assembler Syntax
Source line

encoded using one byte only. This addressing mode is available for CLR, LDA and STA
instructions.

Example:

XDEF Entry
MyData: SECTION RS08_ SHORT
data: DS.B 1
MyCode : SECTION
Entry:
main: LDA data
BRA main

In this example, the value of the variable datais |oaded into the accumulator. The datais
located in the short memory area, so the encoding of the LDA instruction will be one byte
long. Note that the short section has to be placed into the tiny memory area at linktime.

Direct

The direct addressing mode is used to address operands in the direct page of the memory
(location $0000 to SOOFF).

Example:

XDEF Entry
MyData: SECTION
data: DS.B 1
MyCode : SECTION
Entry:
main: LDA #355
STA data
BRA main

In thisexample, the value $55 is stored in the variable data. The opcode generated for the
instruction STA data istwo byteslong.

Extended

The extended addressing mode is used only for JSR and IMP instructions. The 14-bit
address is located in the lowest 14 bits of the encoding after the two-bit opcode.

Example:

XDEF Entry
XREF target
data: DS.B 1

278 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Source line

MyCode:
Entry:
main:

SECTION

LDA #$55
JMP target

In this example ajump is executed at an address defined by the external symbol target.

Relative

This addressing mode is used by all branch instructions to determine the destination
address. The signed byte following the opcode is added to the contents of the program
counter.

Asthe offset is coded on asigned byte, the branching rangeis-127 to +128. The
destination address of the branch instruction must be in thisrange.

Example:

main:

NOP
NOP
BRA main

Immediate

The opcode contains the value to use with the instruction rather than the address of this
value. The effective address of the instruction is specified using the # character asin the
example below.

Example:

MyData:
data:

MyCode :
Entry:
main:

XDEF Entry
SECTION
DS.B 1

SECTION

LDA #100
BRA main

In this example, the decimal value 100 is loaded in register A.

HC(S)08 / RS08 Assembler Manual 279

Assembler Syntax

Symbols
Indexed
When using the indexed addressing mode, an index register is used as reference to access
the instruction’s operand. For the RS08, the index registers are located at $000F (register
X) and $000E (register D[X]). The D[X] register is called the index data register, and can
be designated by either one of the D[X] or ,X notations. As arestriction, when the use of
X would lead to double commas in the assembly source, the use of ,X is not allowed.
Example:

XDEF Entry

MyData: SECTION

data: DS.B 1

MyCode : SECTION

Entry:

main: CLR D[X] ; equivalent to CLR ,X

CLR X
In this example the contents of both X and D[X] registers are replaced by zeros.
Comment Field
Thelast field in a source statement is an optional comment field. A semicolon (;) isthe
first character in the comment field.
Example:
NOP ; Comment following an instruction

Symbols

The following types of symbols are the topics of this section:
¢ User-defined symbols on page 280
¢ External symbols on page 281
¢ Undefined symbols on page 282
¢ Reserved symbols on page 282

User-defined symbols

Symbolsidentify memory locationsin program or data sectionsin an assembly module. A
symbol has two attributes:

280

HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Symbols

e The section, in which the memory location is defined
e The offset from the beginning of that section.

Symbols can be defined with an absolute or relocatable value, depending on the sectionin
which the labeled memory location is found. If the memory location is located within a
relocatable section (defined with the SECTION - Declare Relocatable Section assembler
directive), the label has arelocatable value relative to the section start address.

Symbols can be defined relocatable in the label field of an instruction or data definition
source line (Listing 7.18 on page 281).

Listing 7.18 Example of a user-defined relocatable SECTION

Sec: SECTION

labell: DC.B 2 ; labell is assigned offset 0 within Sec.
label2: DC.B 5 ; label2 is assigned offset 2 within Sec.
label3: DC.B 1 ; label3 is assigned offset 7 within Sec.

Itisaso possible to define alabel with either an absolute or a previously defined
relocatable value, using the SET - Set Symbol Value or EQU - Equate symbol value
assembler directives.

Symbols with absolute values must be defined with constant expressions.

Listing 7.19 Example of a user-defined absolute and relocatable SECTION

Sec: SECTION

labell: DC.B 2 ; labell is assigned offset 0 within Sec.
label2: EQU 5 ; label2 is assigned value 5.

label3: EQU labell ; label3 is assigned the address of labell.

External symbols

A symbol may be made external using the XDEF - External Symbol Definition assembler
directive. In another source file, an XREF - External Symbol Reference assembler
directive must reference it. Sinceits address is unknown in the referencing file, it is
considered to be relocatable. See Listing 7.20 on page 281 for an example of using XDEF
and XREF.

Listing 7.20 Examples of external symbols

XREF extLabel ; symbol defined in an other module.
; extLabel is imported in the current module
XDEF label ; symbol is made external for other modules

HC(S)08 / RS08 Assembler Manual 281

Assembler Syntax

Symbols

; label is exported from the current module
constSec: SECTION
label: DC.W 1, extLabel

Undefined symbols

If alabdl is neither defined in the source file nor declared external using XREF, the
Assembler considersiit to be undefined and generates an error message. Listing 7.21 on
page 282 shows an example of an undeclared label.

Listing 7.21 Example of an undeclared label

codeSec:

entry:
NOP
BNE
NOP
JMP
JMP

end:RTS
END

SECTION

entry

end
label ; <- Undeclared user-defined symbol: label

Reserved symbols
Reserved symbols cannot be used for user-defined symbols.
Register names are reserved identifiers.

For the HCO8 processor the reserved identifiers are listed in Listing 7.22 on page 282.

Listing 7.22 Reserved identifiers for an HC(S)08 derivative

A, CCR, H, X, SP

The keywords LOW and HIGH are also reserved identifiers. They are used to refer to the
low byte and the high byte of a memory location. Also, PAGE is areserved identifier.

Also, thekeywordsMAP_ADDR 6 and HIGH 6 13 arereserved identifiers.

HIGH 6_13 returnsthe higher byte for agiven 14 bit address (used to load the PAGE
register for the RS08). MAP_ADDR_ 6 will return the lower 6 bitsin a 14-bit address (used
to determine the offset in the paging window for the RS08).

282

HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Constants

Constants

The Assembler supports integer and ASCI| string constants:

Integer constants

The Assembler supports four representations of integer constants:

¢ A decimd constant is defined by a sequence of decimal digits (0-9).
Example: 5, 512, 1024

* A hexadecimal constant is defined by adollar character ($) followed by a sequence
of hexadecimal digits (0-9, af, A-F).

Example: $5, $200, $400

e Anocta constant is defined by the commercial at character (@) followed by a
sequence of octal digits (0-7).

Example: @5, @1000, @2000

* A binary constant is defined by a percent character followed by a sequence of
binary digits (0-1)

Example:

%101, %1000000000, %10000000000

The default base for integer constant isinitially decimal, but it can be changed using the
BASE - Set number base assembler directive. When the default base is not decimal,
decimal values cannot be represented, because they do not have a prefix character.

String constants

A string constant is a series of printable characters enclosed insingle () or double quote

(). Double quotes are only alowed within strings delimited by single quotes. Single
quotes are only allowed within strings delimited by double quotes. See Listing 7.23 on
page 283 for avariety of string constants.

Listing 7.23 String constants

lABCDI, llABCDIl, 'A', lllBll, "A'B", IAHBI

Floating-Point constants

The Macro Assembler does not support floating-point constants.

HC(S)08 / RS08 Assembler Manual 283

Assembler Syntax
Operators

Operators

Operators recognized by the Assembler in expressions are:

¢ Addition and subtraction operators (binary) on page 284

¢ Multiplication, division and modulo operators (binary) on page 285
e Sign operators (unary) on page 285

« Shift operators (binary) on page 286

e Bitwise operators (binary) on page 287

» Logical operators (unary) on page 288

» Relational operators (binary) on page 289

e HIGH operator on page 289

e _onpage290HIGH_6_13 Operator on page 290

e LOW operator on page 290
¢ MAP_ADDR_6 Operator on page 291

 PAGE operator on page 292
« Force operator (unary) on page 292

Addition and subtraction operators
(binary)

The addition and subtraction operators are + and -, respectively.

Syntax

Addition: <operand> + <operands>
Subtraction: <operand> - <operand>
Description

The + operator adds two operands, whereas the - operator subtracts them. The operands
can be any expression evaluating to an absolute or relocatable expression.

Addition between two relocatable operandsis not allowed.

Example

See Listing 7.24 on page 285 for an example of addition and subtraction operators.

284 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Operators

Listing 7.24 Addition and subtraction operators

SA3216 + $42 ; Addition of two absolute operands (= $A3258)
labelB - $10 ; Subtraction with value of ‘labelB’

Multiplication, division and modulo
operators (binary)

The multiplication, division, and modulo operators are *, /, and %, respectively.

Syntax

Multiplication: <operands> * <operands
Division: <operand> / <operands>
Modulo: <operand> % <operand>
Description

The * operator multiplies two operands, the / operator performs an integer division of
the two operands and returns the quotient of the operation. The % operator performs an
integer division of the two operands and returns the remainder of the operation

The operands can be any expression evaluating to an absolute expression. The second
operand in adivision or modulo operation cannot be zero.

Example

See Listing 7.25 on page 285 for an example of the multiplication, division, and modulo
operators.

Listing 7.25 Multiplication, division, and modulo operators

23 * 4 ; multiplication (= 92)
23 / 4 ; division (= 5)
23 % 4 ; remainder (= 3)

Sign operators (unary)

The (unary) sign operators are + and - .

HC(S)08 / RS08 Assembler Manual 285

Assembler Syntax

Operators
Syntax
Plus: +<operand>
Minus: -<operands>
Description
The + operator does not change the operand, whereas the — operator changes the operand
to its two’s complement. These operators are valid for absol ute expression operands.
Example
See Listing 7.26 on page 286 for an example of the unary sign operators.
Listing 7.26 Unary sign operators
+$32 i (= 832)
-$32 ; (= SCE = -332)
Shift operators (binary)
The binary shift operatorsare << and >>.
Syntax
Shift left: <operand> << <counts
Shift right: <operand> >> <counts
Description
The << operator shiftsitsleft operand left by the number of bits specified in the right
operand.
The >> operator shiftsitsleft operand right by the number of bits specified in the right
operand.
The operands can be any expression evaluating to an absolute expression.
286 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Operators

Example
See Listing 7.27 on page 287 for an example of the binary shift operators.

Listing 7.27 Binary shift operators

$25 << 2 ; shift left (= $94)
SAS5 >> 3 ; shift right(= $14)

Bitwise operators (binary)

The binary bitwise operatorsare &, |, and *.

Syntax

Bitwise AND: <operand> & <operand>
Bitwise OR: <operand> | <operands>
Bitwise XOR: <operand> * <operand>
Description

The & operator performs an AND between the two operands on the bit level.
The | operator performs an OR between the two operands on the bit level.
The * operator performs an XOR between the two operands on the bit level.

The operands can be any expression evaluating to an absolute expression.

Example
See Listing 7.28 on page 287 for an example of the binary bitwise operators

Listing 7.28 Binary bitwise operators

$E & 3 ; = $2 (%1110 & %0011 = %0010)
S$E | 3 ; = SF (%1110 | %0011 = %1111)
$E © 3 ; = $D (%1110 * %0011 = %1101)

HC(S)08 / RS08 Assembler Manual 287

Assembler Syntax
Operators

Bitwise operators (unary)

The unary bitwise operator is ~.

Syntax

One’s complement: ~<operands>

Description

The ~ operator evaluates the one’s complement of the operand.

The operand can be any expression evaluating to an absolute expression.

Example
See Listing 7.29 on page 288 for an example of the unary bitwise operator.

Listing 7.29 Unary bitwise operator

~$C ; = SFFFFFFF3 (~%00000000 00000000 00000000 00001100
=%11111111 11111111 11111111 11110011)

Logical operators (unary)
The unary logical operator is !.

Syntax

Logical NOT: !<operands>

Description

The ! operator returns 1 (true) if the operand is 0, otherwise it returns o (false).

The operand can be any expression evaluating to an absolute expression.

Example
See Listing 7.30 on page 289 for an example of the unary logical operator.

288 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Operators

Listing 7.30 Unary logical operator

1 (8<5) ; = $1 (TRUE)

Relational operators (binary)

The binary relational operatorsare =, ==, I=, <>, <, <=, >, and >=.
Syntax
Equal: <operand> = <operands>
<operand> == <operands>
Not equal: <operand> != <operands>
<operand> <> <operands>
Less than: <operand> < <operand>
Less than or equal: <operand> <= <operands>
Greater than: <operand> > <operands>

Greater than or equal: <operands>

>=

<operand>

Description

These operators compare two operands and return 1 if the conditionis ‘true’ or 0 if the

conditionis‘false’.

The operands can be any expression evaluating to an absolute expression.

Example

See Listing 7.31 on page 289 for an example of the binary relational operators

Listing 7.31 Binary relational operators

3 >= 4 ; = 0 (FALSE)
label = 4 ;=1 (TRUE) if label is 4, 0 or
9 < $B ; =1 (TRUE)

(FALSE) otherwise.

HIGH operator

The HIGH operator iSHIGH.

HC(S)08 / RS08 Assembler Manual

289

Assembler Syntax

Operators

Syntax

High Byte: HIGH (<operands>)

Description

This operator returns the high byte of the address of a memory location.

Example
Assumedatal isaword located at address $1050 in the memory.
LDA #HIGH (datal)

Thisinstruction will load the immediate value of the high byte of the address of datal
($10) inregister A.

LDA HIGH(datal)

Thisinstruction will load the direct value at memory location of the higher byte of the
address of datal (i.e, the valuein memory location $10) in register A.

HIGH_6_13 Operator

Syntax

High Byte: HIGH 6 13 (<operands)

Description

This operator returns the high byte of a 14-bit address of a memory location.

Example

Assumedatal isaword located at address $1 010 in the memory.
LDA #HIGH 6 13 (datal)

Thisinstruction will load the value $40 in the accumulator.

LOW operator

The LOW operator is LOW.

290

HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Operators

Syntax

LOW Byte: LOW (<operands>)

Description
This operator returns the low byte of the address of a memory location.
Example

Assumedatal isaword located at address $1050 in the memory.
LDA #LOW(datal)

Thisinstruction will load the immediate value of the lower byte of the address of datal
($50) inregister A.

LDA LOW(datal)

This instruction will load the direct value at memory location of the lower byte of the
address of datal (i.e, the valuein memory location $50) in register A.

MAP_ADDR_6 Operator

Syntax

MAP_ADDR_6 (<operands>)

Description

This operator returns the lower 6 bits for amemory location. It should be used to
determine the offset in the paging window for a certain memory address.Note that the
operator automatically adds the offset of the baseof the paging window ($CO0).

Example
MOV #HIGH 6 13 (data), $O001F
STA MAP_ ADDR 6 (data)

In this example, the RS08 PAGE register (mapped at $001F) is loaded with the memory
page corresponding to data and then the value contained in the accumul ator is stored at the
address pointed by data.

HC(S)08 / RS08 Assembler Manual 291

Assembler Syntax

Operators
PAGE operator
The PAGE operator is PAGE.
Syntax
PAGE Byte: PAGE (<operands)
Description
This operator returns the page byte of the address of a memory location.
Example
Assume datal isaword located at address $28050 in the memory.
LDA #PAGE (datal)
Thisinstruction will load the immediate value of the page byte of the address of datal
(2).
LDA PAGE (datal)
This instruction will load the direct value at memory location of the page byte of the
address of datal (i.e, the valuein memory location $2).
NOTE ThePAGE keyword does not refer to the RS08 PAGE register but to the PAGE
operator described above.
Force operator (unary)
Syntax
8-bit address: <<operand> or <operands>.B
16-bit address. ><operands> or <operands>.W
292 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Operators

Description

The < or . B operators force the operand to be an 8-bit operand, whereasthe > or . W
operators force the operand to be a 16-bit operand.

The < operator may be useful to force the 8-bit immediate, 8-bit indexed, or direct
addressing mode for an instruction.

> operator may be useful to force the 16-bit immediate, 16-bit indexed, or extended
addressing mode for an instruction.

The operand can be any expression evaluating to an absolute or rel ocatable expression.

Example

<label ; label is a 8-bit address.
label.B ; label is a 8-bit address.
>label ; label is a 16-bit address.
label. W ; label is a 16-bit address.

For the RS08 the < operand forces the operand to short or tiny addressing mode
(depending on the instruction where it is used). The same result can be obtained by adding
.Sor.T to thereffered symbol. The > operator may be used to force an address to 8 hits,
evenif it would fitin 4 or 5 bits (so short or tiny addressing modes could be used).

Operator precedence
Operator precedence follows the rules for ANSI - C operators (Table 7.6 on page 293)

Table 7.6 Operator precedence priorities

Operator Description Associativity

0 Parenthesis Right to Left
One’s complement Left to Right

+ Unary Plus

- Unary minus

* Integer multiplication Left to Right

/ Integer division

% Integer modulo

+ Integer addition Left to Right

- Integer subtraction

HC(S)08 / RS08 Assembler Manual 293

Assembler Syntax
Expression

Table 7.6 Operator precedence priorities (continued)

Operator Description Associativity

<< Shift Left Left to Right

>> Shift Right

< Less than Left to Right

<= Less or equal to

> Greater than

>= Greater or equal to

=, == Equal to Left to Right

1=, <> Not Equal to

& Bitwise AND Left to Right

N Bitwise Exclusive OR Left to Right
Bitwise OR Left to Right

An expression is composed of one or more symbols or constants, which are combined
with unary or binary operators. Valid symbolsin expressions are:

User defined symbols
External symbols

The specia symbol “** represents the value of the location counter at the beginning
of the instruction or directive, even when several arguments are specified. In the
following example, the asterisk represents the location counter at the beginning of
the DC directive:

DC.w 1, 2, *-2

Once avalid expression has been fully evaluated by the Assembler, it is reduced as one of
the following type of expressions:

Absolute expression on page 295: The expression has been reduced to an absol ute
value, which isindependent of the start address of any relocatable section. Thusitis
aconstant. Simple relocatable expression on page 296: The expression evaluates to
an absolute offset from the start of a single rel ocatable section.

Complex relocatable expression: The expression neither evaluates to an absolute

expression nor to asimple relocatable expression. The Assembler does not support
such expressions.

294

HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Expression

All valid user defined symbols representing memory locations are simple relocatable
expressions. Thisincludes labels specified in XREF directives, which are assumed to be
relocatable symbols.

Absolute expression

An absolute expression is an expression involving constants or known absolute labels or
expressions. An expression containing an operation between an absolute expression and a
constant value is also an absolute expression.

See Listing 7.32 on page 295 for an example of an absolute expression.

Listing 7.32 Absolute expression

Base: SET $100
Label: EQU Base * $5 + 3

Expressionsinvolving the difference between two rel ocatable symbols defined in the same
file and in the same section evaluate to an absolute expression. An expression as
“label2-labell” canbetrandated as:

Listing 7.33 Interpretation of label2-labell: difference between two relocatable symbols

(<offset label2> + <start section address >) -
(<offset labell> + <start section address >)

This can be simplified to (Listing 7.34 on page 295):

Listing 7.34 Simplified result for the difference between two relocatable symbols

<offset label2> + <start section address > -
<offset labells> - <start section address>
= <offset label2> - <offset labell>

Example

In the examplein Listing 7.35 on page 296, the expression “tabEnd-tabBegin”
evaluatesto an absolute expression and is assigned the value of the difference between the
offset of tabEnd and tabBegin inthe section DataSec

HC(S)08 / RS08 Assembler Manual 295

Assembler Syntax
Expression

Listing 7.35 Absolute expression relating the difference between two relocatable
symbols

DataSec: SECTION
tabBegin: DS.B 5
tabEnd: DS.B 1

ConstSec: SECTION
label: EQU tabEnd-tabBegin ; Absolute expression

CodeSec: SECTION
entry: NOP

Simple relocatable expression

A simple relocatable expression results from an operation such as one of the following:

« <relocatable expression> + <absolute expression>
e <relocatable expression> - <absolute expression>
» < absolute expression> + < relocatable expression>

Listing 7.36 Example of relocatable expression

XREF XtrnLabel
DataSec: SECTION
tabBegin: DS.B 5
tabEnd: DS.B 1
CodeSec: SECTION

entry:
LDA tabBegin+2 ; Simple relocatable expression
BRA *-3 ; Simple relocatable expression
LDA XtrnLabel+6 ; Simple relocatable expression

Unary operation result

Table 7.7 on page 297 describes the type of an expression according to the operator in an
unary operation:

296 HC(S)08 / RS08 Assembler Manual

Assembler Syntax
Expression

Table 7.7 Expression type resulting from operator and operand type

Operator Operand Expression
AL~ absolute absolute
AL~ relocatable complex

+ absolute absolute

+ relocatable relocatable

Binary operations result

Table 7.8 on page 297 describes the type of an expression according to the left and right
operatorsin a binary operation:

Table 7.8 Expression type resulting from operator and their operands

Operator Left Operand Right Expression
Operand

- absolute absolute absolute

- relocatable absolute relocatable

- absolute relocatable complex

- relocatable relocatable absolute

+ absolute absolute absolute

+ relocatable absolute relocatable

+ absolute relocatable relocatable

+ relocatable relocatable complex

* %, <<, >> |, &N absolute absolute absolute

* %, <<, >> |, &N relocatable absolute complex

* %, <<, >> |, &N absolute relocatable complex

* %, <<, >> |, &N relocatable relocatable complex

HC(S)08 / RS08 Assembler Manual 297

Assembler Syntax

Translation limits

Translation limits

The following limitations apply to the Macro Assembler:

Floating-point constants are not supported.

Complex relocatable expressions are not supported.

Lists of operands or symbols must be separated with acomma.
Include may be nested up to 50.

The maximum linelengthis 1023.

298

HC(S)08 / RS08 Assembler Manual

Assembler Directives

There are different class of assembler directives. The following tables gives you an
overview over the different directives and their class:

Directive overview

Section-Definition directives

Thedirectivesin Table 8.1 on page 299 are used to define new sections.

Table 8.1 Directives for defining sections

Directive Description

ORG - Set Location Counter on page 353 Define an absolute section

SECTION - Declare Relocatable Section on Define a relocatable section
page 361
OFFSET - Create absolute symbols on Define an offset section
page 351

Constant-Definition directives

The directivesin Table 8.2 on page 299 are used to define assembly constants.

Table 8.2 Directives for defining constants

Directive Description
EQU - Equate symbol value on page 322 Assign a name to an expression (cannot
be redefined)
SET - Set Symbol Value on page 363 Assign a name to an expression (can be
redefined)
299

HC(S)08 / RS08 Assembler Manual

Assembler Directives
Directive overview

Data-Allocation directives
The directivesin Table 8.3 on page 300 are used to allocate variables.

Table 8.3 Directives for allocating variables

Directive Description

DC - Define Constant on page 311 Define a constant variable

DCB - Define Constant Block on Define a constant block

page 313

DS - Define Space on page 314 Define storage for a variable
RADS50 - Rad50-encoded string RAD50 encoded string constants
constants on page 358

Symbol-Linkage directives

Symbol-linkage directives (Table 8.4 on page 300) are used to export or import global
symbols.

Table 8.4 Symbol linkage directives

Directive Description

ABSENTRY - Application entry point on Specify the application entry point when an
page 304 absolute file is generated

XDEF - External Symbol Definition on Make a symbol public (visible from outside)
page 367

XREF - External Symbol Reference on Import reference to an external symbol.
page 368

XREFB - External Reference for Import reference to an external symbol
Symbols located on the Direct Page on located on the direct page.

page 369

Assembly-Control directives

Assembly-control directives (Table 8.5 on page 300) are general purpose directives used
to control the assembly process.

300 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Directive overview

Table 8.5 Assembly control directives

Directive

Description

ALIGN - Align Location Counter on
page 306

Define Alignment Constraint

BASE - Set number base on page 307

Specify default base for constant definition

END - End assembly on page 318

End of assembly unit

ENDFOR - End of FOR block on
page 319

End of FOR block

EVEN - Force word alignment on
page 323

Define 2-byte alignment constraint

EAIL - Generate Error message on
page 325

Generate user defined error or warning
messages

FOR - Repeat assembly block on
page 329

Repeat assembly blocks

INCLUDE - Include text from another
file on page 335

Include text from another file.

LONGEVEN - Forcing Long-Word
alignment on page 340

Define 4 Byte alignment constraint

Listing-File Control directives

Listing-file control directives (Table 8.6 on page 301) control the generation of the

assembler listing file.

Table 8.6 Listing-file control directives

Directive

Description

CLIST - List conditional assembly on
page 309

Specify if all instructions in a conditional
assembly block must be inserted in the
listing file or not.

LIST - Enable Listing on page 336

Specify that all subsequent instructions
must be inserted in the listing file.

LLEN - Set Line Length on page 338

Define line length in assembly listing file.

HC(S)08 / RS08 Assembler Manual

301

Assembler Directives
Directive overview

Table 8.6 Listing-file control directives (continued)

Directive

Description

MLIST - List macro expansions on
page 345

Specify if the macro expansions must be
inserted in the listing file.

NOLIST - Disable Listing on page 348

Specify that all subsequent instruction
must not be inserted in the listing file.

NOPAGE - Disable Paging on page 350

Disable paging in the assembly listing file.

PAGE - Insert Page break on page 355

Insert page break.

PLEN - Set Page Length on page 357

Define page length in the assembler listing
file.

SPC - Insert Blank Lines on page 364

Insert an empty line in the assembly listing
file.

TABS - Set Tab Length on page 365

Define number of character to insert in the
assembler listing file for a TAB character.

TITLE - Provide Listing Title on page 366

Define the user defined title for the
assembler listing file.

Macro Control directives

Macro control directives (Table 8.7 on page 302) are used for the definition and expansion
of macros.

Table 8.7 Macro control directives

Directive Description

ENDM - End macro definition on page 321 End of user defined macro.

MACRO - Begin macro definition on Start of user defined macro.

page 341

MEXIT - Terminate Macro Expansion on Exit from macro expansion.

page 342

Conditional Assembly directives

Conditional assembly directives (Table 8.8 on page 302) are used for conditional
assembling.

302 HC(S)08 / RS08 Assembler Manual

Assembler Directives

Detailed descriptions of all assembler directives

Table 8.8 Conditional assembly directives

Directive

Description

ELSE - Conditional assembly on
page 316

alternate block

-Compat: Compatibility modes on
page 319

End of conditional block

IF - Conditional assembly on page 331

Start of conditional block. A boolean
expression follows this directive.

IFcc - Conditional assembly on page 333

Test if two string expressions are equal.

IFDEF

Test if a symbol is defined.

IFEQ Test if an expression is null.

IFGE Test if an expression is greater or equal to
0.

IFGT Test if an expression is greater than 0.

IFLE Test if an expression is less or equal to 0.

IFLT Test if an expression is less than 0.

IFNC Test if two string expressions are different.

IFNDEF Test if a symbol is undefined

IFNE Test if an expression is not null.

Detailed descriptions of all assembler
directives

The remainder of the chapter covers the detailed description of al available

assembler directives.

HC(S)08 / RS08 Assembler Manual

303

Assembler
Detailed desc

Directives
riptions of all assembler directives

ABSENTRY - Application entry point

Syntax
ABSENTRY <label>

Synonym

None

Description

This directiveis used to specify the application Entry Point when the Assembler
directly generates an absolute file. The - FA2 assembly option - ELF/DWARF 2.0
Absolute File - must be enabled.

Using this directive, the entry point of the assembly application iswritten in the
header of the generated absolute file. When thisfile isloaded in the debugger, the
line where the entry point label is defined is highlighted in the source window.

This directive isignored when the Assembler generates an object file.

NOTE Thisinstruction only affects the loading on an application by a debugger. It
tells the debugger which initial PC should be used. In order to start the
application on atarget - initialize the Reset vector.

If the examplein Listing 8.1 on page 304 is assembled using the -FA2 assembler
option, an ELF/DWARF 2.0 Absolutefile is generated.

Listing 8.1 Using ABSENTRY to specify an application entry point

ABSENTRY entry

ORG Sfffe
Reset: DC.W entry

ORG $70
entry: NOP

NOP
main: RSP

NOP

BRA main

304

HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

According to the ABSENTRY directive, the entry point will be set to the address of
entry in the header of the absolute file.

HC(S)08 / RS08 Assembler Manual 305

Assembler Directives
Detailed descriptions of all assembler directives

ALIGN - Align Location Counter

Syntax

ALIGN <n>

Synonym

None

Description

This directive forces the next instruction to a boundary that is a multiple of <n>,
relative to the start of the section. The value of <n> must be a positive number
between 1 and 32767. The ALIGN directive can force alignment to any size. The
filling bytesinserted for alignment purpose areinitialized with *\ 0.

ALIGN can be used in code or data sections.

Example

The example shown in Listing 8.2 on page 306 aigns the HEX label to alocation,
which isamultiple of 16 (in this case, location 00010 (Hex))

Listing 8.2 Aligning the HEX Label to a Location

Assembler
Abs. Rel Loc Obj. code Source line
1 1
2 2 000000 6869 6768 DC.B "high"
3 3 000004 0000 0000 ALIGN 16
000008 0000 000O
00000C 0000 000O
4 4
5 5
6 6 000010 7F HEX: DC.B 127 ; HEX is allocated
7 7 ; on an address,
8 8 ; which is a
9 9 ; multiple of 16.
306 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

BASE - Set number base

Syntax

BASE <n>

Synonym

None

Description

The directive sets the default number base for constantsto <n>. The operand <n>
may be prefixed to indicate its number base; otherwise, the operand is considered
to bein the current default base. Valid values of <n> are 2, 8, 10, 16. Unless a
default base is specified using the BASE directive, the default number base is
decimal.

Example

See Listing 8.3 on page 307 for examples of setting the number base.

Listing 8.3 Setting the number base

4 4

5 5 000000 64
6 6

7 7 000001 O0A
8 8

9 9 000002 04
10 10 000003 04
11 11
12 12 000004 64
13 13
14 14 000005 64
15 15
16 16
17 17 000006 40

base
dc.b
base
dc.b
base
dc.b
dc.b
base
dc.b
base
dc.b

base
dc.b

10
100
16
Oa

100
%100
@l2
100
Sa
100

100

7

7

default

default

default

default

default

default

base:

base:

base:

base:

base:

base:

decimal
hex

binary

decimal

decimal

octal

Be careful. Evenif the basevalueis set to 16, hexadecimal constants terminated by
a ‘D’ must be prefixed by the $ character, otherwise they are supposed to be

HC(S)08 / RS08 Assembler Manual

307

Assembler Directives
Detailed descriptions of all assembler directives

decimal constantsin old style format. For example, constant 45D isinterpreted as
decimal constant 45, not as hexadecimal constant 4 5D.

308 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

CLIST - List conditional assembly

Syntax
CLIST [ON|OFF]

Synonym

None

Description

The CLIST directive controls the listing of subsequent conditional assembly
blocks. It precedes the first directive of the conditional assembly block to which it
applies, and remains effective until the next CLIST directiveisread.

When the ON keyword is specified inaCLIST directive, thelisting fileincludesall
directives and instructions in the conditional assembly block, even those which do
not generate code (which are skipped).

When the OFF keyword is entered, only the directives and instructions that
generate code are listed.

A soon asthe-L: Generate alisting file assembler option is activated, the
Assembler defaultsto CLIST ON.

Example
Listing 8.4 on page 309 is an example where the CLIST OFF option is used.

Listing 8.4 Listing file with CLIST OFF

CLIST OFF
Try: EQU 0
IFEQ Try
LDA #103
ELSE
LDA #0
ENDIF

HC(S)08 / RS08 Assembler Manual 309

Assembler Directives
Detailed descriptions of all assembler directives

Listing 8.5 on page 310 is the corresponding listing file.

Listing 8.5 Example assembler listing where CLIST ON is used

Abs. Rel. Loc Obj. code Source line
2 2 0000 0000 Try: EQU 0
3 3 0000 0000 IFEQ Try
4 4 000000 A667 LDA #103
5 5 ELSE
7 7 ENDIF

Listing 8.6 on page 310 isalisting filewhere CLIST ON is used.

Listing 8.6 CLIST ON is selected

CLIST ON
Try: EQU 0
IFEQ Try
LDA #103
ELSE
LDA #0
ENDIF

Listing 8.7 on page 310 is the corresponding listing file.

Listing 8.7 Example assembler listing where CLIST ON is used

Abs. Rel. Loc Obj. code Source line
2 2 0000 0000 Try: EQU 0
3 3 0000 0000 IFEQ Try
4 4 000000 A667 LDA #103
5 5 ELSE
6 6 LDA #0
7 7 ENDIF
8 8

310 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

DC - Define Constant

Syntax

[<label>:] DC [.<size>] <expression> [,
<expressions>] ...

where<size> = B (default),W,orL

Synonym
DCW (= 2 byte DCs), DCL (= 4 byte DCs),
FCB (= DC.B), FDB (= 2 byte DCs),
FQB (= 4 byte DCs)

Description

The DC directive defines constants in memory. It can have one or more
<expressions> operands, which are separated by commas. The
<expressions> can contain an actual value (binary, octal, decimal, hexadecimal,
or ASCII). Alternatively, the <expressions> can beasymbol or expression that
can be evaluated by the Assembler as an absol ute or simple relocatable expression.
One memory block is allocated and initialized for each expression.

The following rules apply to size specifications for DC directives:

e DC.B: Onebyteisallocated for numeric expressions. One byteis allocated per
ASCII character for strings (Listing 8.8 on page 311).

e DC.W: Two bytesare allocated for numeric expressions. ASCI| strings are right
aligned on atwo-byte boundary (Listing 8.9 on page 312).

e DC.L: Four bytesare allocated for numeric expressions. ASCI| strings are right
aligned on afour byte boundary (Listing 8.10 on page 312).

Listing 8.8 Example for DC.B

000000 4142 4344 Label: DC.B "ABCDE"
000004 45
000005 OAOA 010A DC.B %1010, @l2, 1,SA

HC(S)08 / RS08 Assembler Manual 311

Assembler Directives
Detailed descriptions of all assembler directives

Listing 8.9 Example for DC.W

000000 0041 4243 Label: DC. "ABCDE"

000004 4445

000006 000A 000A DC. %1010, @12, 1, S$SA
00000A 0001 00O0A

00000E xxxx DC.W Label

Listing 8.10 Example for DC.L

000000 0000 0041 Label: DC. "ABCDE"

000004 4243 4445

000008 0000 00OA DC. $1010, @l2, 1, S$SA
00000C 0000 0O0O0A

000010 0000 0001

000014 0000 00O0A

000018 XXXX XXXX DC.L Label

If the value in an operand expression exceeds the size of the operand, the valueis
truncated and a warning message is generated.

See also

Assembler directives:

DCB - Define Constant Block on page 313

¢ DS- Define Space on page 314
ORG - Set Location Counter on page 353

« SECTION - Declare Relocatable Section on page 361

312

HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

DCB - Define Constant Block

Syntax

[<label>:] DCB [.<size>] <count>, <value>
where <size>=B (default),WorL.

Description

The DCB directive causes the Assembler to allocate a memory block initialized
with the specified <values. Thelength of theblock is<size> * <counts.

<count > may not contain undefined, forward, or external references. It may
range from 1 to 4096.

Thevalue of each storage unit allocated isthe sign-extended expression <value>,
which may contain forward references. The <count > cannot be relocatable. This
directive does not perform any alignment.

The following rules apply to size specifications for DCB directives:
e DCB.B: Onebyteisallocated for numeric expressions.

e DCB.W: Two bytes are allocated for numeric expressions.

* DCB. L: Four bytes are allocated for numeric expressions.

Listing 8.11 Examples of DCB directives

000000 FFFF FF Label: DCB.B 3, SFF
000003 FFFE FFFE DCB.W 3, SFFFE
000007 FFFE

000009 0000 FFFE DCB.L 3, SFFFE

00000D 0000 FFFE
000011 0000 FFFE

See also
Assembler directives:
¢ DC - Define Constant on page 311

¢ DS- Define Space on page 314
¢ ORG - Set Location Counter on page 353

« SECTION - Declare Relocatable Section on page 361

HC(S)08 / RS08 Assembler Manual 313

Assembler Directives
Detailed descriptions of all assembler directives

DS - Define Space

Syntax

[<label>:] DS[.<size>] <count>
where <size> =B (default), w, or L.

Synonym

RMB (= DS.B)
RMD (2 bytes)
RMQ (4 bytes)

Description

The Ds directiveis used to reserve memory for variables (Listing 8.12 on

page 314). The content of the memory reserved is not initialized. The length of the
block is

<gize> * <counts.

<count > may not contain undefined, forward, or external references. It may
range from 1 to 4096.

Listing 8.12 Examples of DS directives

Counter: DS.B 2 2 continuous bytes in memory

DS.B 2 ; 2 continuous bytes in memory
; can only be accessed through the label Counter
DS.W 5 ; 5 continuous words in memory

Thelabel counter references the lowest address of the defined storage area.

NOTE Storage alocated with a DS directive may end up in constant data section or
even in a code section, if the same section contains constants or code as well.
The Assembler allocates only a compl ete section at once.

314 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

Example

In Listing 8.13 on page 315 on page 315, a variable, a constant, and code were put
in the same section. Because code has to be in ROM, then al three elements must
be put into ROM. In order to alocate them separately, put them in different

sections (Listing 8.14 on page 315).

Listing 8.13 Poor memory allocation

; How it should NOT be done

Counter: DS 1 ; l-byte used
InitialCounter: DC.B $f5 ; constant S$f5
main: NOP ; NOP instruction

Listing 8.14 How it should be done...

DataSect: SECTION ; separate section for wvariables
Counter: DS 1 ; l-byte used

ConstSect: SECTION ; separate section for constants
InitialCounter: DC.B $f5 ; constant S$Sf5

CodeSect: SECTION ; section for code

main: NOP ; NOP instruction

An ORG directive also starts a new section.

See also
Assembler directives:

¢ DC - Define Constant on page 311
¢ ORG - Set Location Counter on page 353

« SECTION - Declare Relocatable Section on page 361

HC(S)08 / RS08 Assembler Manual 315

Assembler Directives
Detailed descriptions of all assembler directives

ELSE - Conditional assembly

Syntax

IF <condition>

[<assembly language statementss>]
[ELSE]

[<assembly language statementss>]
ENDIF

Synonym
ELSEC

Description

If <condition> istrue, the statements between IF and the corresponding ELSE
directive are assembled (generate code).

If <conditions> isfalse, the statements between ELSE and the corresponding
ENDIF directive are assembled. Nesting of conditional blocksis alowed. The
maximum level of nesting is limited by the available memory at assembly time.

Example
Listing 8.15 on page 316 is an example of the use of conditional assembly
directives:

Listing 8.15 Various conditional assembly directives

Try: EQU 1
IF Try != 0
LDA #103
ELSE
LDA #0
ENDIF

The value of Try determines the instruction to be assembled in the program. As
shown, the “1da #103” instruction is assembled. Changing the operand of the
“EQU” directiveto 0 causesthe “1da #0” instruction to be assembled instead.

316 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

Listing 8.16 Output listing of Listing 8.15 on page 316

Abs. Rel. Loc Obj. code Source line
1 1 0000 0001 Try: EQU 1
2 2 0000 0001 IF Try != 0
3 3 000000 A667 LDA #103
4 4 ELSE
6 6 ENDIF

HC(S)08 / RS08 Assembler Manual 317

Assembler Directives
Detailed descriptions of all assembler directives

END - End assembly

Syntax
END

Synonym

None

Description

The END directive indicates the end of the source code. Subsequent source
statementsin thisfile areignored. The END directive in included files skips only
subsequent source statements in thisinclude file. The assembly continues in the
including filein aregular way.

Example

The END statement in Listing 8.17 on page 318 causes any source code after the
END statement to be ignored, asin Listing 8.18 on page 318.

Listing 8.17 Source File

Label: DC.W $1234
DC.W $5678
END
DC.W $90AB ; no code generated
DC.W SCDEF ; no code generated

Listing 8.18 Generated listing file

Abs. Rel Loc Obj. code Source line
1 1 000000 1234 Label: DC.W $1234
2 2 000002 5678 DC.W $5678

318 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

ENDFOR - End of FOR block

Syntax
ENDFOR

Synonym

None

Description
The ENDFOR directive indicates the end of a FOR block.

NOTE TheFOR directiveisonly available when the - Compat =b assembler optionis
used. Otherwise, the FOR directive is not supported.

Example
See Listing 8.28 on page 329 in the FOR.section.

See also
Assembler directives:
¢ FOR - Repeat assembly block on page 329
¢ -Compat: Compatibility modes

HC(S)08 / RS08 Assembler Manual 319

Assembler Directives
Detailed descriptions of all assembler directives

ENDIF - End conditional assembly

Syntax
ENDIF

Synonym

ENDC

Description

The ENDIF directiveindicates the end of aconditiona block. Nesting of
conditional blocksis allowed. The maximum level of nesting is limited by the
available memory at assembly time.

Example
See Listing 8.30 on page 331 inthe IF section.

See also
IF - Conditional assembly on page 331 assembler directive

320 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

ENDM - End macro definition

Syntax

ENDM

Synonym

None

Description
The ENDM directive terminates the macro definition (Listing 8.19 on page 321).

Example
The ENDM statement in Listing 8.19 on page 321 terminates the cpChar macro.

Listing 8.19 Using ENDM to terminate a macro definition

cpChar: MACRO

LDA \1
STA \2
ENDM
CodeSec: SECTION

Start:
cpChar charl, char2
LDA charl
STA char?2

HC(S)08 / RS08 Assembler Manual 321

Assembler Directives
Detailed descriptions of all assembler directives

EQU - Equate symbol value

Syntax

<label>: EQU <expression>

Synonym

None

Description

The EQU directive assignsthe value of the <expressions inthe operandfield to
<labels>. The<label> and <expression> fields are both required, and the
<label> cannot be defined anywhere elsein the program. The <expression>
cannot include a symbol that is undefined or not yet defined.

The EQU directive does not allow forward references.

Example
See Listing 8.20 on page 322 for examples of using the EQU directive.

Listing 8.20 Using EQU to set variables

0000 0014 MaxElement: EQU 20

0000 0050 MaxSize: EQU MaxElement * 4
Time: DS.B 3
0000 0000 Hour: EQU Time ; first byte addr.

0000 0002 Minute: EQU Time+l ; second byte addr
0000 0004 Second: EQU Time+2 ; third byte addr

322 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

EVEN - Force word alignment

Syntax
EVEN

Synonym

None

Description

Thisdirective forces the next instruction to the next even address relative to the
start of the section. EVEN is an abbreviation for ALIGN 2. Some processors require
word and long word operations to begin at even address boundaries. In such cases,
the use of the EVEN directive ensures correct alignment. Omission of thisdirective
can result in an error message.

Example

See Listing 8.21 on page 323 for instances where the EVEN directive causes

padding bytes to be inserted.

Listing 8.21 Using the Force Word Alignment Directive

Abs. Rel. Loc Obj. code
1 1 000000
2 2
3 3
4 4
5 5 000004
6 6
7 7
8 8 000005
9 9 000006
10 10
11 11
12 12 000009
13 13 0000 000A

aaa:

ds.b 4
location count has an even value

; no padding byte inserted.

even
ds.b 1
location count has an odd value
one padding byte inserted.
even
ds.b 3
location count has an odd value
one padding byte inserted.
even
equ 10

HC(S)08 / RS08 Assembler Manual

323

Assembler Directives
Detailed descriptions of all assembler directives

See also
ALIGN - Align Location Counter on page 306 assembly directive

324 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

FAIL - Generate Error message

Syntax

FAIL <args>|<strings

Synonym

None

Description

There are three modes of the FAIL directive, depending upon the operand that is

specified:

e If <arg> isanumber in the range [0-499], the Assembler generates an error
message, including the line number and argument of the directive. The
Assembler does not generate an object file.

e If <arg>isanumberintherange[500-$FFFFFFFF], the Assembler
generates a warning message, including the line number and argument of the
directive.

e If astring is supplied as an operand, the Assembler generates an error message,
including the line number and the <string>. The Assembler does not
generate an object file.

e TheFAIL directiveis primarily intended for use with conditiona assembly to
detect user-defined errors or warning conditions.

Examples

The assembly codein Listing 8.22 on page 325 generates the error messages in
Listing 8.23 on page 326. The value of the operand associated with the

‘FAIL 200’ or ‘FAIL 600" directives determines (1) the format of any
warning or error message and (2) whether the source code segment will be
assembled.

Listing 8.22 Example source code

cpChar: MACRO
IFC n\lu’ nn
FAIL 200
MEXIT

HC(S)08 / RS08 Assembler Manual 325

Assembler Directives
Detailed descriptions of all assembler directives

ELSE
LDA \1
ENDIF

IFC ||\2||’ nn
FAIL 600
ELSE
STA \2
ENDIF
ENDM
codSec: SECTION
Start:
cpChar charl

Listing 8.23 Error messages resulting from assembling the source code in Listing
8.22 on page 325

>> in "C:\Freescale\demo\warnfail.asm", line 13, col 19, pos 226

IFC ||\2||’ nn
FATL 600

WARNING A2332: FAIL found
Macro Call : FAIL 600

Listing 8.24 on page 326 is another assembly code example which again incorporates the
‘FAIL 200’ andthe'FAIL 600’ directives. Listing 8.25 on page 327 is the error
message that was generated as a result of assembling the source codein Listing 8.24 on
page 326.

Listing 8.24 Example source code

cpChar: MACRO
IFC ||\1u , nn
FAIL 200
MEXIT
ELSE
DA \1
ENDIF

IFC ||\2||’ nn
FATL 600
ELSE
STA \2

326 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

ENDIF
ENDM
codeSec: SECTION
Start:
cpChar, char2

Listing 8.25 Error messages resulting from assembling the source code in Listing
8.24 on page 326

>> in "C:\Freescale\demo\errfail.asm", line 6, col 19, pos 96

IFC u\lu’ nn
FAIL 200

ERROR A2329: FAIL found
Macro Call : FAIL 200

Listing 8.26 on page 327 has additional uses of the FAIL directive. In this
example the' FAIL string and'FAIL 600’ directivesareused. Any error
messages generated from the assembly code as aresult of the FAIL directive are
listed in Listing 8.27 on page 328.

Listing 8.26 Example source code

cpChar: MACRO
IFC ll\lll, nn
FAIL "A character must be specified as first parameter"
MEXIT
ELSE
DA \1
ENDIF

IFC u\2u’ nn
FATL 600
ELSE
STA \2
ENDIF
ENDM
codeSec: SECTION
Start:
cpChar, char2

HC(S)08 / RS08 Assembler Manual 327

Assembler Directives
Detailed descriptions of all assembler directives

Listing 8.27 Error messages resulting from assembling the source code in Listing
8.26 on page 327

>> in "C:\Freescale\demo\failmes.asm", line 7, col 17, pos 110

IFC ll\lll, nn
FAIL "A character must be specified as first parameter"

A

ERROR A2338: A character must be specified as first parameter
Macro Call : FAIL "A character must be specified as first parameter"

328 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

FOR - Repeat assembly block

Syntax

FOR <label>=<num> TO <num>
ENDFOR

Synonym

None

Description

The FOR directive is an inline macro because it can generate multiple lines of
assembly code from only one line of input code.

FOR takes an absolute expression and assembles the portion of code following it,
the number of times represented by the expression. The FOR expression may be
either aconstant or alabel previously defined using EQU or SET.

NOTE TheFOR directiveisonly available when the -Compat=b assembly option is

used. Otherwise, the FOR directiveis not supported.

Example
Listing 8.28 on page 329 is an example of using FOR to create a 5-repetition loop.

Listing 8.28 Using the FOR directive in aloop

FOR label=2 TO 6
DC.B label*7
ENDFOR

Listing 8.29 Resulting output listing

Abs. Rel. Loc Obj. code Source line
1 1 FOR label=2 TO 6
2 2 DC.B label*7
3 3 ENDFOR

HC(S)08 / RS08 Assembler Manual 329

Assembler Directives
Detailed descriptions of all assembler directives

4 2 000000 OE DC.B label*7
5 3 ENDFOR
6 2 000001 15 DC.B label*7
7 3 ENDFOR
8 2 000002 1C DC.B label*7
9 3 ENDFOR
10 2 000003 23 DC.B label=*7
11 3 ENDFOR
12 2 000004 2A DC.B label*7
13 3 ENDFOR
See also

on page 319ENDFOR - End of FOR block on page 319

-Compat: Compatibility modes assembler option

330

HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

IF - Conditional assembly

Syntax

IF <condition>

[<assembly language statementss>]
[ELSE]

[<assembly language statementss>]
ENDIF

Synonym

None

Description

If <conditions istrue, the statementsimmediately following the IF directive
are assembled. Assembly continues until the corresponding ELSE or ENDIF
directive isreached. Then al the statements until the corresponding ENDIF
directive areignored. Nesting of conditional blocks is allowed. The maximum
level of nesting islimited by the available memory at assembly time.

The expected syntax for <conditions is:

<condition> := <expression> <relation> <expression>
<relation> := =|!=|>=|>|<=|<|<>

The <expression> must be absolute (It must be known at assembly time).

Example

Listing 8.30 on page 331 is an example of the use of conditional assembly
directives

Listing 8.30 IF and ENDIF

Try: EQU 0

IF Try != 0
LDA #103
ELSE
LDA #0
ENDIF

HC(S)08 / RS08 Assembler Manual

331

Assembler Directives
Detailed descriptions of all assembler directives

The value of Try determines the instruction to be assembled in the program. As
shown, the “1da #0” instruction is assembled. Changing the operand of the
“EQU” directiveto onecausesthe “1da #103” instruction to be assembled
instead. The following shows the listing provided by the Assembler for these lines
of code:

Listing 8.31 Output listing after conditional assembly

1 1 0000 0000 Try: EQU 0

2 2 0000 0000 IF Try != 0
4 4 ELSE

5 5 000000 A600 LDA #0

6 6 ENDIF

332 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

IFcc - Conditional assembly

Syntax

IFcc <conditions

[<assembly language statementss>]
[ELSE]

[<assembly language statementss>]
ENDIF

Synonym

None

Description

These directives can be replaced by the IF directive Ifcc <conditions is
true, the statements immediately following the I £cc directive are assembled.
Assembly continues until the corresponding ELSE or ENDIF directiveis reached,
after which assembly moves to the statements following the ENDIF directive.
Nesting of conditional blocksis allowed. The maximum level of nesting is limited
by the available memory at assembly time.

Table 8.9 on page 333 lists the available conditional types:

Table 8.9 Conditional assembly types

Ifcc Condition Meaning

ifeq <expression> if <expression>==0
ifne <expression> if <expression>!=0

iflt <expression> if <expression><0

ifle <expression> if <expression><=0

ifgt <expression> if <expression>> 0

ifge <expression> if <expression>>=0

ifc <stringl>, <string2> if <stringl> == <string2>
ifnc <stringl>, <string2> if <stringl> != <string2>

HC(S)08 / RS08 Assembler Manual 333

Assembler Directives
Detailed descriptions of all assembler directives

Table 8.9 Conditional assembly types (continued)

Ifcc Condition Meaning

ifdef <label> if <label> was defined

ifndef <label> if <label> was not defined
Example

Listing 8.32 on page 334 is an example of the use of conditional assembler

directives:

Listing 8.32 Using the IFNE conditional assembler directive

Try:

EQU 0
IFNE Try
LDA #103
ELSE
LDA #0
ENDIF

Listing 8.33 output listing for Listing 8.32 on page 334

The value of Try determines the instruction to be assembled in the program. As
shown, the “1da #0” instruction is assembled. Changing the directive to
“IFEQ” causesthe “*1da #103” instruction to be assembled instead.

Listing 8.33 on page 334 shows the listing provided by the Assembler for these

lines of code

o Ul kDN

00

o Ul kDN

0000 0000 Try: EQU
0000 0000 IFNE Try

ELSE
0000 A600 LDA
ENDIF

0

334

HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

INCLUDE - Include text from another file

Syntax

INCLUDE <file specifications>

Synonym

None

Description

Thisdirective causes the included file to be inserted in the source input stream. The
<file specifications> isnot case-sensitive and must be enclosed in
quotation marks.

The Assembler attemptsto open <file specifications relativetothe
current working directory. If the fileis not found there, then it is searched for
relative to each path specified in the GENPATH: Search path for input file
environment variable.

Example

INCLUDE "..\LIBRARY\macros.inc"

HC(S)08 / RS08 Assembler Manual 335

Assembler Directives

Detailed descriptions of all assembler directives

LIST - Enable Listing

Syntax
LIST

Synonym

None

Description

Specifies that instructions following this directive must be inserted into the listing
and into the debug file. Thisisadefault option. Thelisting file is only generated if
the -L: Generate alisting file assembler option is specified on the command line.

The source text following the LIST directiveislisted until aNOLIST - Disable
Listing on page 348 or an END - End assembly on page 318 assembler directiveis

reached

This directive is not written to the listing and debug files.

Example

The assembly source code using the LIST and NOLIST directivesin Listing 8.34 on
page 336 generates the output listing in Listing 8.35 on page 337.

Listing 8.34 Using the LIST and NOLIST assembler directives

aaa: NOP
LIST
bbb: NOP
NOP
NOLIST
ccce: NOP
NOP
LIST
ddd: NOP NOP
336 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

Listing 8.35 Output listing generated from running Listing 8.34 on page 336

Abs. Rel. Loc Obj. code Source line
1 1 000000 9D aaa: NOP
2 2
4 4 000001 9D bbb: NOP
5 5 000002 9D NOP
6 6
12 12 000005 9D ddd: NOP
13 13 000006 9D NOP

HC(S)08 / RS08 Assembler Manual 337

Assembler Directives
Detailed descriptions of all assembler directives

LLEN - Set Line Length

Syntax

LLEN<n>

Synonym

None

Description

Sets the number of characters from the source line that are included on the listing
lineto <n>. Thevaluesalowed for <n> areintherange [0 - 132].If avaue
smaller than 0 is specified, theline lengthisset to 0. If avalue bigger than 132 is
specified, thelinelengthissetto 132.

Lines of the source file that exceed the specified number of characters are truncated
inthelisting file.

Example

The following portion of code in Listing 8.37 on page 338 generates thelisting filein
Listing 8.37 on page 338. Notice that the ' LLEN 24’ directive causes the output at the
location-counter line 7 to be truncated.

Listing 8.36 Example assembly source code using LLEN

DC.B $55
LLEN 32
DC.W $1234, $4567

LLEN 24
DC.W $1234, $4567
EVEN

Listing 8.37 Formatted assembly output listing as a result of using LLEN

1 1 000000 55 DC.B $55

338 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

000001 1234 4567

000005 1234 4567
000009 00

o J Ul &N
w0 J Ul &~ DN

DC.W $1234, $4567

DC.W $1234, S
EVEN

HC(S)08 / RS08 Assembler Manual

339

Assembler Directives
Detailed descriptions of all assembler directives

LONGEVEN - Forcing Long-Word alignment

Syntax

LONGEVEN

Synonym

None

Description
This directive forces the next instruction to the next long-word address relative to
the start of the section. LONGEVEN is an abbreviation for ALIGN 4.
Example
See Listing 8.38 on page 340 for an example where LONGEVEN aligns the next

instruction to have itslocation counter to be a multiple of four (bytes).

Listing 8.38 Forcing Long Word Alignment

2 2 000000 01 dcb.b 1,1
; location counter is not a multiple of 4; three filling
; bytes are required.
3 3 000001 0000 0O longeven
000004 0002 0002 dcb.w 2,2
; location counter is already a multiple of 4; no filling
; bytes are required.

N
N

5 5 longeven
6 6 000008 0202 dcb.b 2,2
7 7 ; following is for text section
8 8 s27 SECTION 27
9 9 000000 9D nop
; location counter is not a multiple of 4; three filling
; bytes are required.
10 10 000001 0000 0O longeven
11 11 000004 9D nop

340 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

MACRO - Begin macro definition

Syntax
<labels>:

MACRO
Synonym

None

Description

The <1abel> of the MACRO directive is the name by which the macro is called.
This name must not be a processor machine instruction or assembler directive
name. For more information on macros, see the Macros chapter.

Example
See Listing 8.39 on page 341 for a macro definition.

Listing 8.39 Example macro definition

MyData:
charl:
char2:
cpChar:

CodeSec:
Start:

XDEF Start
SECTION
DS.B 1
DS.B 1
MACRO
LDA
STA
ENDM
SECTION

\1
\2

cpChar charl, char2
LDA charl

STA char2

HC(S)08 / RS08 Assembler Manual

341

Assembler Directives
Detailed descriptions of all assembler directives

MEXIT - Terminate Macro Expansion

Syntax
MEXIT

Synonym

None

Description

MEXIT isusualy used together with conditional assembly within a macro. In that
case it may happen that the macro expansion should terminate prior to termination
of the macro definition. The MEXIT directive causes macro expansion to skip any
remaining source lines ahead of the ENDM - End macro definition on page 321

directive.

Example

See Listing 8.40 on page 342 allows the replication of simple instructions or
directives using MACRO with MEXIT.

Listing 8.40 Example assembly code using MEXIT

XDEF entry
storage: EQU SOOFF
save: MACRO Start macro definition
LDX #storage
LDA \1
STA 0,x Save first argument
LDA \2
STA 2,X Save second argument
IFC "\3', "! Is there a third argument?
MEXIT ; No, exit from macro
ENDC
LDA \3 Save third argument
STA 4,X
ENDM ; End of macro definition
datSec: SECTION
342 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

charl:
char2:

codSec:
entry:

ds.b 1
ds.b 1
SECTION

save charl, char2

Listing 8.41 on page 343 shows the macro expansion of the previous macro.

Listing 8.41 Macro expansion of Listing 8.40 on page 342

Abs. Rel. Loc Obj. code Source line

1 1 XDEF entry

2 2 0000 OQFF storage: EQU SOOFF

3 3

4 4 save: MACRO ; Start macro definition
5 5 LDX #storage

6 6 LDA \1

7 7 STA 0,x ; Save first arg

8 8 LDA \2

9 9 STA 2,x ; Save second arg
10 10 IFC '"\3', ''; is there a
11 11 MEXIT ; No, exit from macro.
12 12 ENDC

13 13 LDA \3 ; Save third argument
14 14 STA 4,X

15 15 ENDM ; End of macro defin
16 16

17 17 datSec: SECTION

18 18 000000 charl: ds.b 1

19 19 000001 char2: ds.b 1
20 20
21 21
22 22
23 23 codSec: SECTION
24 24 entry:
25 25 save charl, char2
26 5m 000000 AEFF + LDX #storage
27 ém 000002 C6 xXXXX + LDA charl
28 7m 000005 E700 + STA 0,x ; Save first arg
29 8m 000007 C6 xXXXX + LDA char2

30 9m O0O0O0O0OA E702 + STA 2,X ; Save second

31 10m 0000 0001 + IFC rr,oont ; Is there a
33 11lm + MEXIT ; no, exit macro.
34 12m + ENDC

HC(S)08 / RS08 Assembler Manual 343

Assembler Directives
Detailed descriptions of all assembler directives

35 13m + LDA ; Save third argu
36 14m + STA 4,X

344 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

MLIST - List macro expansions

Syntax
MLIST [ON|OFF]

Description

When the oN keyword is entered with an ML I ST directive, the Assembler includes
the macro expansionsin the listing and in the debug file.

When the OFF keyword is entered, the macro expansions are omitted from the
listing and from the debug file.

This directive is not written to the listing and debug file, and the default valueis
ON.
Synonym

None

Example

The assembly code in Listing 8.42 on page 345, with MLIST ON, generatesthe
assembler output listing in Listing 8.43 on page 346

Listing 8.42 Example assembly source code using MLIST

XDEF entry

MLIST ON
swap: MACRO
LDA \1
LDX \2
STA \2
STX \1
ENDM
codSec: SECTION
entry:
LDA #SFO
LDX #SOF
main:

STA first

STX second

swap first, second
NOP

HC(S)08 / RS08 Assembler Manual 345

Assembler Directives
Detailed descriptions of all assembler directives

BRA main
datSec: SECTION
first: DS.B 1
second: DS.B 1

Listing 8.43 Assembler output listing of the example in Listing 8.42 on page 345 with

MLIST ON

1 1 XDEF entry

3 3 swap: MACRO

4 4 LDA \1

5 5 LDX \2

6 6 STA \2

7 7 STX \1

8 8 ENDM

9 9

10 10 codSec: SECTION

11 11 entry:

12 12 000000 A6FO LDA #SFO

13 13 000002 AEOF LDX #SOF

14 14 main:

15 15 000004 C7 xxxxX STA first

16 16 000007 CF xxxXX STX second
17 17 swap first, second
18 4m O0O0O0O00A C6 xXxXXX + LDA first
19 5m 00000D CE xXxXXX + LDX second
20 6m 000010 C7 xxxX + STA second
21 7m 000013 CF xxxXX + STX first
22 18 000016 9D NOP
23 19 000017 20EB BRA main
24 20
25 21 datSec: SECTION
26 22 000000 first: DS.B 1
27 23 000001 second: DS.B 1

For the same code, withMLIST OFF, thelistingfileisasshownin Listing 8.44 on

page 346.
Listing 8.44 Assembler output listing of the example in Listing 8.42 on page 345 with
MLIST OFF
Abs. Rel. Loc Obj. code Source line
___i ___i _______________________ %BEF entry

346 HC(S)08 / RS08 Assembler Manual

Assembler Directives

Detailed descriptions of all assembler directives

w0 J O Ul W

10

12
13
14
15
16
21
22
23
24
25

w0 J 0 Ul W

10

12
13
14
15
16
17
18
19
20
21

000000
000002

000004
000007

000016
000017

000000
000001

A6F0
AEQOF

C7 xXXXX
CF xxxx

9D
20EB

swap:

codSec
entry:

main:

datSec:

first:

second:

MACRO

LDA \1
LDX \2
STA \2
STX \1
ENDM

: SECTION

LDA #$FO0
LDX #$SOF

STA first

STX second

swap first, second
NOP

BRA main

SECTION

DS.B 1

DS.B 1

TheMLIST directive does not appear in thelisting file. When amacroiscalled
after aMLIST ON, itisexpandedinthelistingfile. If theMLIST OFF is
encountered before the macro call, the macro is not expanded in the listing file.

HC(S)08 / RS08 Assembler Manual

347

Assembler Directives
Detailed descriptions of all assembler directives

NOLIST - Disable Listing

Syntax
NOLIST

Synonym

NOL

Description

Suppresses the printing of the following instructions in the assembly listing and
debug file until aLIST - Enable Listing on page 336 assembler directiveis
reached.

Example
See Listing 8.45 on page 348 for an example of using LIST and NOLIST.

Listing 8.45 Examples of LIST and NOLIST

aaa: NOP

LIST
bbb: NOP

NOP

NOLIST
ccc: NOP

NOP

LIST
ddd: NOP

NOP

The listing above generates the listing file in Listing 8.46 on page 349.

348 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

Listing 8.46 Assembler output listing from the assembler source code in Listing 8.45 on

page 348
Assembler
Abs. Rel. Loc Obj. code Source line
1 1 000000 9D aaa NOP
2 2
4 4 000001 9D bbb : NOP
5 5 000002 9D NOP
6 6
12 12 000005 9D ddd: NOP
13 13 000006 9D NOP
See Also

LIST - Enable Listing on page 336 assembler directive

HC(S)08 / RS08 Assembler Manual 349

Assembler Directives
Detailed descriptions of all assembler directives

NOPAGE - Disable Paging

Syntax
NOPAGE

Synonym

None

Description

Disables pagination in the listing file. Program lines are listed continuously,
without headings or top or bottom margins.

350 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

OFFSET - Create absolute symbols

Syntax

OFFSET <expression>

Synonym

None

Description

The OFFSET directive declares an offset section and initializes the location
counter to the value specified in <expressions. The <expression> must be
absolute and may not contain references to external, undefined or forward defined
labels.

Example

Listing 8.47 on page 351 shows how the OFFSET directive can be used to access
an element of a structure.

Listing 8.47 Example assembly source code

6 6 OFFSET 0
7 7 000000 ID: DS.B 1
8 8 000001 COUNT': DS.W 1
9 9 000003 VALUE: DS.L 1
10 10 0000 0007 SIZE: EQU *
11 11
12 12 DataSec: SECTION
13 13 000000 Struct: DS.B SIZE
14 14
15 15 CodeSec: SECTION
16 16 entry:
17 17 000003 CE XXXX LDX #Struct
18 18 000006 8600 LDA #0
19 19 000008 6A00 STA ID, X
20 20 00000A 6201 INC COUNT, X
21 21 0oo000C 42 INCA
22 22 00000D 6A03 STA VALUE, X

HC(S)08 / RS08 Assembler Manual

351

Assembler Directives
Detailed descriptions of all assembler directives

When a statement affecting the location counter other than EVEN, LONGEVEN,
ALIGN, or DS is encountered after the OFFSET directive, the offset section is
ended. The preceding section is activated again, and the location counter is restored
to the next available location in this section (Listing 8.48 on page 352).

Listing 8.48 Example where the location counter is changed

7

8

9
10
11
12
13
14
15
16
17

7

8

9
10
11
12
13
14
15
16
17

000000
000001

000000
000001
000003

000002

11
13

0000 0007

22

ConstSec:
cstl:
cst2:

ID:

COUNT :
VALUE:
SIZE:

cst3:

SECTION
DC.B s11
DC.B $13
OFFSET 0
DS.B 1
DS.W 1
DS.L 1
EQU *
DC.B 22

In the example above, the *cst 3’ symbol, defined after the OFFSET directive,
defines a constant byte value. This symbol is appended to the section
‘ConstSec’, which precedes the OFFSET directive.

352

HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

ORG - Set Location Counter

Syntax

ORG <expressions

Synonym

None

Description

The ORG directive sets the location counter to the value specified by
<expressions>. Subsequent statements are assigned memory locations starting
with the new location counter value. The <expression> must be absolute and
may not contain any forward, undefined, or external references. The ORG directive
generates an internal section, which is absolute (see the Sections chapter).

Example
See Listing 8.49 on page 353 for an example where ORG sets the |ocation counter.

Listing 8.49 Using ORG to set the location counter

org $2000
bl: nop
b2: rts

Viewing Listing 8.50 on page 353, you can seethat the b1 label islocated at address
$2000 and label b2 isat address $2001.

Listing 8.50 Assembler output listing from the source code in Listing 8.49 on

page 353
Abs. Rel Loc Obj. code Source line
1 1 org $2000
2 2 a002000 9D bl: nop
3 3 a002001 81 b2: rts

HC(S)08 / RS08 Assembler Manual 353

Assembler Directives
Detailed descriptions of all assembler directives

See also
Assembler directives:
¢ DC - Define Constant on page 311
¢ DCB - Define Constant Block on page 313
¢ DS - Define Space on page 314
e SECTION - Declare Relocatable Section on page 361

354 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

PAGE - Insert Page break

Syntax
PAGE

Synonym

None

Description

Insert a page break in the assembly listing.

Example

The portion of codein Listing 8.51 on page 355 demonstrates the use of a page
break in the assembler output listing.

Listing 8.51 Example assembly source code

code: SECTION
DC.B $00,812
DC.B $00,$34
PAGE
DC.B $00,856
DC.B $00,3878

The effect of the PAGE directive can be seen in Listing 8.52 on page 355.

Listing 8.52 Assembler output listing from the source code in Listing 8.51 on page 355

Abs. Rel Loc Obj. code
1 1
2 2 000000 0012
3 3 000002 0034

Abs. Rel. Loc Obj. code
5 5 000004 0056

Source line

SECTION
DC.B $00,%12
DC.B $00,$34

Source line

HC(S)08 / RS08 Assembler Manual

355

Assembler Directives
Detailed descriptions of all assembler directives

6 6 000006 0078 DC.B $00,$78

356 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

PLEN - Set Page Length

Syntax

PLEN<n>

Synonym

None

Description

Sets the listings page length to <n> lines. <n> may rangefrom 10t010000. If
the number of lines already listed on the current page is greater than or equal to
<n>, listing will continue on the next page with the new page length setting.

The default page length is 65 lines.

HC(S)08 / RS08 Assembler Manual 357

Assembler Directives
Detailed descriptions of all assembler directives

RADS50 - Rad50-encoded string constants

Syntax

RAD50 <str>[, cnt]

Synonym

None

Description

Thisdirective places strings encoded with the RAD50 encoding into constants. The
RADS50 encoding places 3 string characters out of areduced character set into 2
bytes. It therefore saves memory when comparing it with aplain ASCII
representation. It also has some drawbacks, however. Only 40 different character
values are supported, and the strings have to be decoded before they can be used.
This decoding does include some computations including divisions (not just shifts)
and is therefore rather expensive.

The encoding takes three bytes and looks them up in a string table (Listing 8.53 on
page 358).

Listing 8.53 RAD50 encoding

unsigned short LookUpPos (char x) {
static const char translatel]=
" ABCDEFGHIJKLMNOPQRSTUVWXYZS.?20123456789";

const char* pos= strchr(translate, x);
if (pos == NULL) { EncodingError(); return 0; }
return pos-translate;
1
unsigned short Encode (char a, char b, char c¢) {
return LookUpPos (a)*40*40 + LookUpPos (b) *40
+ LookUpPos (c) ;

If the remaining string is shorter than 3 bytes, it is filled with spaces (which
correspond to the RADS0 character 0).

The optional argument cnt can be used to explicitly state how many 16-bit values
should be written. If the string is shorter than 3 *cnt, theniit isfilled with spaces.

358 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

See the example C code below (Listing 8.56 on page 359) about how to decode it.

Example

The string data in Listing 8.54 on page 359 assembles to the following data
(Listing 8.55 on page 359). The 11 charactersin the string are represented by 8
bytes.

Listing 8.54 RAD50 Example

XDEF rad50, rad50Len
DataSection SECTION
rad50: RAD50 "Hello World"
rad50Len: EQU (*-rad50)/2

Listing 8.55 Assembler output where 11 characters are contained in eight bytes

$32D4 $4D58 $922A $4BA0

This C code shown in Listing 8.56 on page 359 takes the data and prints “Hello
World”.

Listing 8.56 Example—Program that Prints Hello World

#include "stdio.h"

extern unsigned short rad50[];

extern int rad50Len; /* address is value. Exported asm label */
#tdefine rad50len ((int) &rad50Len)

void printRadChar (char ch) {
static const char translatel]=
" ABCDEFGHIJKLMNOPQRSTUVWXYZS.?20123456789";
char asciiChar= translate[ch];
(void)putchar (asciiChar) ;
1
void PrintHallo(void) {
unsigned char values= rad50len;
unsigned char i;
for (i=0; i < values; i++) {
unsigned short val= rad50[i];
printRadChar (val / (40 * 40));
printRadChar ((val / 40) % 40);

)

printRadChar (val % 40);

HC(S)08 / RS08 Assembler Manual 359

Assembler Directives
Detailed descriptions of all assembler directives

}

360 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

SECTION - Declare Relocatable Section

Syntax
<name>: SECTION [SHORT] [RS08 SHORT] [RS08 TINY] [<number>]

Synonym

None

Description

This directive declares arelocatable section and initializes the location counter for
the following code. The first SECTION directive for a section sets the location
counter to zero. Subsequent SECTION directives for that section restore the
location counter to the value that follows the address of the last code in the section.

<name> isthe name assigned to the section. Two SECTION directives with the
same name specified refer to the same section.

<number> isoptiona and is only specified for compatibility with the MASM
Assembler.

A section is a code section when it contains at least one assembly instruction. Itis
considered to be a constant section if it contains only DC or DCB directives. A
section is considered to be a data section when it contains at least aDs directive or
if itisempty.

Example

The examplein Listing 8.57 on page 361 demonstrates the definition of a section
aaa, which is split into two blocks, with section bbb in between them.

The location counter associated with the label zz is 1, because aNOP instruction
was already defined in this section at label xx.

Listing 8.57 Example of the SECTION assembler directive

Abs.

o Ul WN

Rel.

o Ul WN

Loc Obj. code Source line
aaa: SECTION 4

000000 9D XX: NOP
bbb: SECTION 5

000000 9D yy: NOP

000001 9D NOP

000002 9D NOP

HC(S)08 / RS08 Assembler Manual 361

Assembler Directives
Detailed descriptions of all assembler directives

7 7 aaa: SECTION 4
8 8 000001 9D ZZ: NOP

The optional qualifier SHORT specifies that the section is a short section, That
means than the objects defined there can be accessed using the direct addressing
mode.

For RS08, there are two additional section qualifiers: RS08_SHORT and
RS08_TINY. When asection isdeclared asRS08_SHORT (or RS08_TINY) al the
objects defined there can be accessed using the short (and respectively tiny)
addressing modes.

Example
The following example demonstrates the definition and usage of a SHORT section.

In the example shown in Listing 8.58 on page 362, the symbol datais accessed
using the direct addressing mode.

Listing 8.58 Using the direct addressing mode

1 1 dataSec: SECTION SHORT

2 2 000000 data: DS.B 1

3 3

4 4 codeSec: SECTION

5 5

6 6 entry:

7 7 000000 9C RSP

8 8 000001 A600 LDA #0

9 9 000003 B7xx STA data
See also

Assembler directives:

¢ ORG - Set Location Counter on page 353
¢ DC - Define Constant on page 311

« DCB - Define Constant Block on page 313
¢ DS - Define Space on page 314

362 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

SET - Set Symbol Value

Syntax

<label>: SET <expression>

Synonym

None

Description
Similar to the EQU - Equate symbol value on page 322 directive, the SET directive

assigns the value of the <expressions in the operand field to the symbol in the
<labels> field. The <expressions> must resolve as an absolute expression and
cannot include a symbol that is undefined or not yet defined. The <1abelsisan
assembly time constant. SET does not generate any machine code.

The valueistemporary; a subsequent SET directive can redefine it.

Example
See Listing 8.59 on page 363 for examples of the SET directive.

Listing 8.59 Using the SET assembler directive

Abs. Rel. Loc Obj. code Source line
1 1 0000 0002 count: SET 2
2 2 000000 02 one: DC.B count
3 3
4 4 0000 0001 count: SET count-1
5 5 000001 01 DC.B count
6 6
7 7 0000 0001 IFNE count
8 8 0000 0000 count: SET count-1
9 9 ENDIF
10 10 000002 00 DC.B count

The value associated with the label count is decremented after each DC . B
instruction.

HC(S)08 / RS08 Assembler Manual 363

Assembler Directives
Detailed descriptions of all assembler directives

SPC - Insert Blank Lines

Syntax

SPC<count>

Synonym

None

Description

Inserts <count > blank linesin the assembly listing. <count > may range from 0
to 65. This has the same effect as writing that number of blank linesin the
assembly source. A blank lineis aline containing only a carriage return.

364

HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

TABS - Set Tab Length

Syntax

TABS <n>

Synonym

None

Description

Sets the tab length to <n> spaces. The default tab length is eight. <n> may range
from 0 to 128.

HC(S)08 / RS08 Assembler Manual 365

Assembler Directives
Detailed descriptions of all assembler directives

TITLE - Provide Listing Title

Syntax

TITLE "title"

Synonym

TTL

Description

Printthe <t it1e> onthehead of every page of thelisting file. Thisdirective must
be the first source code line. A title consists of astring of characters enclosed in

quotes (") .

Thetitle specified will be written on the top of each page in the assembly listing

file.

366

HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

XDEF - External Symbol Definition

Syntax

XDEF [.<size>] <labels>|[,<label>]...
where<sizes> = B(direct), W (default), or L or S or T

Synonym

GLOBAL, PUBLIC

Description

Thisdirective specifieslabels defined in the current module that are to be passed to
the linker as labels that can be referenced by other modules linked to the current
module.

The number of symbols enumerated in an XDEF directiveis only limited by the
memory available at assembly time.

The Sand T size designators are only available for RS08, and result in marking the
symbol as short or tiny.

Example

See Listing 8.60 on page 367 for the case where the XDEF assembler directive can
specify symbols that can be used by other modules.

Listing 8.60 Using XDEF to create a variable to be used in another file

XDEF Count, main

;7 variable Count can be referenced in other modules,
;; same for label main. Note that Linker & Assembler
;; are case-sensitive, i.e., Count != count.

Count: DS.W 2

code: SECTION
main: DC.B 1

HC(S)08 / RS08 Assembler Manual 367

Assembler Directives
Detailed descriptions of all assembler directives

XREF - External Symbol Reference

Syntax
XREF [.<size>] <symbols>[,<symbol>]...
where<size> = B (direct), W (default), or L.

Synonym

EXTERNAL

Description

This directive specifies symbols referenced in the current module but defined in
another module. Thelist of symbols and corresponding 32-bit valuesis passed to
the linker.

The number of symbols enumerated in an XREF directiveis only limited by the
memory available at assembly time.

The Sand T sizedesignators are only available for RS08, and result in marking the
symbol as short or tiny.

Example

XREF OtherGlobal ; Reference "OtherGlobal" defined in
; another module. (See the XDEF
; directive example.)

368 HC(S)08 / RS08 Assembler Manual

Assembler Directives
Detailed descriptions of all assembler directives

XREFB - External Reference for Symbols located on the Direct

Page

Syntax

XREFB <symbols>[,<symbol>]...

Synonym

None

Description

This directive specifies symbols referenced in the current module but defined in
another module. Symbols enumerated in aXREFB directive, can be accessed using
the direct address mode. The list of symbols and corresponding 8-bit valuesis
passed to the linker.

The number of symbols enumerated in aXREFB directive is only limited by the
memory available at assembly time.

Example

XREFB OtherDirect ; Reference "OtherDirect" def in another
; module (See XDEF directive example.)

HC(S)08 / RS08 Assembler Manual 369

Assembler Directives
Detailed descriptions of all assembler directives

370 HC(S)08 / RS08 Assembler Manual

Macros

A macro isatemplate for a code sequence. Once amacro is defined, subsequent reference
to the macro name are replaced by its code sequence.

Macro overview

A macro must be defined beforeit is called. When amacro is defined, it is given aname.
This name becomes the mnemonic by which the macro is subsequently called.

The Assembler expands the macro definition each time the macro is called. The macro call
causes source statements to be generated, which may include macro arguments. A macro
definition may contain any code or directive except nested macro definitions. Calling
previously defined macrosis also allowed. Source statements generated by a macro call
areinserted in the source file at the position where the macro isinvoked.

To cal amacro, write the macro name in the operation field of a source statement. Place
the arguments in the operand field. The macro may contain conditional assembly
directives that cause the Assembler to produce in-line-coding variations of the macro
definition.

Macros call produces in-line code to perform a predefined function. Each time the macro
iscalled, code isinserted in the normal flow of the program so that the generated
instructions are executed in line with the rest of the program.

Defining a macro

The definition of amacro consists of four parts:

¢ The header statement, aMACRO directive with alabel that names the macro.

* Thebody of the macro, a sequential list of assembler statements, some possibly
including argument placeholders.

e The ENDM directive, terminating the macro definition.

¢ eventualy aninstruction MEXI'T, which stops macro expansion.
See the Assembler Directives chapter for information about the MACRO, ENDM, MEXIT,
and MLIST directives.

The body of amacro is a sequence of assembler source statements. Macro parameters are
defined by the appearance of parameter designators within these source statements. Valid

HC(S)08 / RS08 Assembler Manual 371

Macros

Calling macros

macro definition statements includes the set of processor assembly language instructions,
assembler directives, and calls to previously defined macros. However, macro definitions
may not be nested.

Calling macros

The form of amacro call is:
[<label>:] <names>[.<sizearg>] [<argument> [,<argument>]...]

Although amacro may be referenced by another macro prior to its definition in the source
module, a macro must be defined before itsfirst call. The name of the called macro must
appear in the operation field of the source statement. Arguments are supplied in the
operand field of the source statement, separated by commas.

The macro call produces in-line code at the location of the call, according to the macro
definition and the arguments specified in the macro call. The source statements of the
expanded macro are then assembled subject to the same conditions and restrictions
affecting any source statement. Nested macros calls are also expanded at thistime.

Macro parameters

Asmany as 36 different substitutable parameters can be used in the source statements that
constitute the body of a macro. These parameters are replaced by the corresponding
arguments in a subsequent call to that macro.

A parameter designator consists of a backlashes character (\), followed by adigit (0 - 9) or
an uppercase letter (A - Z). Parameter designator \0 corresponds to a size argument that
follows the macro name, separated by aperiod (.).

Consider the macro definition in Listing 9.1 on page 372:

Listing 9.1 Example macro definition

MyMacro: MACRO
DC.\O \1, \2
ENDM
When this macro is used in aprogram, e.g.:
MyMacro.B $10, $56
the Assembler expandsiit to:
372 HC(S)08 / RS08 Assembler Manual

Macros
Macro parameters

DC.B $10, $56

Argumentsin the operand field of the macro call refer to parameter designator \ 1 through
\ 9 and \ A through \ Z, in that order. The argument list (operand field) of amacro call
cannot be extended onto additional lines.

At the time of amacro call, arguments from the macro call are substituted for parameter
designators in the body of the macro as literal (string) substitutions. The string
corresponding to a given argument is substituted literally wherever that parameter
designator occurs in a source statement as the macro is expanded. Each statement
generated in the execution is assembled in line.

Itispossible to specify anull argument in amacro call by acommawith no character (not
even a space) between the comma and the preceding macro name or comma that follows
an argument. When anull argument itself is passed as an argument in anested macro call,
anull valueis passed. All arguments have adefault value of null at the time of a macro
cal.

Macro argument grouping

To pass text including commas as a single macro argument, the Assembler supports a
specia syntax. This grouping starts with the [? prefix and ends with the 7] suffix. If the
[?or 7] patterns occur inside of the argument text, they have to be in pairs. Alternatively,
brackets, question marks and backward slashes can also be escaped with a backward slash
as prefix.

NOTE Thisescaping only takesplaceinsideof [? 2] arguments. A backslashisonly
removed in this processif it isjust before abracket ([1), aquestion mark
(?), orasecond backslash (\).

Listing 9.2 Example macro definition

MyMacro:

MyMacrol:

MACRO
DC \1
ENDM
MACRO
\1
ENDM

Listing 9.3 on page 374 has some macro calls with rather complicated arguments:

HC(S)08 / RS08 Assembler Manual 373

Macros
Macro parameters

Listing 9.3 Macro calls for Listing 9.2 on page 373

MyMacro [?$10, $567]

MyMacro [?"\[?"?]

MyMacrol [?MyMacro [?7810, $5672]7]
MyMacrol [?MyMacro \[?$10, $56\?]72]

These macro calls expand to the following lines (Listing 9.4 on page 374):

Listing 9.4 Macro expansion of Listing 9.3 on page 374

DC $10, $56
DC n [?Il

DC $10, $56
DC $10, $56

The Macro Assembler does al so supports for compatibility with previous version’s macro
grouping with an angle bracket syntax (Listing 9.5 on page 374):

Listing 9.5 Angle bracket syntax

MyMacro <$10, $56>

However, thisold syntax is ambiguous as < and > are also used as compare operators. For
example, the following code (Listing 9.6 on page 374) does not produce the expected
result:

Listing 9.6 Potential problem using the angle-bracket syntax

MyMacro <1 > 2, 2 > 3> ; Wrong!

Because of this the old angle brace syntax should be avoided in new code. Thereis aso
and option to disable it explicitly.

See a so the -CMacBrackets: Square brackets for macro arguments grouping and the
-CMacAngBrack: Angle brackets for grouping Macro Arguments assembler options.

374 HC(S)08 / RS08 Assembler Manual

Macros
Labels inside macros

Labels inside macros

To avoid the problem of multiple-defined Iabels resulting from multiple calls to a macro
that has labels in its source statements, the programmer can direct the Assembler to
generate unique labels on each call to amacro.

Assembler-generated labels include a string of theform _nnnnn where nnnnn isa5-
digit value. The programmer reguests an assembler-generated label by specifying \@ ina
label field within a macro body. Each successive label definition that specifiesa\@
directive generates a successive value of _nnnnn, thereby creating aunique label on each
macro call. Note that \@ may be preceded or followed by additional characters for clarity
and to prevent ambiguity.

Thisisthe definition of the clear macro (Listing 9.7 on page 375):

Listing 9.7 Clear macro definition

clear: MACRO
LDX #\1
LDA #16
\@LOOP: CLR 0,X
INCX
DECA
BNE \@LOOP
ENDM

Thismacrois caled in the application (Listing 9.8 on page 375):

Listing 9.8 Calling the clear macro

clear temporary
clear data

The two macro calls of clear are expanded in the following manner (Listing 9.9 on
page 375):

Listing 9.9 Macro call expansion

clear temporary
LDX #temporary

LDA #16
_00001LOOP: CLR 0,X

INCX

DECA

HC(S)08 / RS08 Assembler Manual 375

Macros
Macro expansion

BNE _00001LOOP
clear data
LDX #data

LDA #1l6
_00002LOCP: CLR 0,X

INCX

DECA

BNE _00002LOCP

Macro expansion

When the Assembler reads a statement in a source program calling a previously defined
macro, it processes the call as described in the following paragraphs.

The symbol table is searched for the macro name. If it is not in the symbol table, an
undefined symbol error message is issued.

Therest of thelineis scanned for arguments. Any argument in the macro call issaved asa
literal or null value in one of the 35 possible parameter fields. When the number of
argumentsin the call isless than the number of parameters used in the macro the
argument, which have not been defined at invocation time are initialize with »* (empty
string).

Starting with the line following the MACRO directive, each line of the macro body is saved
and is associated with the named macro. Each line isretrieved in turn, with parameter
designators replaced by argument strings or assembl er-generated label strings.

Once the macro is expanded, the source lines are evaluated and object code is produced.

Nested macros

Macro expansion is performed at invocation time, which is also the case for nested
macros. |f the macro definition contains nested macro call, the nested macro expansion
takes place in line. Recursive macro call are also supported.

A macro call islimited to the length of oneline, i.e., 1024 characters.

376 HC(S)08 / RS08 Assembler Manual

10

Assembler Listing File

The assembly listing file is the output file of the Assembler that contains information
about the generated code. The listing file is generated when the —L assembler option is
activated. When an error is detected during assembling from the file, no listing fileis
generated.

The amount of information available depends upon the following assembler options:
e -L: Generatealisting file

e -Lc: NoMacrocal inlisting file

e -L.d: No macro definition in listing file

¢ -Le: No Macro expansion in listing file
e -Li: Noincluded filein listing file

Theinformation in the listing file also depends on following assembler directives:
e LIST - Enable Listing

NOLIST - Disable Listing

CLIST - List conditional assembly
e MLIST - List macro expansions

The format from the listing file is influenced by the following assembler directives:
* PLEN - Set Page L ength
e LLEN - Set LineLength
* TABS- Set Tab Length

SPC - Insert Blank Lines

PAGE - Insert Page break

NOPAGE - Disable Paging

e TITLE - Provide Listing Title.

The name of the generated listing fileis <base names.lst.

Page header

The page header consists of three lines:

HC(S)08 / RS08 Assembler Manual 377

Assembler Listing File
Source listing

« Thefirst line contains an optional user string defined in the TITLE directive.

The second line contains the name of the Assembler vendor (Freescale) aswell
as the target processor name - HC(S)08.

« Thethird line contains a copyright notice.

Listing 10.1 Example page header output

Demo Application
Freescale HCO8-Assembler
(c) COPYRIGHT Freescale 1991-2005

Source listing

The printed columns can be configured in various formats with the -Lasmc: Configure
listing file assembler option. The default format of the source listing has the five columns

asin _on page 378:

ADbsS.

This column contains the absolute line number for each instruction. The absolute line
number is the line number in the debug listing file, which contains all included files and
where any macro calls have been expanded.

Listing 10.2 Example output listing - Abs. column

Abs. Rel. Loc Obj. code Source line
1 1 R e e
2 2 ; File: test.o
3 3 e e i T R
4 4
5 5 XDEF Start
6 6 MyData: SECTION
7 7 000000 charl: DS.B 1
8 8 000001 char2: DS.B 1
9 9 INCLUDE "macro.inc"
10 1i cpChar: MACRO
11 21 LDA \1
12 31 STA \2
13 41 ENDM
14 10 CodeSec: SECTION

378 HC(S)08 / RS08 Assembler Manual

Assembler Listing File
Source listing

15 11

16 12

17 2m 000000 C6 xxxxX
18 3m 000003 C7 xxxxX
19 13 000006 9D

20 14 000007 9D

Start:

cpChar charl, char2
LDA charl

STA char2

NOP

NOP

Rel.

This column contains the relative line number for each instruction. Therelative line
number is the line number in the sourcefile. For included files, the relative line number is
the line number in the included file. For macro call expansion, the relative line number is
the line number of the instruction in the macro definition. See Listing 10.3 on page 379.

An ‘i’ suffix is appended to the relative line number when the line comes from an
included file. An *m’ suffix is appended to the relative line number when thelineis

generated by amacro call.

Listing 10.3 Example listing file - Rel. column

Abs. Rel. Loc Obj. code
1 1
2 2
3 3
4 4
5 5
6 6
7 7 000000
8 8 000001
9 9
10 1i
11 21
12 31
13 4i
14 10
15 11
16 12
17 2m 000000 C6 xxxxX
18 3m 000003 C7 xxxxX
19 13 000006 9D
20 14 000007 9D

MyData:
charl:
char2:

cpChar:

CodeSec:
Start:

XDEF Start

SECTION
DS.B 1
DS.B 1
INCLUDE "macro.inc"
MACRO
LDA \1
STA \2
ENDM
SECTION
cpChar charl, char2
LDA charl
STA char2
NOP
NOP

HC(S)08 / RS08 Assembler Manual

379

Assembler Listing File
Source listing

In the previous example, the line number displayed inthe ‘Rel.” column. represent the line
number of the corresponding instruction in the source file.

‘11’ on absolute line number 10 denotes that theinstruction ‘ cpChar: MACRO' islocated
in an included file.

‘2m’ on absolute line number 17 denotes that the instruction ‘ LDA
by a macro expansion.

charl’ isgenerated

Loc

This column contains the address of the instruction. For absolute sections, the addressis
preceded by an ‘a’ and contains the absol ute address of the instruction. For relocatable
sections, this address is the offset of the instruction from the beginning of the relocatable
section.. This offset is a hexadecimal number coded on 6 digits.

A valueiswritten in this column in front of each instruction generating code or allocating
storage. This column is empty in front of each instruction that does not generate code (for
example SECTION, XDEF, ...). See Listing 10.4 on page 380.

Listing 10.4 Example Listing File - Loc column

Abs Loc Obj. code Source line
1 1 P R
2 2 ; File: test.o
3 3 i
4 4
5 5 XDEF Start
6 6 MyData: SECTION
7 7 000000 charl: DS.B 1
8 8 000001 char2: DS.B 1
9 9 INCLUDE "macro.inc"
10 1i cpChar: MACRO
11 21 LDA \1
12 31 STA \2
13 41 ENDM
14 10 CodeSec: SECTION
15 11 Start:
16 12 cpChar charl, char2
17 2m 000000 C6 xxxxX LDA charl
18 3m 000003 C7 xxxX STA char2
19 13 000006 9D NOP
20 14 000007 9D NOP

380

HC(S)08 / RS08 Assembler Manual

Assembler Listing File
Source listing

In the previous example, the hexadecimal number displayed in the column ‘Loc.” isthe
offset of each instruction in the section ‘ codeSec’.

Thereis no location counter specified in front of the instruction * INCLUDE
"macro.inc" because thisinstruction does not generate code.

Theinstruction ‘LDA charl’ islocated at offset O from the section ‘ codeSec’ start
address.

Theinstruction ‘STA char2’ islocated at offset 3 from the section ‘ codeSec’ start
address.

Obj. code

This column contains the hexadecimal code of each instruction in hexadecimal format.

This codeisnot identical to the code stored in the object file. The letter ‘X’ isdisplayed at
the position where the address of an external or relocatable |abel is expected. Code at any
position when ‘x’ is written will be determined at link time. See Listing 10.5 on page 381.

Listing 10.5 Example listing file - Obj. code column

Loc Obj. code Source line
1 PR R R
2 ; File: test.o
3 HE e e
4
5 XDEF Start
6 MyData: SECTION
7 000000 charl: DS.B 1
8 000001 char2: DS.B 1
9 INCLUDE "macro.inc"
1i cpChar: MACRO
21 LDA \1
31 STA \2
41i ENDM
0 CodeSec: SECTION
1 Start:
2 cpChar charl, char2
2m 000000 C6 xxxx + LDA charl
3m 000003 C7 =xxxx + STA char2
13 000006 9D NOP
14 000007 9D NOP

HC(S)08 / RS08 Assembler Manual 381

Assembler Listing File

Source listing

Source line

This column contains the source statement. Thisis a copy of the source line from the
source module. For linesresulting from amacro expansion, the source lineis the expanded
line, where parameter substitution has been done. See Listing 10.6 on page 382.

Listing 10.6 Example listing file - Source line column

Abs. Rel Loc Obj. code Source line

1 1 R e
2 2 ; File: test.o
3 3 e m e mmmmm - - -
4 4
5 5 XDEF Start

6 6 MyData: SECTION

7 7 000000 charl: DS.B 1

8 8 000001 char2: DS.B 1
9 9 INCLUDE "macro.inc"

10 1i cpChar: MACRO

11 21 LDA \1

12 3i STA \2

13 41 ENDM

14 10 CodeSec: SECTION

15 11 Start:

16 12 cpChar charl, char2

17 2m 000000 C6 xxxx LDA charl

18 3m 000003 C7 xxxX STA char2

19 13 000006 9D NOP

20 14 000007 9D NOP

382 HC(S)08 / RS08 Assembler Manual

11

Mixed C and Assembler
Applications

When you intend to mix Assembly source file and ANSI-C sourcefilesin asingle
application, the following issues are important:

« “Memory models’ on page 383

“Parameter passing scheme” on page 384

e “Return Vaue” on page 384

¢ “Accessing assembly variablesin an ANSI-C sourcefile” on page 384

e “Accessing ANSI-C variablesin an assembly sourcefile” on page 385

¢ “Invoking an assembly function in an ANSI-C sourcefile” on page 386

e “Support for structured types’ on page 389

To build mixed C and Assembler applications, you have to know how the C Compiler uses
registers and calls procedures. The following sections will describe this for compatibility
with the compiler. If you are working with another vendor’s ANSI-C compiler, refer to
your Compiler Manual to get the information about parameter passing rules.

Memory models

The memory models are only important if you mix C and assembly code. In this case all
sources must be compiled or assembled with the same memory model.

The Assembler supports all memory models of the compiler. Depending on your
hardware, use the smallest memory model suitable for your programming needs.

Table 11.1 on page 384 summarizes the different memory models. It showswhen to use a
particular memory model and which assembler switch to use.

HC(S)08 / RS08 Assembler Manual 383

Mixed C and Assembler Applications

Parameter passing scheme

Table 11.1 HCO08 memory models

Option | Memory

Model

Local
Data

Global
Data

Suggested Use

—Ms SMALL

SP rel

extended

The SMALL memory model is the de-
fault. All pointers and functions are as-
sumed to have 16-bit addresses if not
explicitly specified. In the SMALL mem-
ory model, code and data must be in the
64k address space.

TINY

SP rel

direct

In the TINY memory model, all data
including stack must fit into the zero
page. Data pointers are assumed to
have 8-bit addresses if not explicitly
specified with the keyword __far. The
code address space is still 64k and
function pointers are still 16 bits in
length.

NOTE
chosen.

The default pointer size for the compiler is a so affected by the memory model

Parameter passing scheme

Please check the compiler manual, back-end chapter about the details of parameter

passing.

Return Value

Please check the compiler manual’ s backend chapter about the details of parameter

passing.

Accessing assembly variables in an ANSI-C

source file

A variable or constant defined in an assembly sourcefileis accessiblein an ANSI-C

sourcefile.

384

HC(S)08 / RS08 Assembler Manual

Mixed C and Assembler Applications
Accessing ANSI-C variables in an assembly source file

The variable or constant is defined in the assembly source file using the standard assembly
syntax.

Variables and constants must be exported using the XDEF directive to make them visible
from other modules (Listing 11.1 on page 385).

Listing 11.1 Example of data and constant definition

XDEF ASMData, ASMConst
DataSec: SECTION

ASMData: DS.W 1 ; Definition of a variable
ConstSec: SECTION
ASMConst: DC.W $44A6 ; Definition of a constant

We recommend that you generate a header file for each assembler sourcefile. This header
file should contain the interface to the assembly module.

An external declaration for the variable or constant must be inserted in the header file
(Listing 11.2 on page 385).

Listing 11.2 Example of data and constant declarations

/* External declaration of a variable */
extern int ASMData;

/* External declaration of a constant */
extern const int ASMConst;

The variables or constants can then be accessed in the usual way, using their names
(Listing 11.3 on page 385).

Listing 11.3 Example of data and constant reference

ASMData = ASMConst + 3;

Accessing ANSI-C variables in an assembly
source file

A variable or constant defined in an ANSI-C sourcefileis accessible in an assembly
sourcefile.

HC(S)08 / RS08 Assembler Manual 385

Mixed C and Assembler Applications
Invoking an assembly function in an ANSI-C source file

The variable or constant is defined in the ANSI-C source file using the standard ANSI-C
syntax (Listing 11.4 on page 386).

Listing 11.4 Example definition of data and constants

unsigned int CData; /* Definition of a variable */
unsigned const int CConst; /* Definition of a constant */

An external declaration for the variable or constant must be inserted into the assembly
source file (Listing 11.5 on page 386).

This can also be done in a separate file, included in the assembly source file.

Listing 11.5 Example declaration of data and constants

XREF CDhata; External declaration of a variable
XREF CConst; External declaration of a constant

The variables or constants can then be accessed in the usual way, using their names
(Listing 11.6 on page 386).

NOTE Thecompiler supports also the automatic generation of assembler includefiles.
See the description of the -L.a compiler option in the compiler manual.

Listing 11.6 Example of data and constant reference

LDA CConst

LDA CDhata

Invoking an assembly function in an ANSI-C
source file

An function implemented in an assembly sourcefile (nixasm.asmin Listing 11.7 on
page 387) can beinvoked in a C sourcefile (Listing 11.9 on page 388). During the
implementation of the function in the assembly source file, you should pay attention to the
parameter passing scheme of the ANSI-C compiler you are using in order to retrieve the
parameter from the right place.

386 HC(S)08 / RS08 Assembler Manual

Mixed C and Assembler Applications
Invoking an assembly function in an ANSI-C source file

Listing 11.7 Example of an assembly file: mixasm.asm

XREF CDhata
XDEF AddvVar
XDEF ASMData

DataSec: SECTION
ASMData: DS.B 1
CodeSec: SECTION

AddVar:
ADD CData ; add CData to the parameter in register A
STA ASMData ; result of the addition in ASMData
RTS

We recommend that you generate a header file for each assembly sourcefile
(Listing 11.7 on page 387). This header file (mixasm.h in Listing 11.8 on page 387)
should contain the interface to the assembly module.

Listing 11.8 Header file for the assembly mixasm.asm file: mixasm.h

/* mixasm.h */
#ifndef MIXASM H_
#define MIXASM H_

void AddvVar (unsigned char value) ;
/* function that adds the parameter value to global CData */
/* and then stores the result in ASMData */

/* variable which receives the result of Addvar */
extern char ASMData;

#endif /* MIXASM H_ */

The function can then be invoked in the usual way, using its name.

Example of a C file

A C source codefile (mixc . ¢) hasthe main() function which calls the Addvar ()
function. See Listing 11.9 on page 388. (Compile it with the - Cc compiler option when
using the HIWARE Object File Format).

HC(S)08 / RS08 Assembler Manual 387

Mixed C and Assembler Applications
Invoking an assembly function in an ANSI-C source file

Listing 11.9 Example C source code file: mixc.c

static int Error = 0;
const unsigned char CData 12;
#include "mixasm.h"

void main(void) {
AddvVar (10) ;
if (ASMData != CData + 10){
Error = 1;
} else {
Error = 0;

for(;;); // wait forever

}

CAUTION Be careful, asthe Assembler will not make any checks on the number and
type of the function parameters.

The application must be correctly linked.

For these ¢ and * . asm files, apossible linker parameter fileis shownin Listing 11.10 on
page 388.

Listing 11.10 Example of linker parameter file: mixasm.prm

LINK mixasm.abs
NAMES
mixc.o mixasm.o
END
SECTIONS
MY ROM READ ONLY 0x4000 TO Ox4FFF;
MY RAM READ WRITE 0x2400 TO Ox2FFF;
MY STACK = READ WRITE 0x2000 TO Ox23FF;
END
PLACEMENT
DEFAULT_ RAM INTO MY RAM;
DEFAULT_ROM INTO MY_ROM;
SSTACK INTO MY STACK;
END
INIT main

388 HC(S)08 / RS08 Assembler Manual

Mixed C and Assembler Applications
Support for structured types

NOTE Werecommend that you use the same memory model and object file format for
all the generated object files.

Support for structured types

When the -Struct: Support for structured types assembler option is activated, the Macro
Assembler also supports the definition and usage of structured types. Thisallows an easier
way to access ANSI-C structured variable in the Macro Assembler.

In order to provide an efficient support for structured type the macro assembler should
provide notation to:

« Defineastructured type. See " Structured type definition” on page 389.

¢ Defineastructured variable. See “Variable definition” on page 391.

¢ Declare astructured variable. See “Variable declaration” on page 391.

¢ Accessthe address of afield inside of a structured variable. See “ Accessing afield
address” on page 392

¢ Accessthe offset of afield inside of a structured variable. See “Accessing afield
offset” on page 393.

NOTE Somelimitations apply in the usage of the structured typesin the Macro
Assembler. See Structured type: Limitations on page 393.

Structured type definition

The Macro Assembler is extended with the following new keywords in order to support
ANSI-C type definitions.

e STRUCT

e TUNION
The structured type definition for STRUCT can be encoded asin Listing 11.11 on
page 389:

Listing 11.11 Definition for STRUCT

typeName: STRUCT
labl: DS.W 1 lab2: DS.W 1
ENDSTRUCT

where:

HC(S)08 / RS08 Assembler Manual 389

Mixed C and Assembler Applications
Support for structured types

'typeName' isthe name associated with the defined type. The type name is considered
to be auser-defined keyword. The Macro Assembler will be case-insensitive on

typeName.

"STRUCT ' specifiesthat the type is astructured type.

"labl'and 'lab2' arethefieldsdefined inside of the ' typeName' type. Thefields
will be considered as user-defined labels, and the Macro Assembler will be case-sensitive

on label names.

Aswith all other directivesin the Assembler, the STRUCT and UNION directives are

case-insensitive.

The STRUCT and UNION directives cannot start on column 1 and must be preceded by a

label.

Types allowed for structured type fields
Thefield inside of a structured type may be:

e another structured type or

« abase type, which can be mapped on 1, 2, or 4 bytes.

Table 11.2 on page 390 shows how the ANSI-C standard types are converted in the

assembler notation.

Table 11.2 Converting ANSI-C standard types to assembler notation

ANSI-C type Assembler Notation
char DS - Define Space
short DS.wW

int DS.wW

long DS.L

enum DS.wW

bitfield -- not supported --

float -- not supported --
double -- not supported --

data pointer

DS.wW

function pointer

-- not supported --

390

HC(S)08 / RS08 Assembler Manual

Mixed C and Assembler Applications
Support for structured types

Variable definition

The Macro Assembler can provide away to define a variable with a specific type. Thisis
done using the following syntax (Listing 11.12 on page 391):

var: typeName

where:

e 'var' isthename of thevariable.
e 'typeName' isthetype associated with the variable.

Listing 11.12 Assembly code analog of a C struct of type: myType

myType:
fieldl:
field2:
field3:
field4:
fields:

STRUCT
DS.W 1
DS.W 1
DS.B 1
DS.B 3
DS.W 1
ENDSTRUCT

DataSection: SECTION

structVar:

TYPE myType ; var ‘structVar’ is of type ‘myType’

Variable declaration

The Macro Assembler can provide away to associated atype with a symbol which is
defined externally. Thisis done by extending the XREF syntax:

XREF var: typeName, varz
where:

¢ ‘'var'isthe name of an externally defined symbol.

¢ 'typeName'isthetype associated with the variable 'var'.
'var2' isthename of another externally defined symbol. This symbol is not associated
with any type. See Listing 11.13 on page 391 for an example.

Listing 11.13 Example of extending XREF

myType:
fieldl:
field2:
field3:
field4:
fields:

STRUCT

DS.
DS.
DS.
DS.
DS.

Sww=s=
R

HC(S)08 / RS08 Assembler Manual 391

Mixed C and Assembler Applications
Support for structured types

ENDSTRUCT

XREF extData: myType ; var ‘extData’ is type ‘myType’

Accessing a structured variable

The Macro Assembler can provide a means to access each structured type field absolute
address and offset.

Accessing a field address

To access a structured-type field address (Listing 11.14 on page 392), the Assembler uses
the colon character ":".

var:field
where

¢ 'var'isthe name of avariable, which was associated with a structured type.
e 'field'isthename of afieldin the structured type associated with the variable.

Listing 11.14 Example of accessing a field address
myType: STRUCT
fieldl: DS.W 1
field2: DS.W 1
field3: DS.B 1
fields: DS.B 3
fields: DS.W 1
ENDSTRUCT
XREF myData:myType
XDEF entry
CodeSec: SECTION
entry:
LDA myData:field3 ; Loads register A with the content of
; field field3 from variable myData.
NOTE The period cannot be used as separator because in assembly languageitisa
valid character inside of a symbol name.
392 HC(S)08 / RS08 Assembler Manual

Mixed C and Assembler Applications
Structured type: Limitations

Accessing a field offset

To access a structured type field offset, the Assembler will use following notation:
<typeName>-><field>
where:

¢ 'typeName'isthe name of astructured type.

« 'field'isthenameof afieldin the structured type associated with the variable.
See Listing 11.15 on page 393 for an example of using this notation for accessing
an offset.

Listing 11.15 Accessing a field offset with the -><field> notation

myType: STRUCT

fieldl: DS.Ww 1
field2: DS.W 1
field3: DS.B 1
field4: DS.B 3
fields: DS.W 1

ENDSTRUCT

XREF.B myData
XDEF entry

CodeSec: SECTION
entry:
LDX #myData
LDA myType->field3,X ; Adds the offset of field 'field3'
; (4) to X and loads A with the
; content of the pointed address

Structured type: Limitations

A field inside of a structured type may be:
¢ another structured type
« abase type, which can be mapped on 1, 2, or 4 bytes.
The Macro Assembler is not able to process bitfields or pointer types.

The type referenced in avariable definition or declaration must be defined previoudly. A
variable cannot be associated with atype defined afterwards.

HC(S)08 / RS08 Assembler Manual 393

Mixed C and Assembler Applications
Structured type: Limitations

394 HC(S)08 / RS08 Assembler Manual

12

Make Applications

This chapters has the following sections:

¢ “Assembly applications’ on page 395
¢ “Memory maps and segmentation” on page 396

Assembly applications

This section covers:

« Directly generating an absolute file on page 395
¢ Mixed C and assembly applications on page 395

Directly generating an absolute file

When an absolute file is directly generated by the Assembler:

« the application entry point must be specified in the assembly source file using the
directive ABSENTRY.

« Thewhole application must be encoded in a single assembly unit.
* Theapplication should only contain absolute sections.

Generating object files

Theentry point of the application must be mentioned in the Linker parameter file using the
"INIT funcname" command. The applicationis build of the different object files with the
Linker. The Linker is document in a separate document.

Y our assembly source files must be separately assembled. Then the list of al the object
files building the application must be enumerated in the application PRM file.

Mixed C and assembly applications

Normally the application starts with the main procedure of a C file. All necessary object
files - assembly or C - are linked with the Linker in the same fashion like pure C
applications. The Linker is documented in a separate document.

HC(S)08 / RS08 Assembler Manual 395

Make Applications
Memory maps and segmentation

Memory maps and segmentation

Relocatable Code Sections are placed in the DEFAULT ROM Or . text Segment.
Relocatable Data Sections are placed in the DEFAULT RAM or . data Segment.

NOTE The .text and . data hames are only supported when the ELF object file
format is used.

There are no checks at all that variables are in RaM. If you mix code and datain a section
you cannot place the section into ROM. That iswhy we suggest that you separate code and
datainto different sections.

If you want to place asection in a specific address range, you have to put the section name
in the placement portion of the linker parameter file (Listing 12.1 on page 396).

Listing 12.1 Example assembly source code

SECTIONS
ROM1 = READ ONLY 0x0200 TO OxOFFF;
SpecialROM = READ ONLY 0x8000 TO Ox8FFF;
RAM = READ WRITE 0x4000 TO Ox4FFF;
PLACEMENT
DEFAULT_ROM INTO ROM1;
mySection INTO SpecialROM;
DEFAULT_ RAM INTO RAM;
END

396 HC(S)08 / RS08 Assembler Manual

13

How to ...

This chapter covers the following topics:

How to work with absolute sections on page 397

How to work with relocatable sections on page 400
How to initialize the V ector table on page 402

Splitting an application into different modules on page 410
Using the direct addressing mode to access symbols on page 412

How to work with absolute sections

An absolute section is a section whose start address is known at assembly time.

(See modules £ iboorg.asm and fiboorg. prm in the demo directory)

Defining absolute sections in an assembly
source file

An absolute section is defined using the ORG directive. In that case, the Macro Assembler
generates a pseudo section, whose name is "ORG _<index>”, whereindex is an integer
which isincremented each time an absolute section is encountered (Listing 13.1 on

page 397).

Listing 13.1 Defining an absolute section containing data

ORG
var: DS.

ORG
cstl: DC.B
cst2: DC.B

$800 ; Absolute data section.

1

SA00 ; Absolute constant data section.
SA6

$SBC

In the previous portion of code, the label cst1 islocated at address $A00, and label
cst2 islocated at address SAO1.

HC(S)08 / RS08 Assembler Manual 397

How to ...
How to work with absolute sections

Listing 13.2 Assembler output listing for Listing 13.1 on page 397

Uk w N
Uk w N

ORG $800
a000800 var: DS.B 1

ORG SA00
a000A00 A6 cstl: DC.B $A6
a000A01 BC cst2: DC.B $BC

Program assembly source code should be located in a separate absolute section

(Listing 13.3 on page 398).

Listing 13.3 Defining an absolute section containing code

entry:

XDEF entry

ORG $SCO00 ; Absolute code section.
LDA cstl ; Load value in cstl
ADD cst2 ; Add value in cst2

STA var ; Store in var

BRA entry

In the portion of assembly code above, the LDA instruction is located at address $C00,
and the ADD instruction is at address $C03. See Listing 13.4 on page 398.

Listing 13.4 Assembler output listing for Listing 13.3 on page 398

8

9
10
11
12
13
14

8 ORG SCO00 ; Absolute code
9 entry:
10 a000C00 C6 0AO0O LDA cstl ; Load value
11 a000C03 CB 0A01 ADD cst2 ; Add value

12 a000C06 C7 0800 STA var ; Store in var
13 a000C09 20F5 BRA entry

14

In order to avoid problems during
file should at least:

linking or execution from an application, an assembly

¢ Initialize the stack pointer if the stack is used.

The RSP instruction can be used to initialize the stack pointer to $FF.
Publish the application’s entry point using XDEF.

The programmer should ensure that the addresses specified in the source files are
valid addresses for the MCU being used.

398

HC(S)08 / RS08 Assembler Manual

How to ...
How to work with absolute sections

Linking an application containing absolute
sections

When the Assembler is generating an object file, applications containing only absolute
sections must be linked. The linker parameter file must contain at least:

¢ the name of the absolutefile

« the name of the object file which should be linked

« the specification of amemory areawhere the sections containing variables must be
allocated. For applications containing only absolute sections, nothing will be
allocated there.

« the specification of amemory areawhere the sections containing code or constants
must be alocated. For applications containing only absol ute sections, nothing will
be dlocated there.

« the specification of the application entry point, and
e thedefinition of the reset vector.
The minimal linker parameter file will look as shown in Listing 13.5 on page 399.

Listing 13.5 Minimal linker parameter file

LINK test.abs /* Name of the executable file generated. */
NAMES

test.o /* Name of the object file in the application. */
END
SECTIONS

/* READ_ONLY memory area. There should be no overlap between this
memory area and the absolute sections defined in the assembly
source file.

*/

MY ROM = READ ONLY 0x4000 TO Ox4FFF;

/* READ WRITE memory area. There should be no overlap between this
memory area and the absolute sections defined in the assembly
source file.

*/

MY RAM = READ WRITE 0x2000 TO Ox2FFF;

END

PLACEMENT

/* Relocatable variable sections are allocated in MY RAM. */

DEFAULT RAM INTO MY RAM;
/* Relocatable code and constant sections are allocated in MY ROM. */
DEFAULT_ROM INTO MY_ROM;

END

INIT entry /* Application entry point. */

VECTOR ADDRESS OXFFFE entry /* Initialization of the reset vector. */

HC(S)08 / RS08 Assembler Manual 399

How to ...

How to work with relocatable sections

NOTE There should be no overlap between the absolute sections defined in the
assembly source file and the memory areas defined in the PRM file.

NOTE Asthememory areas (segments) specified in the PRM file are only used to
allocate rel ocatabl e sections, nothing will be allocated there when the
application contains only absolute sections. In that case you can even specify
invalid address rangesin the PRM file.

How to work with relocatable sections

Listing 13.6

A relocatable section is a section which start address is determined at linking time.

Defining relocatable sections in a source
file

A relocatable section is defined using the SECTION directive. See Listing 13.6 on
page 400 for an example of defining relocatable sections.

Defining relocatable sections containing data

constSec:

cstl:
cst2:

dataSec:

var:

SECTION ; Relocatable constant data section.
DC.B SA6

DC.B $BC

SECTION ; Relocatable data section.

DS.B 1

In the previous portion of code, the label cst 1 will be located at an offset 0 from the
section constSec start address, and label cst2 will belocated at an offset 1 from the
section constSec start address. See Listing 13.7 on page 400.

Listing 13.7 Assembler output listing for Listing 13.6 on page 400

2 2 constSec: SECTION ; Relocatable
3 3 000000 A6 cstl: DC.B SA6
4 4 000001 BC cst2: DC.B SBC
5 5
6 6 dataSec: SECTION ; Relocatable
400 HC(S)08 / RS08 Assembler Manual

How to ...
How to work with relocatable sections

7 7

000000 var: DS.B 1

Program assembly source code should be located in a separate relocatable section
(Listing 13.8 on page 401L.isting 13.8 on page 401).

Listing 13.8 Defining a relocatable section for code

codeSec:
entry:

XDEF entry

SECTION ; Relocatable code section.
LDA cstl ; Load value in cstl

ADD cst2 ; Add value in cst2

STA var ; Store in var

BRA entry

In the previous portion of code, the LDA instruction islocated at an offset 0 from the
codeSec section start address, and ADD instruction at an offset 3 from the codeSec
section start address.

In order to avoid problems during linking or execution from an application, an assembly
file should at |east:

¢ Initialize the stack pointer if the stack is used

e TheRSP instruction can be used to initialize the stack pointer to SFF.

¢ Publish the application’s entry point using the XDEF directive.

Linking an application containing
relocatable sections

Applications containing rel ocatabl e sections must be linked. The linker parameter file
must contain at least:

* the name of the absolutefile,

« the name of the object file which should be linked,

« the specification of amemory areawhere the sections containing variables must be
allocated,

« the specification of amemory areawhere the sections containing code or constants
must be allocated,

« the specification of the application’s entry point, and
¢ thedefinition of the reset vector.
A minimal linker parameter file will look as shown in Listing 13.9 on page 402.

HC(S)08 / RS08 Assembler Manual 401

How to ...

How to initialize the Vector table

Listing 13.9

Minimal linker parameter file

/* Name of

the executable file generated. x/

LINK test.abs

/* Name of
NAMES
test.o
END
SECTIONS

the object file in the application. */

/* READ ONLY memory area. */

MY ROM
/* READ_WR
MY RAM

END
PLACEMENT
/* Relocat
DEFAULT .
/* Relocat
DEFAULT
END
INIT entry
VECTOR ADD

= READ ONLY 0x2B00 TO Ox2BFF;
ITE memory area. */
= READ WRITE 0x2800 TO Ox28FF;

able variable sections are allocated in MY _RAM. * /
RAM INTO MY RAM;
able code and constant sections are allocated in MY ROM. */
ROM, constSec INTO MY ROM;

/* Application entry point. */
RESS OxFFFE entry /* Initialization of the reset vector. */

NOTE The programmer should ensure that the memory ranges he specifiesin the
SECTIONS block are valid addresses for the controller heisusing. In addition,
when using the SDI debugger the addresses specified for code or constant
sections must be located in the target board ROM area. Otherwise, the
debugger will not be able to load the application

How to initialize the Vector table

The vector table can beinitialized in the assembly source file or in the linker parameter
file. We recommend that you initialize it in the linker parameter file.

¢ _on page 403Initializing the Vector table in the linker PRM file on page 403
(recommended),

e Initializing the Vector Table in a source file using a relocatable section on
page 405, or
« Initializing the Vector Tablein a source file using an absolute section on page 408.
The HC(S)08 allows 128 entries in the vector table starting at memory location SFF00
extending to memory location SFFFF.

402

HC(S)08 / RS08 Assembler Manual

How to ...
How to initialize the Vector table

TheReset vector islocated in SFFFE, and the SWI interrupt vector islocated in SFFFC.
From $FFFA downto SFF00 are located the IRQ [0] interrupt (SFFFA), IRQ[1]
(SFFFA), ..., IRQ[125] ($FF00).

In the following examples, the Reset vector, the SWI interrupt and the IRQ [1]
interrupt areinitialized. The IRQ [0] interrupt is not used.

Initializing the Vector table in the linker
PRM file

Initializing the vector table from the PRM file allows you to initialize single entries in the
table. The user can decideto initialize al the entries in the vector table or not.

Thelabels or functions, which should be inserted in the vector table, must be implemented
in the assembly source file (Listing 13.10 on page 403). All these labels must be
published, otherwise they cannot be addressed in the linker PRM file.

Listing 13.10 Initializing the Vector table from a PRM File

DataSec:
Data:

CodeSec:

XDEF IRQ1Func, SWIFunc, ResetFunc

SECTION

DS.W 5 ; Each interrupt increments an element
; of the table.

SECTION

; Implementation of the interrupt functions.

IRQ1Func:

SWIFunc:

ResetFunc:

int:

LDA #0

BRA int

LDA #4

BRA int

LDA #8

BRA entry

PSHH

LDHX #Data ; Load address of symbol Data in X

; X <- address of the appropriate element in the tab

Ofset:

Ofset2:

TSTA
BEQ Ofset3

ATX #51
DECA

HC(S)08 / RS08 Assembler Manual 403

How to ...
How to initialize the Vector table

BNE Ofset2
Ofset3:
INC 0, X ; The table element 1is incremented
PULH
RTI
entry:
LDHX #S$SO0E00 ; Init Stack Pointer to SE00-$1=SDFF
TXS
CLRX
CLRH

CLI ; Enables interrupts

loop: BRA loop

NOTE The ‘IRQ1Func’, ‘SWIFunc’, and ‘ResetFunc’ functionsare
published. Thisisrequired, because they are referenced in the linker PRM file.

NOTE TheHCO8 processor automatically pushesthe PC, X, A, and CCR registers on
the stack on occurrence of an interrupt. The interrupt functions do not need to
save and restore those registers. To maintain compatibility with the M6805
Family, the H register is not stacked, it isthe user’s responsibility to save and
restore it prior to returning.

NOTE All Interrupt functions must be terminated with an RT T instruction

The vector tableisinitialized using the linker VECTOR ADDRESS command
(Listing 13.11 on page 404).

Listing 13.11 Using the VECTOR ADDRESS Linker Command

LINK test.abs

NAMES
test.o

END

SECTIONS
MY ROM = READ ONLY 0x0800 TO Ox08FF;
MY RAM = READ WRITE 0x0B0O0 TO OxOCFF;
MY STACK READ WRITE 0x0D00 TO OxODFF;

END

PLACEMENT

DEFAULT_.
DEFAULT_.

RAM
ROM

INTO MY_ RAM;
INTO MY_ ROM;

404

HC(S)08 / RS08 Assembler Manual

How to ...
How to initialize the Vector table

SSTACK

END

INTO MY STACK;

INIT ResetFunc

VECTOR ADDRESS 0xFFF8 IRQ1Func
VECTOR ADDRESS OxFFFC SWIFunc
VECTOR ADDRESS OxFFFE ResetFunc

Listing 13.12

NOTE Thestatement ‘INIT ResetFunc’ definesthe application entry point.
Usually, this entry point is initialized with the same address as the reset vector.

NOTE Thestatement ‘VECTOR ADDRESS O0xFFF8 IRQ1Func’ specifiesthat
the address of the * IRQ1Func’ function should be written at address
0xFFF8.

Initializing the Vector Table in a source file
using arelocatable section

Initializing the vector table in the assembly source file requires that al the entriesin the
table are initialized. Interrupts, which are not used, must be associated with a standard
handler.

The labels or functions that should be inserted in the vector table must be implemented in
the assembly source file or an external reference must be available for them. The vector
table can be defined in an assembly source filein an additional section containing constant
variables. See Listing 13.12 on page 405.

Initializing the Vector Table in source code with a relocatable section

DataSec:
Data:
CodeSec:

XDEF ResetFunc

XDEF IRQOInt

SECTION

DS.W 5 ; Each interrupt increments an element of the table.
SECTION

; Implementation of the interrupt functions.

IRQ1Func:

SWIFunc:

LDA #0
BRA int
LDA #4
BRA int

HC(S)08 / RS08 Assembler Manual 405

How to ...
How to initialize the Vector table

ResetFunc:
LDA #8
BRA entry
DummyFunc:
RTI
int:
PSHH
LDHX #Data ; Load address of symbol Data in X

; X <- address of the appropriate element in the tab
Ofset: TSTA

BEQ Ofset3
Ofset2:
AIX #51
DECA
BNE Ofset2
Ofset3:
INC 0, X ; The table element is incremented
PULH
RTI
entry:
LDHX #S$SO0E00 ; Init Stack Pointer to $E00-$1=$DFF
TXS
CLRX
CLRH

CLI ; Enables interrupts
loop: BRA loop

VectorTable: SECTION

; Definition of the vector table.
IRQ1Int: DC.W IRQlFunc

IRQOInt: DC.W DummyFunc

SWIInt: DC.W SWIFunc

ResetInt: DC.W ResetFunc

NOTE Eachconstantinthe ‘VectorTable’ section isdefined asaword (a2-byte
constant), because the entries in the vector table are 16 bits wide.

NOTE In the previous example, the constant * TRQ1Int’ isinitialized with the
address of the label * IRQ1Func’. Theconstant * IRQ0Int’ isinitialized

406 HC(S)08 / RS08 Assembler Manual

How to ...
How to initialize the Vector table

with the address of thelabel *Dummy Func'’ becausethisinterrupt isnot in
use.

NOTE All thelabels specified asinitialization value must be defined, published (using
XDEF) or imported (using XREF) before the vector table section. No forward
referenceis alowed in the DC directive.

NOTE Theconstant *IRQOInt’ isexported so that the section containing the vector
table is linked with the application.

The section should now be placed at the expected address. Thisis performed in the linker
parameter file (Listing 13.13 on page 407).

Listing 13.13 Example linker parameter file

LINK test.abs
NAMES
test.o+
END
ENTRIES
IRQOInt
END
SECTIONS
MY ROM READ ONLY 0x0800 TO Ox08FF;
MY RAM = READ WRITE 0x0B00 TO OxOCFF;
MY STACK = READ WRITE 0x0D00 TO OxODFF;
/* Define the memory range for the vector table */

Vector = READ ONLY OxFFF8 TO OXFFFF;
END
PLACEMENT
DEFAULT_RAM INTO MY_ RAM;
DEFAULT_ ROM INTO MY ROM;
SSTACK INTO MY STACK;

/* Place the section 'VectorTable' at the appropriated address. */
VectorTable INTO Vector;

END

INIT ResetFunc

NOTE Thestatement ‘Vector = READ ONLY OxFFF8 TO OxFFFF' defines
the memory range for the vector table.

HC(S)08 / RS08 Assembler Manual 407

How to ...
How to initialize the Vector table

NOTE Thestatement ‘VectorTable INTO Vector’ specifiesthat the vector
table should be loaded in the read only memory areavVector. Thismeans, the
constant * IRQ1Int’ will be allocated at address 0xFFF8, the constant

‘IRQOInt’ will bealocated at address 0xFFFA, the constant * SWIInt’
will be allocated at address 0xFFFC, and the constant *ResetInt’ will be
allocated at address 0xFFFE.

NOTE The'+ after the object file name switches smart linking off. If this statement is
missing inthe PRM file, the vector table will not be linked with the application,
because it is never referenced. The smart linker only links the referenced
objects in the absolute file.

Initializing the Vector Table in a source file
using an absolute section

Initializing the vector table in the assembly source file requires that all the entriesin the
table are initialized. Interrupts, which are not used, must be associated with a standard
handler.

The labels or functions, which should be inserted in the vector table must be implemented
in the assembly source file or an external reference must be available for them. The vector
table can be defined in an assembly source filein an additional section containing constant
variables. See Listing 13.14 on page 408 for an example.

Listing 13.14 Initializing the Vector Table using an absolute section

XDEF ResetFunc
DataSec: SECTION
Data: DS.W 5 ; Each interrupt increments an element of the table.
CodeSec: SECTION
; Implementation of the interrupt functions.

IRQ1Func:

LDA #0

BRA int
SWIFunc:

LDA #4

BRA int
ResetFunc:

LDA #8

BRA entry
DummyFunc:

RTI

408 HC(S)08 / RS08 Assembler Manual

How to ...
How to initialize the Vector table

int:
PSHH
LDHX #Data ; Load address of symbol Data in X
; X <- address of the appropriate element in the tab
Ofset: TSTA
BEQ Ofset3
Ofset2:
AIX #S1
DECA
BNE Ofset2
Ofset3:
INC 0, X ; The table element 1is incremented
PULH
RTI
entry:
LDHX #S$SO0E00 ; Init Stack Pointer to SE00-$1=SDFF
TXS
CLRX
CLRH
CLI ; Enables interrupts

loop: BRA loop

ORG SFFF8
; Definition of the vector table in an absolute section
; starting at address SFFF8.
IRQ1Int: DC.W IRQ1Func
IRQOInt: DC.W DummyFunc
SWIInt: DC.W SWIFunc
ResetInt: DC.W ResetFunc

The section should now be placed at the expected address. Thisis performed in the linker
parameter file (Listing 13.15 on page 409).

Listing 13.15 Example linker parameter file for Listing 13.14 on page 408:

LINK test.abs

NAMES
test.o+

END

SECTIONS
MY ROM READ ONLY 0x0800 TO OxO08FF;
MY RAM READ WRITE 0x0B00 TO OxOCFF;
MY STACK = READ WRITE 0x0D00 TO OxODFF;

END

PLACEMENT

HC(S)08 / RS08 Assembler Manual 409

How to ...
Splitting an application into different modules

DEFAULT_ RAM INTO MY RAM;

DEFAULT_ROM INTO MY_ ROM;

SSTACK INTO MY STACK;
END

INIT ResetFunc

NOTE The '+ after the object file name switches smart linking off. If this statement
ismissing in the PRM file, the vector table will not be linked with the
application, because it is never referenced. The smart linker only links the
referenced objects in the absolute file.

Splitting an application into different
modules

Complex application or application involving several programmers can be split into
several simple modules. In order to avoid any problem when merging the different
modules, the following rules must be followed.

For each assembly sourcefile, one include file must be created containing the definition of
the symbols exported from this module. For the symbols referring to code label, a small
description of the interface is required.

Example of an Assembly File (Testl.asm)

See Listing 13.16 on page 410 for an example Test1 . asmincludefile.

Listing 13.16 Separating Code into Modules — Testl.asm

XDEF AddSource
XDEF Source

DataSec: SECTION
Source: DS.W 1
CodeSec: SECTION
AddSource:
RSP
ADD Source
STA Source
RTS

410 HC(S)08 / RS08 Assembler Manual

How to ...
Splitting an application into different modules

Corresponding include file (Testl.inc)
See Listing 13.17 on page 411 for an example Test1 . inc includefile.

Listing 13.17 Separating Code into Modules — Testl.inc

XREF AddSource
; The AddSource function adds the value stored in the variable
; Source to the contents of the A register. The result of the
; computation is stored in the Source variable.

; Input Parameter: The A register contains the value that should be
; added to the Source variable.
; Output Parameter: Source contains the result of the addition.

XREF Source
; The Source variable is a 1l-byte variable.

Example of an assembly File (Test2.asm)

Listing 13.18 on page 411 is another assembly code file module for this project.

Listing 13.18 Separating Code into Modules—Test2.asm

XDEF entry
INCLUDE "Testl.inc"

CodeSec: SECTION
entry: RSP
LDA #S7
JSR AddSource
BRA entry

Theapplication's * . prm file should list both object files building the application. When
asection is present in the different object files, the object file sections are concatenated
into asingle absolute file section. The different object file sections are concatenated in the
order the object files are specified in the * . prm file.

HC(S)08 / RS08 Assembler Manual 411

How to ...
Using the direct addressing mode to access symbols

Example of a PRM file (Test2.prm)

Listing 13.19 Separating assembly code into modules—Test2.prm

LINK test2.abs /* Name of the executable file generated. */
NAMES

testl.o

test2.0 / *Name of the object files building the application. */
END

SECTIONS
MY ROM = READ ONLY 0x2B00 TO Ox2BFF; /* READ ONLY mem. */
MY RAM = READ WRITE 0x2800 TO Ox28FF; /* READ WRITE mem. */
END
PLACEMENT
/* variables are allocated in MY RAM */
DataSec, DEFAULT RAM INTO MY RAM;

/* code and constants are allocated in MY ROM */

CodeSec, ConstSec, DEFAULT ROM INTO MY ROM;
END
INIT entry /* Definition of the application entry point. */
VECTOR ADDRESS OxFFFE entry /* Definition of the reset vector. */

NOTE The ‘CodeSec’ sectionisdefined in both object files. In *test1.0’, the
‘CodeSec’ section contains the symbol *AddSource’.In ‘test2.0’,
the * CodeSec’ section containsthe ‘entry’ symbol. According to the
order in which the object files are listed in the NAMES block, the function
‘AddSource’ isalocatedfirst andthe *entry’ symbol isallocated next to
it.

Using the direct addressing mode to access
symbols

There are different ways for the Assembler to use the direct addressing mode on a symbol:
« “Using the direct addressing mode to access external symbols’ on page 413,
¢ “Using the direct addressing mode to access exported symbols’ on page 413,
* “Defining symbolsin the direct page” on page 413,
e “Using the force operator” on page 414, or

412 HC(S)08 / RS08 Assembler Manual

How to ...
Using the direct addressing mode to access symbols

¢ “Using SHORT sections’ on page 414.

Using the direct addressing mode to
access external symbols

External symbols, which should be accessed using the direct addressing mode, must be
declared using the XREF . B directive. Symbols which are imported using XREF are
accessed using the extended addressing mode.

Listing 13.20 Using direct addressing to access external symbols

XREF.B ExternalDirLabel
XREF ExternalExtLabel

LDA ExternalDirLabel ; Direct addressing mode is used.

LDA ExternalExtLabel ; Extended addressing mode is used.

Using the direct addressing mode to
access exported symbols

Symbols, which are exported using the XDEF . B directive, will be accessed using the
direct addressing mode. Symbols which are exported using XDEF are accessed using the
extended addressing mode.

Listing 13.21 Using direct addressing to access exported symbols

XDEF.B DirLabel
XDEF ExtLabel

LDA DirLabel ; Direct addressing mode is used.

LDA ExtLabel ; Extended addressing mode is used.

Defining symbols in the direct page

Symbolsthat are defined in the predefined BSCT section are aways accessed using the
direct-addressing mode (Listing 13.22 on page 414).

HC(S)08 / RS08 Assembler Manual 413

How to ...

Using the direct addressing mode to access symbols

Listing 13.22 Defining symbols in the direct page

DirLabel:
dataSec:
ExtLabel:

codeSec:

BSCT

DS.B 3
SECTION
DS.B 5
SECTION

LDA DirLabel ; Direct addressing mode is used.

LDA ExtLabel ; Extended addressing mode is used.

Using the force operator

A force operator can be specified in an assembly instruction to force direct or extended
addressing mode (Listing 13.23 on page 414).

The supported force operators are:

e < or.Btoforcedirect addressing mode
e > or .Wtoforce extended addressing mode.

Listing 13.23 Using a force operator

dataSec:

SECTION
label: DS.B 5
codeSec: SECTION
LDA <label ; Direct addressing mode is used.
LDA label.B ; Direct addressing mode is used.
LDA >label ; Extended addressing mode is used.
LDA label . W ; Extended addressing mode is used.
Using SHORT sections
Symbols that are defined in a section defined with the SHORT qualifier are always
accessed using the direct addressing mode (Listing 13.24 on page 415).
414 HC(S)08 / RS08 Assembler Manual

How to ...
Using the direct addressing mode to access symbols

Listing 13.24 Using SHORT sections

shortSec: SECTION SHORT
DirLabel: DS.B 3
dataSec: SECTION
ExtLabel: DS.B 5
codeSec: SECTION

LDA DirLabel ; Direct addressing mode is used.

LDA ExtLabel ; Extended addressing mode is used.

HC(S)08 / RS08 Assembler Manual 415

How to ...
Using the direct addressing mode to access symbols

416 HC(S)08 / RS08 Assembler Manual

Appendices

This document has the following appendices:
« “Global Configuration File Entries’ on page 419
¢ “| ocal Configuration File Entries’ on page 429

* “MASM Compatibility” on page 441
e “MCUasm Compatibility” on page 445

HC(S)08 / RS08 Assembler Manual 417

418 HC(S)08 / RS08 Assembler Manual

Global Configuration File
Entries

This appendix documents the sections and entries that can appear in the global
configuration file. Thisfileisnamed mcutools. ini.

mcutools.ini can contain these sections:
* [Installation] Section on page 420
* [Options] Section on page 421
e [XXX_Assembler] Section on page 422
¢ [Editor] Section on page 425

HC(S)08 / RS08 Assembler Manual 419

Global Configuration File Entries
[Installation] Section

[Installation] Section

Path
Arguments
Last installation path.
Description
Whenever atool isinstalled, the installation script stores the installation
destination directory into this variable.
Example
Path=C:\install
Group

Arguments
Last installation program group.

Description
Whenever atool isinstalled, the installation script stores the installation program
group created into this variable.

Example
Group=Assembler

420 HC(S)08 / RS08 Assembler Manual

Global Configuration File Entries
[Options] Section

[Options] Section

DefaultDir

Arguments
Default directory to be used.

Description

Specifies the current directory for al tools on aglobal level. See also
DEFAULTDIR: Default current directory environment variable.

Example
DefaultDir=C:\install\project

HC(S)08 / RS08 Assembler Manual 421

Global Configuration File Entries
[XXX_Assembler] Section

[XXX _Assembler] Section

This section documents the entries that can appear in an [XXX Assembler] section of
themcutools.ini file

NOTE XXXisaplaceholder for the name of the name of the particular Assembler you
are using. For example, if you are using the HC08 Assembler, the name of this
section would be [HC08_Assembler].

SaveOnExit

Arguments
1/0

Description

1if the configuration should be stored when the Assembler is closed, O if it should
not be stored. The Assembler does not ask to store a configuration in either cases.

SaveAppearance

Arguments
1/0

Description

1if the visible topics should be stored when writing a project file, 0 if not. The
command line, its history, the windows position and other topics belong to this
entry.

This entry corresponds to the state of the Appearance check box in the

Save Configuration dialog box.

422 HC(S)08 / RS08 Assembler Manual

Global Configuration File Entries
[XXX_Assembler] Section

SaveEditor

Arguments
1/0

Description

If the editor settings should be stored when writing a project file, O if not. The
editor setting contain all information of the Editor Configuration dial og box.
Thisentry corresponds to the state of the check box Editor Configuration in the

Save Configuration dialog box.

SaveOptions

Arguments
1/0

Description
1if the options should be contained when writing a project file, 0 if not.

Thisentry corresponds to the state of the Options check box in the
Save Configuration dialog box.

RecentProject0, RecentProjectl, ...

Arguments
Names of the last and prior project files

HC(S)08 / RS08 Assembler Manual 423

Global Configuration File Entries
[XXX_Assembler] Section

Description

Thislist is updated when a project isloaded or saved. Its current content is shown
in the file menu.

Example

SaveOnExit=1

SaveAppearance=1

SaveEditor=1

SaveOptions=1
RecentProject0=C:\myprj\project.ini
RecentProjectl=C:\otherprj\project.ini

424 HC(S)08 / RS08 Assembler Manual

Global Configuration File Entries
[Editor] Section

[Editor] Section

Editor_Name

Arguments
The name of the global editor

Description

Specifies the name of the editor used as global editor. This entry hasonly a
descriptive effect. Its content is not used to start the editor.

Saved
Only with Editor Configuration set in the File > Configuration Save Configuration
dialog box.

Editor_Exe

Arguments
The name of the executable file of the global editor (including path).

Description
Specifies the filename which is started to edit atext file, when the global editor
setting is active.

Saved

Only with Editor Configuration set in the File > Configuration Save Configuration
dialog box.

HC(S)08 / RS08 Assembler Manual 425

Global Configuration File Entries
[Editor] Section

Editor_Opts

Arguments
The options to use with the global editor

Description
Specifies options (arguments), which should be used when starting the global
editor. If thisentry is not present or empty, “%£” isused. The command lineto
launch the editor is built by taking theEditor Exe content, then appending a
space followed by the content of this entry.

Saved
Only with Editor Configuration set in the File > Configuration Save Configuration
dialog box.

Example
[Editor]

editor name=IDF
editor exe=C:\Freescale\prog\idf.exe
editor opts=%f -g%l,%c

426 HC(S)08 / RS08 Assembler Manual

Global Configuration File Entries

Example

Example

Listing A.1 on page 427 shows atypical mcutools. ini file.

Listing A.1 Typical mcutools.ini file layout

[Installation]
Path=c:\Freescale
Group=Assembler

[Editor]

editor name=IDF

editor exe=C:\Freescale\prog\idf.exe
editor opts=%f -g%l,%c

[Options]
DefaultDir=c: \myprj

[HC08 Assembler]

SaveOnExit=1

SaveAppearance=1

SaveEditor=1

SaveOptions=1
RecentProjectO=c:\myprj\project.ini
RecentProjectl=c:\otherprj\project.ini

HC(S)08 / RS08 Assembler Manual

427

Global Configuration File Entries
Example

428 HC(S)08 / RS08 Assembler Manual

Local Configuration File
Entries

This appendix documents the sections and entries that can appear in the local

configuration file. Usually, you namethisfile project.ini, where project isa
placehol der for the name of your project.

A project. ini file can contains these sections:
¢ [Editor] Section on page 430
o [XXX_Assembler] Section on page 432

« Example on page 439

HC(S)08 / RS08 Assembler Manual 429

Local Configuration File Entries
[Editor] Section

[Editor] Section

Editor_Name

Arguments
The name of the local editor

Description

Specifies the name of the editor used aslocal editor. This entry hasonly a
description effect. Its content is not used to start the editor.

This entry has the same format as for the global editor configuration in the
mcutools. ini file.

Saved

Only with *Editor Configuration’ setintheFile> Configuration> Save
Configuration dialog box.

Editor_Exe

Arguments
The name of the executable file of the local editor (including path).

Description
Specifiesthe filename with is started to edit atext file, when thelocal editor setting
isactive. In the editor configuration dialog box, the local editor selection is only
active when this entry is present and not empty.
This entry has the same format as for the global editor configuration in the
mcutools. ini file

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration dialog box.

430 HC(S)08 / RS08 Assembler Manual

Local Configuration File Entries
[Editor] Section

Editor_Opts

Arguments
The options to use with the local editor

Description
Specifies options (arguments), which should be used when starting the local editor.
If thisentry is not present or empty, “%£” isused. The command line to launch the
editor is build by taking the Editor_Exe content, then appending a space followed
by the content of this entry.
This entry has the same format as for the global editor configuration in the
mcutools.ini file

Saved
Only with Editor Configuration set in the File > Configuration > Save
Configuration dialog box.

Example

[Editor]

editor name=IDF

editor exe=C:\Freescale\prog\idf.exe
editor opts=%f -g%l,%c

HC(S)08 / RS08 Assembler Manual 431

Local Configuration File Entries
[XXX_Assembler] Section

[XXX_Assembler] Section

This section documents the entries that can appear in an [XXX Assembler] section of
aproject.ini file

NOTE xxXisaplaceholder for the name of the name of the particular Assembler you
are using. For example, if you are using the HC08 Assembler, the name of this
section would be [HC08_ Assembler].

RecentCommandLineX, X=integer

Arguments

String with a command line history entry, e.g., fibo.asm

Description
Thislist of entries contains the content of the command line history.

Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

CurrentCommandLine

Arguments

String with the command line, eg., *fibo.asm -wl”

Description

The currently visible command line content.

Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

432 HC(S)08 / RS08 Assembler Manual

Local Configuration File Entries
[XXX_Assembler] Section

StatusbarEnabled

Arguments
1/0

Special
Thisentry isonly considered at startup. Later load operations do not use it any
more.
Description
Current statusbar state.
o 1: Statusbar isvisible
e 0: Statusbar is hidden

Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

ToolbarEnabled

Arguments
1/0

Special
Thisentry isonly considered at startup. Afterwards, any load operations do not use
it any longer.
Description
Current toolbar state:
e 1: Toolbar isvisible
e 0: Toolbar is hidden

HC(S)08 / RS08 Assembler Manual 433

Local Configuration File Entries
[XXX_Assembler] Section

Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

WindowPos

Arguments
10integers, eg.,“0,1,-1,-1,-1,-1,390,107,1103, 643"

Special

Thisentry isonly considered at startup. Afterwards, any load operations do not use
it any longer.

Changes of this entry do not show the “** in thetitle.

Description
This numbers contain the position and the state of the window (maximized,..) and
other flags.

Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

WindowFont

Arguments
size: =0->generic size, < 0 ->font character height, > 0 -> font cell height
weight: 400 = normal, 700 = bold (valid values are 0..1000)
italic:0=no,1=yes
font name: max. 32 characters.

Description
Font attributes.

434 HC(S)08 / RS08 Assembler Manual

Local Configuration File Entries
[XXX_Assembler] Section

Saved
Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

Example

WindowFont=-16,500, 0, Courier

TipFilePos

Arguments
any integer, e.g., 236

Description
Actual position in tip of the day file. Used that different tips are shown at different
cals.

Saved
Always when saving a configuration file.

ShowTipOfDay

Arguments
0/1

Description
Should the Tip of the Day dialog box be shown at startup?
e 1: It should be shown
¢ 0: No, only when opened in the help menu

Saved
Always when saving a configuration file.

HC(S)08 / RS08 Assembler Manual 435

Local Configuration File Entries
[XXX_Assembler] Section

Options

Arguments

current option string, e.g.: -w2

Description

The currently active option string. This entry can be very long.

Saved

Only with Options set in the File > Configuration > Save Configuration dialog
box.

EditorType

Arguments
0/1/2/3/4

Description
This entry specifies which editor configuration is active:
¢ 0: global editor configuration (inthe filemcutools. ini)
e 1: local editor configuration (the one in thisfile)
¢ 2: command line editor configuration, entry EditorCommandLine
« 3: DDE editor configuration, entries beginning with EditorDDE
e 4: CodeWarrior with COM. There are no additional entries.
For details, see aso Editor Setting dialog box.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration dialog box.

436 HC(S)08 / RS08 Assembler Manual

Local Configuration File Entries
[XXX_Assembler] Section

EditorCommandLine

Arguments

Command ling, for UltraEdit-32: “c:\Programs Files\IDM
Software Solutions\UltraEdit-32\uedit32.exe %f -g%1,%c”

Description

Command line content to open afile. For details, see also Editor Setting dialog
box.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration dialog box.

EditorDDECIlientName

Arguments
client command, e.g., * [open ($£) 1"

Description
Name of the client for DDE editor configuration. For details, see also Editor
Setting dialog box.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration dialog box.

EditorDDETopicName

Arguments

topic name, e.g., “ system”

HC(S)08 / RS08 Assembler Manual 437

Local Configuration File Entries
[XXX_Assembler] Section

Description
Name of the topic for DDE editor configuration. For details, see also Editor Setting
dialog box.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration dialog box.

EditorDDEServiceName

Arguments

service name, e.g., “system”

Description
Name of the service for DDE editor configuration. For details, see also Editor
Setting dialog box.

Saved

Only with Editor Configuration set in the File > Configuration > Save
Configuration dialog box.

438 HC(S)08 / RS08 Assembler Manual

Local Configuration File Entries
Example

Example

The examplein Listing B.1 on page 439 shows atypical layout of the configuration file
(usualy project.ini).

Listing B.1 Example of a project.ini file

[Editor]

Editor Name=IDF

Editor Exe=c:\Freescale\prog\idf.exe
Editor Opts=%f -g%l,%c

[HC08 Assembler]

StatusbarEnabled=1

ToolbarEnabled=1
WindowPos=0,1,-1,-1,-1,-1,390,107,1103,643
WindowFont=-16,500, 0, Courier

TipFilePos=0

ShowTipOfDay=1

Options=-wl

EditorType=3

RecentCommandLineO=fibo.asm -w2
RecentCommandLinel=fibo.asm
CurrentCommandLine=fibo.asm -w2
EditorDDEClientName= [open (%$f)]
EditorDDETopicName=system
EditorDDEServiceName=mgdev
EditorCommandLine=c:\Freescale\prog\idf.exe %f -g%l, %c

HC(S)08 / RS08 Assembler Manual 439

Local Configuration File Entries
Example

440 HC(S)08 / RS08 Assembler Manual

C

MASM Compatibility

The Macro Assembler has been extended to ensure compatibility with the MASM
Assembler.

Comment Line

A line starting with a (*) character is considered to be acomment line by the Assembler.

Constants (Integers)

For compatibility with the MASM Assembler, the following notations are also supported
for integer constants:

A decimal constant is defined by a sequence of decimal digits (0-9) followed by a
‘d’ or ‘D’ character.

A hexadecimal constant is defined by a sequence of hexadecimal digits(0-9, a-£,

A-F)followedby a ‘*h’ or ‘*H’ character.

An octal constant is defined by a sequence of octal digits (0 - 7) followed by an
‘o’, 0", *g’,0r *Q’ character.

A binary constant is defined by a sequence of binary digits (0-1) followed by a
‘b’ or ‘B’ character.

Listing C.1 Example

512d ;
512D ;
200h ;
200H ;
10000 ;
10000 ;
1000qg ;
1000Q ;
1000000000b ;
1000000000B ;

decimal representation
decimal representation
hexadecimal representation
hexadecimal representation
octal representation

octal representation

octal representation

octal representation
binary representation
binary representation

HC(S)08 / RS08 Assembler Manual 441

MASM Compatibility
Operators

Operators

For compatibility with the MASM Assembler, the following notationsin Table C.1 on
page 442 are also supported for operators.

Table C.1 Operator notation for MASM compatibility

Operator Notation

Shift left I<

Shift right >

Arithmetic AND .

Arithmetic OR I+

Arithmetic XOR Ix, IX
Directives

Table C.2 on page 442 enumerates the directives that are supported by the Macro
Assembler for compatibility with MASM

Table C.2 Supported MASM directives

Operator Notation Description

RMB DS Define storage for a variable. Argument
specifies the byte size

RMD DS 2* Define storage for a variable. Argument
specifies the number of 2-byte blocks

RMQ DS 4* Define storage for a variable. Argument
specifies the number of 4-byte blocks

ELSEC ELSE Alternate of conditional block

ENDC ENDIF End of conditional block

NOL NOLIST Specify that all subsequent instructions must

not be inserted in the listing file.

TTL TITLE Define the user defined title for the
assembler listing file.

442 HC(S)08 / RS08 Assembler Manual

MASM Compatibility

Operators
Table C.2 Supported MASM directives
Operator Notation Description
GLOBAL XDEF Make a symbol public (Visible from outside)
PUBLIC XDEF Make a symbol public (Visible from outside)
EXTERNAL XREF Import reference to an external symbol.
XREFB XREF.B Import reference to an external symbol
located on the direct page.
SWITCH Allows the switching to a section which has
been defined previously.
ASCT Creates a predefined section which name id
ASCT.
BSCT Creates a predefined section which name id

BSCT. Variable defined in this section are
accessed using the direct addressing mode.

CSCT Creates a predefined section which name id
CSCT.

DSCT Creates a predefined section which name id
DSCT.

IDSCT Creates a predefined section which name id
IDSCT.

IPSCT Creates a predefined section which name id
IPSCT.

PSCT Creates a predefined section which name id
PSCT.

HC(S)08 / RS08 Assembler Manual 443

MASM Compatibility
Operators

444 HC(S)08 / RS08 Assembler Manual

D
MCUasm Compatibility

The Macro Assembler has been extended to ensure compatibility with the MCUasm
Assembler.

MCUasm compatibility mode can be activated, specifying the -MCUasm option.
This chapter covres the following topics:

e “Labels’ on page 445

o “SET directive” on page 445

¢ “Obsolete directives’ on page 446

Labels

When M CUasm compatibility modeis activated, labels must be followed by acolon, even
when they start on column 1.

When M CUasm compatibility mode is activated, following portion of code generate an
error message, because the label ‘label’ is not followed by a colon.

Listing D.1 Example

label DC.B 1

When MCUasm compatibility mode is not activated, the previous portion of code does not
generate any error message.

SET directive

When MCUasm compatibility mode is activated, rel ocatable expressions are also alowed
inaSET directive.

When MCUasm compatibility mode is activated, the following portion of code does not
generate any error messages:

HC(S)08 / RS08 Assembler Manual 445

MCUasm Compatibility

Obsolete directives

Listing D.2 Example

label:

SET *

When MCUasm compatibility mode is not activated, the previous portion of code
generates an error message because the SET label can only refer to absolute expressions.

Obsolete directives

Table D.1 on page 446 enumerates the directives, which are not recognized any |onger
when the MCUasm compatibility mode is switched ON.:

Table D.1 Obsolete directives

Operator Notation Description

RMB DS Define storage for a variable

NOL NOLIST Specify that all subsequent instructions must not
be inserted in the listing file.

TTL TITLE Define the user-defined title for the assembler
listing file.

GLOBAL XDEF Make a symbol public (Visible from the outside)

PUBLIC XDEF Make a symbol public (Visible from the outside)

EXTERNAL XREF Import reference to an external symbol.

446

HC(S)08 / RS08 Assembler Manual

Index

Symbols

$() 117

${} 117
%(ENV) 146
%" 146

%' 146

%E 146

%e 146

%f 146

%N 145

%n 146

%p 145

* 204

.abs 138

.asm 137
.dbg 139
.hidefaults 115, 116
.inc 137

ini 94

st 139

.0 138

.s1 138

.s2 138

.s3 138

.SX 138
{Compiler} 117
{Project} 117
{System} 117

A
A2309

File not found 61
About... dialog box 110
ABSENTRY 84, 300
absolute assembly 86, 838
Absolute Expression 294, 295
Absolute Section 242, 247
ABSPATH 104, 122, 138

Add Additional Files dialog box 22
Add Filesdialog box 34, 42
Addressing Mod 265
Addressing Mode

Direct 276

Extended 276

Immediate 276

Indexed, 8-bit offset 266

Indexed, 8-hit offset with post-

increment 266

Indexed, no offset 266, 276

Inherent 276

Memory to memory direct to direct 266

Memory to memory indexed to direct with

post-increment 266

Relative 276

Stack pointer, 16-bit offset 266

Stack pointer, 8-bit offset 266
Addressing Modes 265, 276
ALIGN 306, 323, 340
ASMOPTIONS 123
Assembler

Configuration 94

Input File 110, 137

Menu 95

Messages 106

Option 105

Options Setting Dialog 105

Output Files 137

Status Bar 93
Assembler for HCO8 preference panel 38, 84
Assembler Main Window 90
Assembler menu 95

B

-B 151

BASE 300, 307
-BL 151

HC(S)08 / RS08 Assembler Manual

447

C
-C 159
-Ci 152
CLIST 301
-CMacAngBrack 154
-CMacBrackets 155
CODE 145, 193
Code Section 241
CodeWarrior 100
CodeWarrior project window 25
CodeWarrior with COM 100
color 212,213, 214, 215, 216
COM 100
COM Editor Configuration 101
Command-Line Editor configuration 99
-Compat 156
Complex Relocatable Expression 294
Constant
Binary 283, 441
Decimal 283, 441
Floating point 283
Hexadecimal 283, 441
Integer 283
Octal 283,441
String 283
Constant Section 241
COPYRIGHT 124
Create Group dialog box 41
CTRL-S 105
Current Directory 116, 125
CurrentCommandLine 432

D

-D 161

Data Section 242

DC 311

DCB 313

DDE Editor configuration 100
Debug File 139, 336

Default Directory 421
DEFAULTDIR 125,137
DefaultDir 421

Device and Connection dialog box 21

Directive 265

ABSENTRY 300
ALIGN 306, 323, 340
BASE 300, 307
CLIST 301

DC 311

DCB 313

DS 300, 314
ELSE 316

ELSEC 442

END 318

ENDC 442
ENDFOR 301, 319
ENDIF 302, 319, 320, 330
ENDM 302, 342
EQU 299, 322
EVEN 323
EXTERNAL 443, 446
FAIL 301, 325
FOR 329
GLOBAL 443, 446
IF 331, 333

IFC 302, 333
IFDEF 303, 334
IFEQ 303, 333
IFGE 303, 333
IFGT 303, 333
IFLE 303, 333
IFLT 303, 333
IFNC 303, 333
IFNDEF 303, 334
IFNE 303, 333
INCLUDE 335
LIST 301, 336
LLEN 338
LONGEVEN 301, 340
Macro 341
MEXIT 342
MLIST 345

NOL 442, 446
NOLIST 301, 348
NOPAGE 301, 350
OFFSET 351
ORG 353

HC(S)08 / RS08 Assembler Manual

448

PAGE 301, 355
PLEN 357
PUBLIC 443, 446
RAD50 300, 358
RMB 442, 446
Section 299, 361
SET 363
SPC 364
TABS 365
TITLE 366
TTL 442,446
XDEF 367
XREF 282, 300, 368
XREFB 300, 369, 443
Drag and Drop 111
DS 300, 314

E
Editor 430
Editor Setting dialog bo 96
Editor_Exe 425, 430
Editor_Name 425, 430
Editor_Opts 426, 431
EditorCommandLine 437
EditorDDEClientName 437
EditorDDEServiceName 438
EditorDDETopicName 437
EditorType 436
EDOUT 139
ELSE 316
ELSEC 442
END 318
ENDC 442
ENDFOR 301, 319
ENDIF 302, 319, 320, 330
ENDM 302, 342
-ENV 163
ENVIRONMENT 126
Environment
ABSPATH 122,138
ASMOPTIONS 123
COPYRIGHT 124
DEFAULTDIR 125,137
ENVIRONMENT 126

Environment Configuration dialog bo 104

ENVIRONMENT 115, 116
ERRORFILE 127

File 115

GENPATH 130, 137, 335
HIENVIRONMENT 126
INCLUDETIME 131
OBJPATH 132, 138
TEXTPATH 134

TMP 135

Variable 115

Environment Variable 121

ABSPATH 138
SRECORD 138

Environment Variables 104, 115
EQU 299, 322

Error File 139

Error Listing 139

ERRORFILE 127

EVEN 323

Explorer 116

Expression 293

Absolute 294, 295
Complex Relocatable 294
Simple Relocatable 294, 296

EXTERNAL 443, 446
External Symbol 281

F

-F2 164

-F20 164
-FA2 164
-FA20 164
FAIL 301, 325
-Fh 164

File

Debug 139, 336
Environment 115

Error 139

Include 137

Listing 138, 139, 301, 336
Object 138

PRM 243, 245, 246
Source 137

HC(S)08 / RS08 Assembler Manual

File Manager 116

File menu 93

File menu options 94
Floating-Point Constant 283
FOR 329

G

GENPATH 63, 65, 104, 130, 137, 335
GENPATH environmental variable 66
GLOBAL 443, 446

Global Edito 96

Global Editor Configuration dialog box 97
Group 420

groups, CodeWarrior 29

GUI Graphic User Interface 89

H

-H 166

HC(S)08 New Project dialog box 20

HCO08 Assembler main window 91

HC08 Assembler Message Settings dialog
box 109

HC08 Assembler Option Settings dialog bo 55

HC08 Assembler Option Settings dialog box 39,
85

HIENVIRONMENT 126

HIGH 282

hiwave.ex 71

HOST 145

I

-1 167

IDF 116

IF 331,333
IFC 302, 333
IFDEF 303, 334
IFEQ 303, 333
IFGE 303, 333
IFGT 303,333
IFLE 303,333
IFLT 303,333
IFNC 303, 333
IFNDEF 303, 334

IFNE 303, 333
INCLUDE 335
Include Files 137
INCLUDETIME 131
Instruction 250
Integer Constant 283

L

-L 168

Label 250

LANGUAGE 145

-Lasmc 171

-Lasms 173

-Lc 175

-Ld 178

-Le 181

-Li 184

LIBPATH 104

-Lic 186, 188

-LicA 187

-Licwait 190

Line Continuation 120

Linker for HCO8 preference panel 69, 86
Linker main window 75

LIST 301, 336

Listing File 138, 139, 301, 336

-LI 191

LLEN 338

Load Executable File dialog box 79
Local Editor 97

Local editor configuration dialog box 98
LONGEVEN 301, 340

LOW 282

M

Macro 265, 341

-MacroNest 195

-MCUasm 196

MCUTOOLS.INI 125

Menu bar options 93

MESSAGE 145

Message classes 108

Message Settings 106

Message Settings dialog box 106, 107

HC(S)08 / RS08 Assembler Manual

450

Message Settings options 107

MEXIT 342

Microsoft Developer Studio configuration
settings 100

MLIST 345

Modifiers 101

-Ms 193, 384

-Mt 193

-Mx 384

N

-N 197

New Target dialog box 31
-NoBeep 198
-NoDebuginfo 199
-NoEnv 200

NOL 442, 446

NOLIST 301, 348
NOPAGE 301, 350

O

Object File 138

-ObjN 201

OBJPATH 104, 132,138

OFFSET 351

Operand 265, 276

Operator 283, 442
Addition 284, 293, 297
Arithmetic AND 442
Arithmetic Bit 297
Arithmetic OR 442
Arithmetic XOR 442
Bitwise 287
Bitwise (unary) 288
Bitwiss AND 294
Bitwise Exclusive OR 294
Bitwise OR 294
Division 285, 293, 297
Force 292
HIGH 282, 289, 290, 291
Logical 288
LOW 282, 290
Modulo 285, 293, 297
Multiplication 285, 293, 297

PAGE 292
Precedence 293
Relational 289, 294
Shift 286, 294, 297
Shift left 442
Shift right 442
Sign 285, 293, 297
Subtraction 284, 293, 297
Option
CODE 145, 193
HOST 145
LANGUAGE 145
MESSAGE 145
OUTPUT 145
VARIOUS 145
Option Settings dialog box 105
Option Settings options 106
Options 421, 436
ORG 353
OUTPUT 145

P

PAGE 301, 355

-PAlign 201

PATH 132

Path 420

Path environment variables 104
Path List 119

PLEN 357

-PR8R15 201

PRM File 243, 245, 246

PRM file 72

Processor Expert dialog box 23
-Prod 203

project.ini 119

PUBLIC 443, 446

R

RAD50 300, 358
RecentCommandLine 432
Relocatable Section 244
Rename Group dialog bo 43
Reserved Symbol 282
Reset vector 83

HC(S)08 / RS08 Assembler Manual

451

RGB 212, 213, 214, 215, 216
RMB 442, 446

S
Save Asdialog box 40
Save Configuration dialog box 102
SaveAppearance 422
SaveEditor 423
SaveOnExit 422
SaveOptions 423
Section 299, 361
Absolute 242, 247
Code 241
Constant 241
Data 242
Relocatable 244
Sections 241
Select File to Assemble dialog box 87
Select Fileto Link dialog box 74
Select filesto add... dialog box 33, 42
Select Filesto Assemble dialog box 59
SET 363
Set Connection dialog box 77,78
SHORT 362
ShowTipOfDay 435
Simple Relocatable Expression 294, 296
Simulator 80
Simulator/Debugger 71
Source File 137
SPC 364
Specia Modifiers 145
-ST 204
Starting 89
startup 119
Startup dialog box 19
Status Bar 93
StatusbarEnabled 433
String Constant 283
-Struct 204
Symbol 280
External 281
Reserved 282
Undefined 282
User Defined 280

T
TABS 365

TEXTPATH 104, 134

Tip of the Day 51, 89

Tip of the Day dialog box 90
TipFilePos 435

TITLE 366

TMP 135

Toolbar 92

ToolbarEnabled 433

True-Time Simulator & Real-Time Debugger 77

TTL 442, 446

U

Undefined Symbol 282
UNIX 116

User Defined Symbol 280

V
-V 205
Variable
Environment 115
VARIOUS 145
-View 206
View menu 95
View menu options 95

w

-W1 208

-W2 209
-WErrFile 210
WindowFont 434
WindowPos 434
Windows 116
WinEdit 116, 128
-Wmsg8x3 211
-WmsgCE 212
-WmsgCF 213
-WmsgCl 214
-WmsgCU 215
-WmsgCW 216
-WmsgFb 112
-WmsgFbiv 219

HC(S)08 / RS08 Assembler Manual

452

-WmsgFbm 217
-WmsgFbv 217
-WmsgFi 112, 211
-WmsgFim 219
-WmsgFob 221
-WmsgFoi 223
-WmsgFonp 218, 220, 222, 224, 226, 227, 228
-WmsgNe 229, 233
-WmsgNi 229, 230
-WmsgNu 231
-WmsgNw 229, 230, 233
-WmsgSd 234
-WmsgSe 235

-WmsgSi 236
-WmsgSw 237
-WOutFile 238
-WStdout 239

X

XDEF 367

XREF 282, 300, 368
XREFB 300, 369, 443

HC(S)08 / RS08 Assembler Manual

453

HC(S)08 / RS08 Assembler Manual 454

HC(S)08 / RS08 Assembler Manual 455

HC(S)08 / RS08 Assembler Manual 456

HC(S)08 / RS08 Assembler Manual 457

HC(S)08 / RS08 Assembler Manual 458

	Using the HC(S)08/RS08 Assembler
	Highlights
	Structure of this document
	Working with the Assembler
	Programming Overview
	Project directory
	External Editor

	Using CodeWarrior to manage an assembly language project
	The Wizard

	Analysis of groups and files in the project window
	CodeWarrior groups
	Creating a Target
	Generating Listing Files
	Renaming files
	Creating a new group
	Renaming groups in the project window

	Writing your assembly source files
	Analyzing the project files
	Assembling your source files
	Assembling with CodeWarrior
	Assembling with the Assembler

	Linking the application
	Linking with CodeWarrior
	Linking with the Linker

	Directly generating an ABS file
	Using CodeWarrior to generate an ABS file

	Assembler Graphical User Interface
	Starting the Assembler
	Assembler Main Window
	Window title
	Content area
	Toolbar
	Status bar
	Assembler menu bar
	File menu
	Assembler menu
	View menu

	Editor Setting dialog box
	Global Editor (shared by all tools and projects)
	Local Editor (shared by all tools)
	Editor started with the command line
	Editor started with DDE
	CodeWarrior with COM
	Modifiers

	Save Configuration dialog box
	Environment Configuration dialog box

	Option Settings dialog box
	Message settings dialog box
	Changing the class associated with a message

	About... dialog box
	Specifying the input file
	Use the command line in the toolbar to assemble
	Assembling a new file
	Assembling a file which has already been assembled
	Use the File > Assemble... entry
	Use Drag and Drop

	Message/Error feedback
	Use information from the assembler window
	Use a user-defined editor
	Line number can be specified on the command line
	Line number cannot be specified on the command line

	Environment
	Current directory
	Environment macros
	Global initialization file - mctools.ini (PC only)
	Local configuration file (usually project.ini)
	Line continuation
	Environment variables details
	ABSPATH: Absolute file path
	ASMOPTIONS: Default assembler options
	COPYRIGHT: Copyright entry in object file
	DEFAULTDIR: Default current directory
	ENVIRONMENT: Environment file specification
	ERRORFILE: Filename specification error
	GENPATH: Search path for input file
	INCLUDETIME: Creation time in the object file
	OBJPATH: Object file path
	SRECORD: S-Record type
	TEXTPATH: Text file path
	TMP: Temporary directory
	USERNAME: User Name in object file

	Files
	Input files
	Source files
	Include files

	Output files
	Object files
	Absolute files
	S-Record Files
	Listing files
	Debug listing files
	Error listing file

	File Processing

	Assembler Options
	Types of assembler options
	Assembler Option details
	Using special modifiers

	List of Assembler options
	Detailed listing of all assembler options
	-Ci: Switch case sensitivity on label names OFF
	CMacAngBrack: Angle brackets for grouping Macro Ar guments
	-CMacBrackets: Square brackets for macro arguments grouping
	-Compat: Compatibility modes
	CS08/-C08/-CRS08: Derivative family
	-D: Define Label
	-Env: Set environment variable
	-F (-Fh, -F2o, FA2o, F2, -FA2): Output-file format
	-H: Short Help
	-I: Include file path
	-L: Generate a listing file
	-Lasmc: Configure listing file
	-Lasms: Configure the address size in the listing file
	-Lc: No Macro call in listing file
	-Ld: No macro definition in listing file
	-Le: No Macro expansion in listing file
	-Li: No included file in listing file
	-Lic: License information
	-LicA: License information about every feature in directo ry
	-LicBorrow: Borrow license feature
	-LicWait: Wait until floating license is available from floating License Server
	-Ll: Show label statistics
	-M (-Ms, -Mt): Memory model
	-MacroNest: Configure maximum macro nesting
	-MCUasm: Switch compatibility with MCUasm ON
	-N: Display notify box
	-NoBeep: No beep in case of an error
	-NoDebugInfo: No debug information for ELF/DWARF files
	-NoEnv: Do not use environment
	-ObjN: Object filename specification
	-Prod: Specify project file at startup
	-Struct: Support for structured types
	-V: Prints the Assembler version
	View: Application standard occurrence
	-W1: No information messages
	-W2: No information and warning messages
	-WErrFile: Create "err.log" error file
	-Wmsg8x3: Cut filenames in Microsoft format to 8.3
	-WmsgCE: RGB color for error messages
	-WmsgCF: RGB color for fatal messages
	-WmsgCI: RGB color for information messages
	-WmsgCU: RGB color for user messages
	-WmsgCW: RGB color for warning messages
	-WmsgFb (-WmsgFbv, -WmsgFbm): Set message file for mat for batch mode
	WmsgFi (WmsgFiv, -WmsgFim): Set message file for mat for interactive mode
	-WmsgFob: Message format for batch mode
	-WmsgFoi: Message format for interactive mode
	WmsgFonf: Message format for no file information
	-WmsgFonp: Message format for no position information
	-WmsgNe: Number of error messages
	-WmsgNi: Number of Information messages
	-WmsgNu: Disable user messages
	-WmsgNw: Number of Warning messages
	-WmsgSd: Setting a message to disable
	-WmsgSe: Setting a message to Error
	-WmsgSi: Setting a message to Information
	-WmsgSw: Setting a Message to Warning
	-WOutFile: Create error listing file
	-WStdout: Write to standard output

	Sections
	Section attributes
	Code sections
	Constant sections
	Data sections

	Section types
	Absolute sections
	Relocatable sections

	Relocatable vs. absolute sections
	Modularity
	Multiple developers
	Early development
	Enhanced portability
	Tracking overlaps
	Reusability

	Assembler Syntax
	Comment line
	Source line
	Label field
	Operation field
	Operand field: Addressing modes (HC08 / HCS08)
	Operand Field: Addressing Modes (RS08)
	Comment Field

	Symbols
	User-defined symbols
	External symbols
	Undefined symbols
	Reserved symbols

	Constants
	Integer constants
	String constants
	Floating-Point constants

	Operators
	Addition and subtraction operators (binary)
	Multiplication, division and modulo operators (binary)
	Sign operators (unary)
	Shift operators (binary)
	Bitwise operators (binary)
	Bitwise operators (unary)
	Logical operators (unary)
	Relational operators (binary)
	HIGH operator
	HIGH_6_13 Operator
	LOW operator
	MAP_ADDR_6 Operator
	PAGE operator
	Force operator (unary)
	Operator precedence

	Expression
	Absolute expression
	Simple relocatable expression
	Unary operation result
	Binary operations result

	Translation limits

	Assembler Directives
	Directive overview
	Section-Definition directives
	Constant-Definition directives
	Data-Allocation directives
	Symbol-Linkage directives
	Assembly-Control directives
	Listing-File Control directives
	Macro Control directives
	Conditional Assembly directives

	Detailed descriptions of all assembler directives
	ABSENTRY - Application entry point
	ALIGN - Align Location Counter
	BASE - Set number base
	CLIST - List conditional assembly
	DC - Define Constant
	DCB - Define Constant Block
	DS - Define Space
	ELSE - Conditional assembly
	END - End assembly
	ENDFOR - End of FOR block
	ENDIF - End conditional assembly
	ENDM - End macro definition
	EQU - Equate symbol value
	EVEN - Force word alignment
	FAIL - Generate Error message
	FOR - Repeat assembly block
	IF - Conditional assembly
	IFcc - Conditional assembly
	INCLUDE - Include text from another file
	LIST - Enable Listing
	LLEN - Set Line Length
	LONGEVEN - Forcing Long-Word alignment
	MACRO - Begin macro definition
	MEXIT - Terminate Macro Expansion
	MLIST - List macro expansions
	NOLIST - Disable Listing
	NOPAGE - Disable Paging
	OFFSET - Create absolute symbols
	ORG - Set Location Counter
	PAGE - Insert Page break
	PLEN - Set Page Length
	RAD50 - Rad50-encoded string constants
	SECTION - Declare Relocatable Section
	SET - Set Symbol Value
	SPC - Insert Blank Lines
	TABS - Set Tab Length
	TITLE - Provide Listing Title
	XDEF - External Symbol Definition
	XREF - External Symbol Reference
	XREFB - External Reference for Symbols located on the Direct Page

	Macros
	Macro overview
	Defining a macro
	Calling macros
	Macro parameters
	Macro argument grouping

	Labels inside macros
	Macro expansion
	Nested macros

	Assembler Listing File
	Page header
	Source listing
	Abs.
	Rel.
	Loc
	Obj. code
	Source line

	Mixed C and Assembler Applications
	Memory models
	Parameter passing scheme
	Return Value
	Accessing assembly variables in an ANSI-C source file
	Accessing ANSI-C variables in an assembly source file
	Invoking an assembly function in an ANSIC source file
	Example of a C file

	Support for structured types
	Structured type definition
	Types allowed for structured type fields
	Variable definition
	Variable declaration
	Accessing a structured variable

	Structured type: Limitations

	Make Applications
	Assembly applications
	Directly generating an absolute file
	Mixed C and assembly applications

	Memory maps and segmentation

	How to ...
	How to work with absolute sections
	Defining absolute sections in an assembly source file
	Linking an application containing absolute sections

	How to work with relocatable sections
	Defining relocatable sections in a source file
	Linking an application containing relocatable sections

	How to initialize the Vector table
	Initializing the Vector table in the linker PRM file
	Initializing the Vector Table in a source file using a relocatable section
	Initializing the Vector Table in a source file using an absolute section

	Splitting an application into different modules
	Example of an Assembly File (Test1.asm)
	Corresponding include file (Test1.inc)
	Example of an assembly File (Test2.asm)

	Using the direct addressing mode to access symbols
	Using the direct addressing mode to access external symbols
	Using the direct addressing mode to access exported symbols
	Defining symbols in the direct page
	Using the force operator
	Using SHORT sections

	Appendices
	Global Configuration File Entries
	[Installation] Section
	Path
	Group

	[Options] Section
	DefaultDir

	[XXX_Assembler] Section
	SaveOnExit
	SaveAppearance
	SaveEditor
	SaveOptions
	RecentProject0, RecentProject1, ...

	[Editor] Section
	Editor_Name
	Editor_Exe
	Editor_Opts

	Example

	Local Configuration File Entries
	[Editor] Section
	Editor_Name
	Editor_Exe
	Editor_Opts

	[XXX_Assembler] Section
	RecentCommandLineX, X= integer
	CurrentCommandLine
	StatusbarEnabled
	ToolbarEnabled
	WindowPos
	WindowFont
	TipFilePos
	ShowTipOfDay
	Options
	EditorType
	EditorCommandLine
	EditorDDEClientName
	EditorDDETopicName
	EditorDDEServiceName

	Example

	MASM Compatibility
	Comment Line
	Constants (Integers)
	Operators
	Directives

	MCUasm Compatibility
	Labels
	SET directive
	Obsolete directives

	Index

