
Using Programmable Logic and the PALCE22V10

Programmable logic chips (like the PALCE22V10) provide a convenient solution for
glue logic and state machine control required by your design. A single PAL chip can
replace several MSI and SSI parts. It is strongly recommended (and even required) that
you use programmable logic devices wherever there is not an efficient use of available
MSI or SSI parts.

Programmable logic devices such as the PALCE22V10 allow the designer to enter a
description of the desired hardware (either as a schematic or using some form of
hardware description language) and the implement that logic using the hardware
resources built onto the chip. Chips like the PALCE22V10 have a dedicated number of
input pins with the remaining pins configurable as either outputs or more inputs. Details
on the PALCE22V10 structure, pin out, and other details may be found on the EE 459
website.

The PALCE22V10 chip structure provides one D-FF per output pin. The FF output can
connect to the output pin of the chip. In front of each FF is a set of AND-OR (sum of
products) logic gates. Different outputs can support different numbers of product terms
ranging from 8 to 16. (Remember in an equation like Y = AB + B’C, AB and B’C are
called product terms and they are OR’ed together to form a sum of products expression.)
This AND-OR structure can serve as the input to a D-FF or connect directly to an output
pin.

When using the PALCE22V10 you must describe the desired hardware configuration
using the hardware description language, CUPL. Using the CUPL language,
combinational logic can be described by simply writing a logic equation, describing it
using a function table, or even using conditional ‘if’ statements. State machines and
sequential logic can be described using equations or simple state transition descriptions.
A more complete discussion of CUPL can also be found on the EE 459 website.
However, we will try to highlight the structure that you will use the most in your design.

Much more information can be found on the EE 459 website and at the following
website: http://www.atmel.com/dyn/resources/prod_documents/DOC0737.PDF

Pin Declarations
The first section of your file should be the input and output pin declarations, though you
do not need to explicitly specify which pins are inputs or outputs. Remember that on the
PAL22CEV10 the clock is pin 1 and the rest of the pins 2-11 and 13 are dedicated inputs.
Pin 14 through 23 can be either inputs or outputs.

When declaring a pin the format should be:

Pin # = name;

Similarly, buses can be declared as shown in the following example:

Pin [2..5] = [cnt3..0];

Combinational Logic
After your pin declarations you may start describing your logic. CUPL provides several
different options for specifying combinational logic. To illustrate the different methods
of specifying combinational logic we will use a 2-to-1 mux as a test case.

Equations
Using equations forms you must find the logical relationship between inputs and output
on your own and then simply enter the equation into the CUPL file. For the 2-to-1 mux,
the output Y would have the following equation:

Y = (I0 & !S) # (I1 & S) (where & = AND, # = OR, ! = NOT)

Truth Table (Function table)
The truth table form of entry allows you to specify the output for specific input
combinations or ranges of input combinations. When specifying a 2-to-1 mux with a
truth table, realize that the output will only be true when I0 = 1 and S = 0 or I1 = 1 and S
= 1. (If you concatenate I0,I1,S to form a 3-bit number, the output should only be true for
combinations 100, 110, and 111 (4, 6, and 7).

FIELD muxin = [I0, I1, S]
TABLE muxin => Y {
‘b’000 => 0;
 1..3 => 0;
 4 => 1;
 5 => 0;
 6..7 => 1;
}

CONDITION statements
CONDITION statements use and “IF THEN ELSE” structure similar to software
programming languages to indicate when an output should be true. Again you need not
cover cases when an output is deasserted but only when an output should be true.

CONDITION {
IF I0 & !S out Y
IF I1 & S out Y
}

Checking Equality or Range
Often times you may want to check whether a set of bits is equal to a certain value or
within a certain range. For example if you have an 8-bit value CNT, you may want to
have logic to check if it is equal to a particular end value or within a certain range. This
can easily be accomplished in CUPL by use the ‘:’ operator.

end = [cnt7..0]:E0; /* checks if cnt = 1110 0000 (default
 base is hex) */

enable = [cnt7..0]:[1A..E0]; /* enable = 1 if cnt is in
 range 1A to E0 */

These styles of specifying combinational logic provide flexibility for different designs.
The equations form is probably best used for single-output functions with a small number
of terms. The truth table method can be used for multiple-bit inputs or outputs allowing
you to specify large ranges of values in a single case. Finally, condition statements can
be used well when there are multiple outputs that are asserted for only a few
combinations of the inputs.

Sequential Logic and State Machines
State machines can be specified using a SEQUENCE statement. A SEQUENCE
statement requires you to list the state variables and then simply specify transitions using
a PRESENT state to NEXT state structure. Mealy (asynchronous) or Moore
(synchronous) style outputs can also be specified in the statements.

Consider a simple “101” sequence detector of a serial input stream, X, and producing a
single Moore-style (synchronous) output, Z, when the sequence is found. A state
machine can be designed using the state diagram represented in the following state
transition table

Current State Next State Ouput
 X = 0 X = 1

St. Q1 Q0 St.* Q1* Q0* St.* Q1* Q0* Z
Sinit 0 0 Sinit 0 0 S1 0 1 0
S1 0 1 S10 1 0 S1 0 1 0
S10 1 0 Sinit 0 0 S101 1 1 0
S101 1 1 S10 1 0 S1 0 1 1

This state machine can be described with the following SEQUENCE statement:
$DEFINE Sinit ‘b’00
$DEFINE S1 ‘b’01
$DEFINE S10 ‘b’10
$DEFINE S101 ‘b’11

SEQUENCE Q1,Q0 {
 present Sinit
 if X next S1;
 default next Sinit;
 present S1
 if !X next S10;
 default next S1;
 present S10
 if X next S101;
 default next Sinit;
 present S101
 out Z;
 if X next S1;
 default next S10;
}

A Mealy style implementation can be achieved using the following state machine.

Current State Next State
 X = 0 X = 1

St. Q1 Q0 St.* Q1* Q0* Z St.* Q1* Q0* Z
Sinit 0 0 Sinit 0 0 0 S1 0 1 0
S1 0 1 S10 1 0 0 S1 0 1 0
S10 1 0 S1 0 1 0 Sinit 0 0 1

$DEFINE Sinit ‘b’00
$DEFINE S1 ‘b’01
$DEFINE S10 ‘b’10

SEQUENCE Q1,Q0 {
 present Sinit
 if X next S1;

 default next Sinit;
 present S1
 if !X next S10;
 default next S1;
 present S10
 if X next S1;
 if X out Z;
 default next Sinit;
}

These SEQUENCE descriptions will be converted to the necessary logic equations for the
flip-flop inputs and the outputs. One thing to note is that in the PALCE22V10 flip-flops
are associated with output pins and thus any state variable will use an output pin.

You can also specify the inputs of a D-FF directly and use the outputs as inputs to other
logic. We could have implemented the “101” sequence checker by simply using a shift
register as shown below:

Q0.D = X; /* Specifies the input of the Q0 D-FF to be X */
Q1.D = Q0;
Q2.D = Q1;
Z = Q2 & !Q1 & Q0;

Reset
Remember that whatever method you use to specify your sequential logic and state
machines that you should implement a reset so that you start in a known state. The
PALCE22V10 provides a common synchronous preset (SP) and asynchronous reset
(AR).

In the examples using the SEQUENCE statements above an initial state can be
implemented using the following lines of CUPL code:

Q0.AR = RESET;
Q0.SP = ‘b’0;
Q1.AR = RESET
Q1.SP = ‘b’0;

CUPL Example of State Machine and Combinational Logic
The following file (cupl_ex.pld) implements a state machine of left and right arrow
detour lights with 4 segments

LED3 LED2 LED1 LED0

It also implements combinational logic to check an 8-bit number if it is equal to 20
decimal.

Below is the contents of the CUPL.pld file:

Name cupl_ex ;
PartNo 01 ;
Date 1/24/2005 ;
Revision 01 ;
Designer Mark Redekopp ;
Company USC ;
Assembly None ;
Location None ;
Device g22v10 ;

/* inputs */
Pin 1 = CLK;
Pin 2 = reset;
Pin 3 = left;

Pin 4 = CNT0;
Pin 5 = CNT1;
Pin 6 = CNT2;
Pin 7 = CNT3;
Pin 8 = CNT4;
Pin 9 = CNT5;
Pin 10 = CNT6;
Pin 11 = CNT7;

/* outputs - notice we define these as active-low */
Pin 14 = !LED3; /* Left-most light segment */
Pin 15 = !LED2;
Pin 16 = !LED1;
Pin 17 = !LED0; /* Right-most light segment */

Pin 18 = start;

Field mystate = [LED3,LED2,LED1,LED0];

mystate.ar = reset;
mystate.sp = 'b'0;

/* Logic for the left/right arrows */
SEQUENCE mystate {
/* a 0 in the constants below mean "deasserted". Thus, since the LED signals are
declared active-low, the output will actually be a logic '1' */
 present 'b'0000
 if left next 'b'0010;
 default next 'b'0100;
 present 'b'0010
 default next 'b'0110;
 present 'b'0110
 if left next 'b'1110;
 default next 'b'0111;
 present 'b'1110
 default next 'b'0000;
 present 'b'0100
 default next 'b'0110;
 present 'b'0111
 default next 'b'0000;
}

field count = [CNT7,CNT6,CNT5,CNT4,CNT3,CNT2,CNT1,CNT0];

/* the : operator is an equality comparison test; start will be 1 when count = 20
decimal */
start = count:'d'20;

Test vector file, “cupl_ex.si”

Name cupl_ex;
PartNo 01;
Date 1/24/2005;
Revision 01;
Designer Mark Redekopp;
Company USC;
Assembly None;
Location None;
Device g22v10;

ORDER: CLK, CNT0, CNT1, CNT2, CNT3, CNT4, CNT5, CNT6, CNT7, !LED0, !LED1, !LED2,
!LED3, left, reset, start;

VECTORS:
C00101000****11*
C00101000****11*
C00100000****10*
C00111000****10*
C00001000****10*
C01101000****00*
C10101000****00*
C00101000****00*
C00101000****00*
C00101000****00*
C00101000****00*

