Smart Linker

/N

Revised 04/29/2003 metrowerks

Metrowerks, the Metrowerks logo, and CodeWarrior are registered trademarks of Metrowerks Corp. in the US and/or
other countries. All other tradenames and trademarks are the property of their respective owners.

Copyright © Metrowerks Corporation. 2003. ALL RIGHTS RESERVED.

Thereproduction and use of thisdocument and related materials are governed by a license agr eement media,
it may beprinted for non-commer cial personal useonly, in accordancewith thelicense agreement related tothe
product associated with the documentation. Consult that license agreement before use or reproduction of any
portion of this document. If you do not have a copy of the license agreement, contact your Metrowerksrepre-
sentativeor call 800-377-5416 (if outsidethe US call +1-512-996-5300). Subject to theforegoing non-commercial
personal use, no portion of thisdocumentation may bereproduced or transmitted in any form or by any means,
electronic or mechanical, without prior written permission from Metrowerks.

Metrowerks reservestheright to make changesto any product described or referred to in this document without further
notice. Metrowerks makes no warranty, representation or guarantee regarding the merchantability or fitness of its prod-
ucts for any particular purpose, nor does Metrowerks assume any liability arising out of the application or use of any
product described herein and specifically disclaimsany and all liability. M etr ower ks softwareisnot authorized for
and has not been designed, tested, manufactured, or intended for usein developing applications wher e the fail-
ure, malfunction, or any inaccuracy of the application carriesarisk of death, seriousbodily injury, or damage
to tangible property, including, but not limited to, use in factory control systems, medical devices or facilities,
nuclear facilities, aircraft navigation or communication, emergency systems, or other applicationswith a simi-
lar degree of potential hazard.

USE OF ALL SOFTWARE, DOCUMENTATION AND RELATED MATERIALS ARE SUBJECT TO THE
METROWERKS END USER LICENSE AGREEMENT FOR SUCH PRODUCT.

How to Contact Metrowerks

Corporate Headquarters Metrowerks Corporation
7700 West Parmer Lane
Austin, TX 78729

U.S.A.
World Wide Web http://ww. metrowerks. com
Sales Voice: 800-377-5416

Fax: 512-996-4910
Email: sales@metrowerks.com

Technical Support Voice: 800-377-5416
Email: support@metrowerks.com

http://www.metrowerks.com

Table of Contents

1 Introduction
Notation Coe
Structure of this Document .
Purpose of aLinker .

2 User Interface

Tip of The Day Dialog .

Main Window .
Window Title .
Content Area
Tool Bar
Status Bar .
Linker Menu Bar . :
Options Settings Dialog Box
Message Settings Dialog Box .
About Box : Ce
Retrieving Information about an Error Message .
Specifying the Input File .
Message/Error Feedback .

3 Environment
The Current Directory .

Global Initiaization Flle(MCUTOOLSINI) (PC only))

[Installation] Section

[Options] Section .

[LINKER] Section .

[Editor] Section

Example . . .
Local Configuration File (usually project. |n|)

[Editor] Section

[[LINKER] Section .

15
15
15
16

17
17
18
18
19
20
21
21

. 30
.31
. 33

. 35
. 36

39

. 40
. 40
.41
.41
. 42
. 43

. 45
. 46
. 47

Smart Linker

Table of Contents

Example 5
LineContinuation.05
Environment VariableDetails 52
ABSPATH P o X
ABSPATH: Absolute Path . 53
COPYRIGHT . : . 54
COPYRIGHT: Copyright EntrylnAbsquteFlle . 54
DEFAULTDIR . : . 54
DEFAULTDIR: Default Current Dlrectory . 5
ENVIRONMENT . . < 1<
ENVIRONMENT: EnvwonmentFlIeSpeuflcatlon. T & 1
ERRORFILE. A 6
ERRORFILE: ErrorFlleNarneSpeC|f|cat|on P o)
GENPATH. e e+ 58
GENPATH: DefmePathstosearchforlnputFlles............58
INCLUDETIME P |
INCLUDETIMECreatlonTlmeanbJectFlle T o ¢ |
LINKOPTIONS N 0
LINKOPTIONS: DefauItSmartLlnkerOptlons c e e e 060
OBJPATH T o 0
OBJPATHObJectFllePath....................60
RESETVECTOR P o A
RESETVECTOR: Reset Vector Location61
SRECORD A 1 |
SRECORD: SRecord FileFormat 61
TEXTPATHo B2
TEXTPATH: TextPath.862
T™P P 6 <
TMPTemporarydlrectory o X
USERNAME. N o X
USERNAMEUserNameanbjectFlle................63

4 Smart Linker

Table of Contents

4 Files 65
Input Files. Lo 65
ParameterFile e e e 65
ObjectFile e e e e 65
OutputFileso . . 65
AbsoluteFileso 65
MotorolaSFileso 66
MapFiles. 66
Error ListingFile. 67

5 SmartLinker Options 71
SmartLinker OptionDetails. 71
Add . L L Y %4
-Add: Additional Object/Library File e e e 72
-AllocFirst,-AllocNext,-AllocChange C e e e e e 73
-Alloc: Allocation over segment boundaries (ELF). R £
-AsROMLibo15
-AsROMLib: Link asROM Library. e e e e e 75
B 16
-B: Generate S-Recordfile Y ()
-CAllocUnusedOverlap.o 76
-CAllocUnusedOverlap: Allocate not referenced overlap variables (HIWARE). 76
O .77
-Ci: Link Caselnsensitive 77
-CoCC. . . . e e 78
-Cocc: Optimize Common Code (ELF) C e e e e 78
-CRam . . . L .. 19
-CRam: Allocate non specified const segmentsin RAM (ELF) 79
Dist . Lo Y £°)
-Dist: Enable distribution optimization (ELF). R ¢
DigtFileo A - 0
-DigtFile: Specify distribution filename(ELF) 80
Distinfo . . . L Lo Lo . 80

Smart Linker 5

Table of Contents

-DistInfo: Generate distribution information file (ELF) 80
DistOpti e 81
-DistOpti: Choose optimizing method (ELF) P <)
DistSeg. e e 81
-DistSeg: Specify distribution segment name (ELF) 81
-E e 82
-E: Define Application Entry Point (ELF) 82
-BEnvoL o ... 82
-Env: Set Environment Variableo 0oL 0L 82
-FA,-FE,-FH-F6.o 83
-FA, -FE, -FH -F6: Object FileFormat 83
-Ho e 84
-H: Printsthe List of All AvailableOptions. 84
e 84
-L: Add apath to the search path (ELF) C e e 84
-Lic Lo e 85
-Lic: Print licenseinformation. 85
-LICA. L e e e 85
-LicA: License Information about every Featurein Directory. 85
Mo e e e e 86
-M: Generate Map File. 86
N L e e e e 86
-N: Display NotifyBox e e e 86
-NoBeepo R - 14
-NoBeep: NoBeepinCaseof anError 87
-NoEnv Lo e 87
-NoEnv: Do not use Environment 87
OCopY . . . 88
-OCopy: Optimize Copy Down (ELF). 88
e 89
-O: Define Absolute FileName 89
-Prod. .. L 89
-Prod: specify project fileat startup (PC). 89

6 Smart Linker

Table of Contents

s T R ()
-S: Do not generate DWARF Information (ELF). 90
SSEiIXUPS Lo L R 1
-SFixups: Creating Fixups (ELF). 91
SStatF. L. L 91
-StatF: Specify the name of statisticfile 91
2 .92
-V: Printsthe SmartLinker Version 92
View. oL e e e 92
-View: Application Standard Occurrence(PC) 92
W1 Lo 93
-W1: NoInformationMessages 93
W2 e 94
-W2: No Information and WarningMessages. 94
-WErrFile Lo . 95
-WErrFile: Create "err.log” Error File. 95
SWmsg8X3. . . L L 95
-Wmsg8x3: Cut file namesin Microsoft format to 8.3 (PC) 95
-WmsgCE L 96
-WmsgCE: RGB color forerrormessages 96
-WmsgCF . . . L L 97
-WmsgCF: RGB color for fatal messages e e e 97
-WmsgCl . . L L .97
-WmsgCl: RGB color for informationmessages. 97
SWmsgCU . . L L L L 98
-WmsgCU: RGB color forusermessages 98
-WmsgCW . . L L L 98
-WmsgCW: RGB color for warningmessages 98
-WmsgFb (-WmsgFbv, -WmsgFbm) e e e 99
-WmsgFb: Set message fileformat for batchmode. 99
-WmsgFi (-WmsgFiv, -WmsgFim) e e e e 100
-WmsgFi: Set message file format for Interactivemode. 100
-WmsgFob. . . . L L L e 101

Smart Linker 7

Table of Contents

-WmsgFob: Message format for BatchMode.101
-WmsgFoi N L0 X
-WmsgFoi: MmgeFormaIforlnteractlveMode N (0 X
-WmsgFonf 0721
-WmsgFonf: MessageFormatfor no FileInformation104
-WmsgFonp T 0 §)
-WmsgFonp: MessageFormatfor no Position Information106
-WmsgNe e [0 74
-WmsgNe: NumberofErrorM&e%\ges e (74
-WmsgNi . . . L L. P [0
-WmsgNi: NumberoflnformallonMessages N [0
-WmsgNu Y 0 <
-WmsgNuDl%lbIeUserMeS%\g&s Y 0 <
-WmsgNw. e 10
-WmsgNw: NumberofWarnlngMeS%\ges P 10
-WmsgSd L L T ¢ [0
-WmsgSd: SettlngaMessﬁgetoDlsable v (0
-WmsgSe L L e L0
-WmsgSe: SettlngaMeswgetoError e N 10
-WmsgS . . . L. i I
-WmsgSi: SettlngaMessagetolnformanon I |
-WmsgSw L. I
-WmsgSw: SettlngaM%%\getoWarnmg. e I |
-WOutFile. e I 24
-WOutFile: CreateErrorLlstlngFlle. N
-WStdout e 24
-WStdouit: ertetostandardoutput I 4
6 Linking Issues 115
Object Allocation N N 1)
TheSEGMENTSBIock(ELF) I
The SECTIONSBlock (HIWARE+ELF)121
PLACEMENTBlock124

8 Smart Linker

Table of Contents

Initializing Vector Tableo 129
VECTORCommand 129
Smart Linking (ELF)o Lo 130
Mandatory Linking fromanObject 130
Mandatory Linking from all ObjectsdefinedinaFile 131
Switching OFF Smart Linking for the Application. 131
Smart Linking (HIWARE+ELF). 131
Mandatory Linking fromanObject 132
Mandatory Linking from all ObjectsdefinedinaFile 132
Binary Filesbuilding an Application (ELF). e e e e 133
NAMESBIlock.o 133
ENTRIESBlock C e e 133
Binary Filesbuilding an Application (HIWARE). : .134
NAMESBIlock.o 134
Allocating Variablesin "OVERLAYS'. 135
Example:o . 135
OverlappingLocaso 136
Example: Lo . 136
Algorithm.o . 137
Name Mangling for Overlapping Locals. 139
Name Mangling in the ELF Object FileFormat 140
Defining an function with overlapping parametersin Assembler 141
DEPENDENCY TREE intheMapFile 146
Optimizing theoverlapsize. 147
RecursonChecks.o 147
Linker Defined Objects. 149
Automatic Distribution of Paged Functions. 151
Limitationso 156
Checksum Computation 156
Prm file controlled Checksum Computation 157
Automatic Linker controlled Checksum Computation 158
Partial Fields. 160
Runtimesupport 160
Smart Linker 9

Table of Contents

Linking an Assembly Application160
PrmFile10
WARNINGS16
SmartLinking161
LINK INFOEELF)164
7 The Parameter File 165
The Syntax of the ParameterFile.165
Mandatory SmartLinker Commands.168
The INCLUDE directive169
8 SmartLinker Commands 171
AUTO LOAD T 4
AUTO_LOAD: LoadlmportedModuI%(HIWARE M2). i
CHECKSUM e Y ¢4
CHECKSUM: Checksum computatlon (ELF) Iy ¢4
CHECKKEYS T (&
CHECKKEYS: CheckModuIeKeys(HIWARE M2) (&
DATA (&
DATA: SpeufytheRAM Start(HIWARE) I (]
DEPENDENCY Y
DEPENDENCY: DependencyControI e v 4
ROOT i e e Ts
USESo s
ADDUSE. oI
DELUSE N £2 0]
Overlapping of local varlablesandparameters T £ <
ENTRIES. N £ S
ENTRIES: L|stofObjectstoLlnkW|ththeAppI|cat|on N £ S 24
HAS BANKED DATA %
HAS BANKED_ DATA: Appllcatlon hasbankeddata(HIWARE) 184
HEXFILE. T 5153
HEXFILE: LlnkaHexFlleW|ththeAppI|cat|on e e e e185

10

Smart Linker

Table of Contents

INIT . . o o o . 186
INIT: Specify the Application Init Point 186
LINK. o oo 187
LINK: Specify Name of Output File 187
MAIN . . . oo . . 188
MAIN: Name of the Application Root Function. 188
MAPFILE.189
MAPFILE: Configure Map FileContent. 189
NAMES. e 192
NAMES: List the Files building the Application. 192
OVERLAP GROUP. oo 194
OVERLAP_GROUP: Application uses Overlapping (ELF) 194
PLACEMENT19
PLACEMENT: Place Sectionsinto Segments.196
PRESTART o e . . .198
PRESTART: Application Prestart Code (HIWARE) 198
SECTIONS oo coe e .. 199
SECTIONS: DefineMemoryMap 199
SEGMENTS. Co.. . L 202
SEGMENTS: DefineMemory Map (ELF) 202
STACKSIZE. oo . . 208
STACKSIZE: Define Stack Size. e e e 208
STACKTOP oo e .. .210
STACKTOP: Define Stack Pointer Initial Value.210
START o e L 211
START: Specify theROM Start (HIWARE) 211
VECTOR e e e e 212
VECTOR: Initialize Vector Table e e e 212

9 Sections (ELF) 215
Terms: Segmentsand Sections. e e e e e 215
Definition of Section. e e 215
Predefined Sections e 216

Smart Linker 11

Table of Contents

10 Segments (HIWARE) 219
Terms: Segmentsand Sections(HIWARE)219
Definition of Segment (HIWARE) 219
Predefined Segments L. L0000 220
11 Examples 223
Examplel. 223
Example2. 223
12 Program Startup 225
The Startup Descriptor (ELF) 225
User Defined Startup Structure: (ELF).228
Example Lo 229
User Defined Startup Routines (ELF)230
The Startup Descriptor (HIWARE) 230
User Defined Startup Routines(HIWARE) 232
Example of Startup Codein ANSI-C 232
13 The Map File 239
MapFileContents.o 239
14 ROM Libraries 241
CreatingaROM Library 241
ROM Librariesand OverlappingLocals 242
Using ROM Libraries 242
Suppressing Initidlization. L0 . 242
15 How To ... 249
How To InitidizetheVector Table249
Initializing the Vector Table in the SmartLinker Prm File 249

Initializing the Vector Table in the Assembly Source File Using a Relocatable
Section. e 251

Initializing the Vector Table in the Assembly Source File Using an Absolute

Section. Lo e 254

12 Smart Linker

Table of Contents

16 Messages 257
MessageKinds.25

Smart Linker 13

Table of Contents

14

Smart Linker

Introduction

This section describes the SmartLinker. The linker merges the various object files of
an application into onefile, a so-called absolute file (or .ABSfile for short; thefileis
called absolute file because it contains absolute, not relocatable code) that can be
converted to a Motorola S-Record or an Intel Hex file using the Burner program or
loaded into the target using the Downloader/Debugger.

TheLinker isasmart linker, i.e. it will only link those objects that are actually used by
your application.

Thislinker is able to generate either HIWARE or ELF absolute files.

For compatibility purpose, the HIWARE input syntax is also supported when ELF
absolute files are generated.

Notation

Throughout this document, features or syntax which are only supported when ELF/
Dwarf absolute files are generated will be followed by ELF) .

Features or syntax which are onl suBEorted when HIWARE absolute files are
generated will be followed by (HIWARE)

Features or syntax which are supported when either HIWARE or ELF absolute files
are generated will be followed by (HIWAREELF)

Structure of this Document

e User interface

¢ Environment

* SmartLinker Options: detailed description of the full set of Linker options
* SmartLinker Commands: list of all directives supported by the linker

» SmartLinker M essages. description with examples of messages produced by the
SmartLinker

Smart Linker 15

Introduction
Purpose of a Linker

» Appendix
* Index

Purpose of a Linker

Linking isthe process of assigning memory to all global objects (functions, global
data, strings and initialization data) needed for a given application and combining
these objects into a format suitable for downloading into a target system or an
emulator.

The Linker isasmart linker: it only links those objects that are actually used by the
application. Unused functions and variables won’t occupy any memory in the target
system. Besides this, there are other optimizations leading to low memory
requirements of the linked program: initialization parts of global variables are stored
in compact form and for equal strings, memory is reserved only once.

The most important features supported by the SmartLinker are:

» Complete control over the placement of objectsin memory: it is possible to
allocate different groups of functions or variables to different memory areas
(Segmentation, please see section Segments).

» Linking to objects already allocated in a previous link session (ROM libraries).

NOTE User defined startup: The code for application startup is a separate
file written in inline assembly and can be easily adapted to your
particular needs. In this chapter and associated examples, the startup
fileiscalled startup.c / startup.o. However, thisisageneric file name
that hasto be replaced by thereal target startup file name giveninthe
\LIB\COMPILER directory, inthe README.TXT file (usualy
start*.c / start* .0 where * isthe name or a part of the MCU name and
might also contain an abbreviation of the memory model). Please see
also the README.TXT file or the STARTUPR.TXT filein the
\LIB\COMPILER directory for more details about memory models
and associated startup codes.

» Mixed language linking: Modula-2, Assembly and C object files can be mixed,
even in the same application.

* [|nitialization of vectors.

16 Smart Linker

User Interface

The SmartLinker runs under Win32.
Run the linker from the Shell, clicking the Linker icon on the shell tool bar.

Tip of The Day Dialog

When you start the SmartLinker, a standard Tip of the Day window is opened
containing the last news about the SmartLinker, as shown in Figure 2.1.

Figure 2.1 Tip of the Day Window

Tip of the Day |

@ Did you know...

Welcome to the Metrowerks world of embedded systems
tools. We've got a lot of great tips for getting the most
out of our toalg, 2o leave Tip of the Dayp turmed o for a
while, 1f wou turn Tip of the Day off, it iz available from
the Help menu.

¥ Show Tips on StartUp Mext Tip I Cloze

The Next Tip button allows you to see the next tip about the SmartLinker.

If you do not want to open automatically the standard Tip of the Day window when the
SmartLinker is started, just unchecked the check box Show Tips on StartUp. Note that
this configuration entry is stored in the local project file.

Smart Linker 17

User Interface
Main Window

If you want to enable automatic display from the standard Tip of the Day window

when the SmartLinker is started, just select the entry Help | Tip of the Day.... The
window will be opened and you can check the box Show Tips on SartUp.

Click Closeto close the Tip of the Day window.

Main Window

Figure 2.2 SmartLinker Main Window

Window SmartLinker C:\hiware\project.ini [_ O] =]

Title

Menu Bar

Content—

Area

Status Bar—«— | 2

File SmartLinker Yiew Help

D& ? |[Em S| & # | & & | fE-Toolbar

fibo.prm
Commatid Line: 'fibo.prm '
C:vhiware\fibo.prm: INFORMATION L4004: Linking C:\hiwarevfibo.prm az ELF/DUARF
Reading Parameters
Linking C:‘hiware%fibo.prm
Read Binary Input Filezs
| Peading file 'C:izhiwarehfibo.o!
Feading file 'C:ihiwaredstartup.o’
Reading f£ile 'C:\hiwarehansi.lib'
Marking Referenced Objects
Moving Objects Accross Sections
Reserving Memory for Startup Data
4Lllocating Objects
Preparing Startup Data
Generating Code
Generating Symbol table
Generating DWARF data wersion 2.0
INFORMATION L1035: 5uccess. Executable f£ile written to C:vhiwarebf£ibo.abs
Generating MAP file 'Ci‘Vhiware’fibo.map'
Smartlinker: *%% 0 error(s), 0 warningis), Z information messageis) *%%
Smartlinker: %%% Processing ok %%

Ready 204015

Thiswindow isonly visible on the screen when you do not specify any file namewhile
starting the SmartLinker.

The SmartLinker window provides awindow title, amenu bar, atool bar, a content
area and a status bar, as shown in Figure 2.2.

Window Title

The window title displays the project name. If currently no project isloaded, “ Default
Configuration” isdisplayed. A “*” after the configuration name indicates if some

18

Smart Linker

User Interface
Main Window

values have been changed. The “*” appears as soon as an option, the editor
configuration or the window appearance changes.

Content Area

The Content Areais used as atext container where logging information about the link
session is displayed. This logging information consists of:

 the name of the prm file which is being linked.

 thewhole name (including full path specification) of the files building the
application.

 thelist of the errors, warnings and information messages generated.

When afile name is dropped into the SmartLinker Window content area, the
corresponding fileis either loaded as configuration or linked. It isloaded as
configuration if thefile hasthe extension “ini”. If not, thefileislinked with the current
option settings (See Specifying the Input File below).

All text in the SmartLinker window content area can have context information. The
context information consists of two items:

» afilenameincluding a position inside of afile

e amessage number

File context information isavailable for all output lineswhere afile nameis displayed.
There are two ways to open the file specified in the file context information in the
editor specified in the editor configuration:

» If afile context isavailable for aline, double clicking on aline containing file
context information.

» Click with the right mouse at aline and select “Open ..”. Thisentry isonly
available if afile context is available.

If afile can not be opened although a context menu entry is present, the editor
configuration information is not correct (see the section Edit Settings Dialog below).

The message number is available for any message output. Then there are three waysto
open the corresponding entry in the help file.

» Select one line of the message and press F1. If the selected line does not have a
message number, the main help is displayed.

* Press Shift-F1 and then click on the message text. If the point clicked at does not
have a message number, the main help is displayed.

» Click with theright mouse at the message text and select “Help on ...”. Thisentry
isonly available if a message number is available.

Smart Linker 19

User Interface
Main Window

Messages are colored according to their kind. Errors are shown red, Fatal Errors dark
red, Warnings blue and Information M essages green.

Tool Bar
Figure 2.3 describes the tool Bar buttons.

Figure 2.3 Tool Bar buttons

[= | 2 W | e x| F=|
A A A A T A A A

- d Li

amtnand Line Link

Cortext Help
Stop Linking
onLine Help
Option Settings
Save current Configquration
Meszage Settings
Load a Configuration
Clear Linker

Mewy Configuration Winco e

The three buttons on the | ft are linked with the correspondi na entries of the File
menu. The New Configuration [, the Load Configuration & and the Save
Configuration [allow to reset, load and save configuration files for the linker.

The Help button % and the Context Help button k? allow to open the Help file or
the Context Help.

When pressing k? the mouse cursor changesit’s form and has now a question mark
beside the arrow. The help is called for the next item that is clicked. Specific help on
Menus, toolbar buttons or on the window area can be get using the Context Help.

The command line history contains the list of the last commands executed. Once a
command line has been selected or entered in this combo box, click the Link button
£ to execute this command. The Sop Linking button allows to abort the current
link session. If no link session is running, this button is disabled (gray).

The Option Settings button & dlowsto open the Option Settings dial og.
The Message Settings button ‘ B4 allows to open the Message Settings dialog.

20

Smart Linker

User Interface
Main Window

The Clear button ! allows to clear the SmartLinker window content area.
The command line in the toolbar can be activated using the F2 key.
With the right mouse button, a context menu can be shown.

Messages are colored according to their Message Class.

Status Bar
Figure 2.4 shows the Status bar.

Figure 2.4 Status bar

| Ready x4t |
MEssade ares current time

When pointing to a button in the tool bar or amenu entry, the message area will
display the function of the button or menu entry you are pointing to.

Linker Menu Bar

Following menus are available in the menu bar:

File : Contains entries to manage
SmartLinker configuration files.

SmartLinker : Contains entries to set SmartLinker
options.

View : Contains entries to customize the
SmartLinker window output.

Help . A standard Windows Help menu.

File Menu

With the File Menu SmartLinker configuration files can be saved or loaded. A
SmartLinker configuration file contains following information:

Smart Linker 21

User Interface
Main Window

* the SmartLinker option settings specified in the SmartLinker dialog boxes

» the Message settings which specify which messages to display and which to treat

as error,

« thelist of the last command line executed and the current command line.

 thewindow position, size and font.

» theTipsof the Day settings, including if enabled at startup and which isthe

current entry

» Configuration filesaretext files, which have standard extension .ini. The user can
define as many configuration files as required for his project, and can switch
between the different configuration files using the File | Load Configuration and
File | Save Configuration menu entry or the corresponding tool bar buttons. Table
2.1 describes the menu items with their description.

Table 2.1 File menu items and their description

Menu Item

Description

Link

Opens a standard Open File box, displaying the list
of all the .prm files in the project directory. The input
file can be selected using the features from the
standard Open File box. The selected file will be
linked as soon as the open File box is closed using
OK.

New/Default
Configuration

Resets the SmartLinker option settings to the default
value. The SmartLinker options, which are activated
per default, are specified in section Command Line
Options from this document.

Load Configuration

Opens a standard Open File box, displaying the list
of all the .INI files in the project directory. The
configuration file can be selected using the features
from the standard Open File box. The configuration
data stored in the selected file is loaded and will be
used by a further link session.

Save Configuration

Saves the current settings in the configuration file
specified on the title bar.

Save Configuration as...

Opens a standard Save As box, displaying the list of
all the .INI files in the project directory. The name or
location of the configuration file can be specified
using the features from the standard Save As box.
The current settings are saved in the specified file as
soon as the save As box is closed clicking OK

22

Smart Linker

User Interface

Main Window
Table 2.1 File menu items and their description (continued)

Menu Item Description
Configuration... Opens the Configuration dialog box to specify the

editor used for error feedback and which parts to

save with a configuration.
1. project.ini Recent project list. This list can be accessed to open
2. ... a recently opened project again.
Exit Closes the SmartLinker.

Edit Settings Dialog

The Editor Settings dialog box, as shown in Figure 2.5 has amain selection entry.
Depending on the main type of editor selected, the content below changes.

There are the following main entries:
» Global Editor (Figure 2.5)

Figure 2.5 Editor Settings - Global Editor

Configuration E |

E ditar Settings | 5 ave Configuration I

€+ Global Editor [Shared by all Tools and all Projects)
" Local Editar [Shared by all Tools]

" Editor started with Command Line

" Editor started with DDE

E ditor Mame |H|W-'*'-HE IDF

E ditor Executable Il::"xhiware"'.pmg"xidf.e:-:ﬂ J

E ditor Argurnents I‘};f g%l %

uze Zf far the filename, % for the line and & for the column

] I Caricel Help

Smart Linker 23

User Interface
Main Window

The global editor is shared among all tools and projects on one computer. It isstored in
the global initialization file "MCUTOOLS.INI" in the "[Editor]" section. Some
Modifiers can be specified in the editor command line.

* Loca Editor (Figure 2.6)

Figure 2.6 Editor Settings - Local Editor

Configuration |
Editar Setting: | 5 ave Configuration I

™ Global Editor [Shared by all Tools and all Projects)
& Local Editor [Shared by all Toolz]

" Editor started with Command Line

" Editor gtarted with DDE

E ditar M ame |H|W-‘5"-HE IDF

E ditar Executable Ic:'xhiwarehprng'xidf.e:-:e |

E ditar Argurnetits I;*,;f -a%l%c

uze Zf for the filename, % for the line and &z for the column

k. I Cancel | Help |

Thelocal editor is shared among all tools using the same project file. Some Modifiers
can be specified in the editor command line

The Global and Local Editor configuration can be edited with the linker. However,
when these entries are stored, the behavior of the other tools using the same entry does
also change when they are started the next time.

 Editor started with Command Line (Figure 2.7)

24 Smart Linker

User Interface
Main Window

Figure 2.7 Editor Settings - Editor started with Command Line

Configuration |
E ditar Settings | 5 ave Configuration I

" Global Editor [Shared by all Tools and all Projects)
" Local Editor [Shared by all Tools]

% Editor started with Command Line

" Editor starked with DDE

Command Line

o whivareproghidl.exe & 0%l %o |

wze EZf for the filename, % for the line and % for the column

] 4 I Cancel Help

When this editor type is selected, a separate editor is associated with the SmartLinker
for error feedback. The editor configured in the Shell is not used for error feedback.

Enter the command, which should be used to start the editor.

The format from the editor command depends on the syntax, which should be used to
start the editor. Some Modifiers can be specified in the editor command lineto refer to
afile name of aline number (See section Modifiers below).

The format from the editor command depends on the syntax which should be used to
start the editor.

Example: (also look at the notes below)

For Winedit 32 bit version use (with an adapted path to the winedit.exefile)
C\WnEdit32\WnEdit.exe % /#: %

For Write.exe use (with an adapted path to the write.exe file, note that write does not
support line number).
C.\Wnnt\ SystenB2\Wite.exe %

» Editor Communication with DDE (Eigure 2.8)

Smart Linker 25

User Interface
Main Window

Figure 2.8 Editor Settings - Editor Communication with DDE

Configuration |
Editar Settings | 5 ave Configuration I
" Global Editor [Shared by all Tools and all Projects)
" Local Editor [Shared by all Tools]

" Editor started with Command Line
&' Editor Communication with DDE

Service Mame IdeEV
T opic: Mame IS}'Stem
Clignt Cammand I[DDEH["/JF]]

uze EZf for the filename, % for the line and % for the column

] 4 I Cancel Help |

Enter the service, topic and client name to be used for a DDE connection to the editor.
All entries can have modifiers for file name and line number as explained below in
section Modifiers.

Example:
For Microsoft Developer Studio use the following setting:
Servi ce Nane: "nsdev"

Topi ¢ Nane: "systenf
d i ent Command: "[open(%)]"

* Modifiers

The configurations should contain some modifiersto tell the editor which file to open
and at which line.

» The %f modifier refersto the name of thefile (including path) where the error has
been detected.

» The %l modifier refersto the line number where the message has been detected

NOTE Be careful, the %l modifier can only be used with an editor which can
be started with a line number as parameter. Thisis not the case for

26

Smart Linker

User Interface
Main Window

WinEdit version 3.1 or lower or for the Notepad. When you work
with such an editor, you can start it with the file name as parameter
and then select the menu entry * Go to’ to jump on the line where the
message has been detected. In that case the editor command looks
like: C: \ W NAPPS\ W NEDI T\ W nedi t . EXE %

Please check your editor manual to define the command line which
should be used to start the editor.

Save Configuration Dialog

On the second index of the configuration dialog (Figure 2.9), all options considering
the save operation are contained.

Figure 2.9 Save Configuration

Editar Settings Save Configuration |

Configuration |

[tems to Save
.................. Save
M Dptians
¥ Editar Canfiguration Save As

¥ fppearance [Position, Size, Font)

¥ Save on Exit

Al marked tems are saved. Already contained, not
changed iterz remait walid

k. I Cancel Sl Help

In the Save Configuration index, four checkboxes allow to choose which items to
save into a project file while the configuration is saved.

This dialog has the following configurations:

* Options: Thisitem is related to the option and message settings. If this checkbox
is set, the current option and message settings are stored in the project file when

Smart Linker

27

User Interface
Main Window

the configuration is saved. By disabling this checkbox, changes done to the
option and message settings are not saved, the previous settings remain valid.

Editor Configuration: Thisitem isrelated to the editor settings. If this checkbox is
set, the current editor settings are stored in the project file when the configuration
is saved. By disabling this checkbox, the previous settings remain valid.

Appearance: Thisitem isrelated to many parts like the window position (only
loaded at startup time) and the command line content and history. If this
checkbox is set, these settings are stored in the project file when the current
configuration is saved. By disabling this checkbox, the previous settings remain
valid.

NOTE By disabling selective options, only some parts of a configurationfile

can be written. For example when the suitable editor has been
configured, the save Editor mark can be removed. Then future save
commands will not modify the options any more.

» Saveon Exit: If thisoption is set, the linker writes the configuration on exit. No

question will appear to confirm this operation. If this option is not set, the linker
does not write the configuration at exit, even if options or another part of the
configuration has changed. No confirmation will appear in any case when closing
the linker.

NOTE Almost all settings are stored in the project configuration file only.

The only exceptions are:
- The recently used configuration list.
- All settingsin this dialog.

NOTE The configurations of the linker can, and in fact are intended to,

coexist in the same file as the project configuration of the shell.
When the shell configures an editor, the linker can read this content
out of the project file, if present. The project configuration file of the
shell is named project.ini. Thisfile name is therefore also suggested
(but not mandatory) to the linker

28

Smart Linker

User Interface
Main Window

SmartLinker Menu
The SmartLinker menu alowsyou to customize the SmartLinker. Y ou can graphically

set or reset SmartLinker options or define the optimization level you want to reach.

Table 2.2 describes the SmartLinker menu items with their description.

Table 2.2 SmartLinker menu items and their description

Menu Item | Description

Options... allows you to define the options which must be activated when
linking an input file (See Option Settings Dialog Box below)

Messages opens a dialog box, where the different error, warning or
information messages can be mapped to another message
class (See Message Setting Dialog Box below).

Stop Linking stops the currently running linking process. This entry is only
enabled (black) when a link process currently takes place.
Otherwise, it is gray.

View Menu

The View menu allows you to customize the linker window. Y ou can define if the
status bar or the tool bar must be displayed or hidden. Y ou can also define the font
used in the window or clear the window. Table 2.3 describes the View menu items

with their description.
Table 2.3 View menu items and their description

Menu Item | Description

Tool Bar switches display from the tool bar in the SmartLinker window.

Status Bar switches display from the status bar in the SmartLinker
window.

Log... allows you to customize the output in the SmartLinker window

content area. Following entries are available when Log... is
selected:

Change Font

opens a standard font selection box. The options selected in
the font dialog box are applied to the SmartLinker window
content area.

Clear Log

allows you to clear the SmartLinker window content
area.

Smart Linker

29

User Interface
Main Window

Options Settings Dialog Box

The Options Settings dialog box (Figure 2.10) allows you to set/reset SmartLinker
options.

Figure 2.10 Option Settings dialog box

Option Settings |

[JELF/DwWaRF: Generate 5-Aecard file
[JELF/D'wf4RF: Generate a map file
[CJELF/DwaRF: Specify the name af the autput file
[JELF/DhwfaRF: Stip svmbolic informations

[JELF/DwARF: Generate fisups in abs file

k. I Cancel Help

The options available are arranged into different groups, and a sheet is available for
each of these groups. The content of the list box depends on the selected sheet. Table
2.4 describes the groups and their description.

Table 2.4 Option Settings group and their description

Group Description

Output lists options related to the output files generation (what kind of
files are to be generated).

Input lists options related to the input files.
Messages lists options controlling the generation of error messages.
Host lists host specific options.

30 Smart Linker

User Interface
Main Window

A SmartLinker option is set when its check box in front of it is checked. To obtain
more detailed explanation about a specific option, select the option and the press the
key F1 or the help button. To select an option, click once on the option text. The option
text is then displayed inverted.

When the dialog is opened, then no option is yet selected. Pressing the key F1 or the
help button then shows the help to this dialog.

Message Settings Dialog Box

The Message Settings (Figure 2.11) dialog box allows you to map messagesto a
different message class.

Figure 2.11 Message Settings dialog box

Message Settings

Disal:uleu:ll Information “farming | Error I Fatal I

L1922; File <filename: has D'WwWARF data of different v;l ~ Move to

L2000 Segrment <Segmentnames (for vanables] shoul Dizabled
L2053 Module <Modulenamer imported [needed for o
L2062 <objects found twice with different size [in <mao Informatian

L206E: Yariable "' startupD ata' not found, linker prep:
L2067 Wariable "'_startupD ata” found, but not exporte aring

L2034: Object <warname: [objectfile <aobifilex] appears
L2206: ROM librares cannat have an INIT function [<i
L2300 Seament <segmenthame: nok found in any obj
L2312 Stack not initialized

L2403 Incompatible flagz or compiler options: <flagss Default
L240E: More than one data page iz uzed. Segment <=
L2407 More than one data page is used in <memonm ™
1| k Reset Al
k., Cancel | Help |

A sheet isavailable for each error message class and the content of the list box
depends on the selected sheet. Table 2.5 describes the message classes availablein the
Message Settings dialog box.

Smart Linker 31

User Interface
Main Window

Table 2.5 Message Class description

Message Description Color
Class
Disabled lists all messages disabled. That means | none.

messages displayed in the list box will not
be displayed by the SmartLinker.

Information lists all information messages. Informa- | green
tion messages informs about action taken
by the SmartLinker.

Warning lists all warning messages. When such a | blue
message is generated, linking of the input
file continues and an absolute file is gen-
erated.

Error lists all error messages. When such a mes- | red
sage is generated, linking of the input file
continues but no absolute file is gener-
ated.

Fatal lists all fatal error messages. When such a | dark red
message is generated, linking of the input
file stops immediately. Fatal messages
can not be changed. There are only listed
to call context help.

Depending on the message class, messages are shown in a different color in the main
output area.

Each message has its own character (‘L’ for SmartLinker message) followed by a 4-5
digit number. This number alows an easy search for the message both in the manual
or on-line help.

Changing the Class associated with a Message

Y ou can configure your own mapping of messages in the different classes. In that
purpose, you can use one of the buttons located on the right hand of the dialog box.
Each button refers to a message class. To change the class associated with a message,
you have to select the message in the list box and then click the button associated with
the class where you want to move the message.

32 Smart Linker

User Interface
Main Window

Example:
To define the message ‘' L1201: No stack defined' (warning message) as an error
message:

* Click the Warning sheet, to display the list of all warning messagesin thelist
box.

» Click onthestring ‘L1201: No stack defined’ in thelist box to select the message.
» Click Error to define this message as an error message.

NOTE M essages cannot be moved from or to the fatal error class.

NOTE The*moveto’ buttonsare only active when all selected messages can
be moved. When one message is marked which cannot be moved to a
specific group, the corresponding ‘move to’ button is disabled

(grayed).

If you want to validate the modification you have performed in the error message
mapping, close the 'Message settings' dialog box with the 'OK" button. If you close it
using the 'Cancel’ button, the previous message mapping remains valid.

To reset some messages to their default, select them and click on the * Default’ button.
To reset all messagesto the default, click on the ‘Reset All’ button.

About Box

The About box (Figure 2.12) can be opened with the Help->About command.

Smart Linker 33

User Interface
Main Window

Figure 2.12 The About box

About SmartLinker |

Yersion 5.0.11
o ¥ [c] COPYRIGHT HETROWEREKES 1991-2000

hikbe A A, retrowerks. com

mailtoclicenze europed@metowerks. com Extended Information

SmartLinker ¥-5.0.11, Jun 22 2000 -

Drirectary: c:hmp

GEMPATH=

LIEFATH=

OBJPATH=

ABSPATH=

TE=TPATH= o

Comman Module V-5.0.7, Date Jun 22 2000

zer Interface Module, -5.0.27, Date Jun 22 2000

ELF/Dwarf Object Linking %-5.0.38, Diate Jun 22 2000

HI'wARE Dbject Linking %-5.0.51, Date Jun 22 2000 _ILI
3

KN

The about box contains many information. Among others, the current directory and
the versions of subparts of the linker are shown. The main linker version is displayed
separately on top of the dialog.

In addition, the about box contains all information needed to create a permanent
license. The content of the about box can be used by copy and paste. Select the
information, press the right mouse button and select “Copy”.

Click on OK to closethisdiaog.

During alinking session, the subversions of the linker parts can not be requested. They
are only displayed if the linker currently is not processing.

Retrieving Information about an Error
Message

Y ou can access information about each message displayed in the list box. Select the
message in the list box and then click Help or the F1 key. An information box is

opened, which contains a more detailed description of the error message aswell asa
small example of code producing it. If several messages are selected, the help of the

34

Smart Linker

User Interface
Main Window

first is shown. When no message is selected, pressing the key F1 or the help button
shows the help for this dialog.

Specifying the Input File

There are different waysto specify the input file, which must be linked. During linking
of asourcefile, the options are set according to the configuration performed by the
user in the different dialog boxes and according to the options specified on the
command line

Before starting to link a file make sure, you have associated a working directory with
your linker.

Use the Command Line in the Tool Bar to Link

Linking a New File

A new file name and additional SmartLinker options can be entered in the command
line. The specified file will be linked as soon as the button Link in the tool bar is
selected or the enter key is pressed.

Linking a File which has already been linked

The command executed previously can be displayed using the arrow on the right side
of the command line. A command is selected by clicking onit. It appearsin the
command line. The specified file will be linked as soon as the button Link in the tool
bar is selected.

Use the Entry File | Link...

When the menu entry File| Link... is selected a standard file open file box is opened,
displaying the list of all the prm file in the project directory. The user can browse to
get the name of the file he wantsto link. Select the desired file. Click Open in the
Open File box to link the selected file.

Use Drag and Drop

A file name can be dragged from an external software (for example the File Manager/
Explorer) and dropped into the SmartLinker window. The dropped file will be linked
as soon as the mouse button is released in the SmartLinker window. If afile being
dragged has the extension “ini”, it is considered a configuration and it isimmediately

Smart Linker 35

User Interface
Main Window

loaded and not linked. To link aprm file with the extension “ini” use one of the other
methodsto link it.

Message/Error Feedback

After linking there are several ways to check where different errors or warnings have
been detected. Per default, the format of the error message looks as follows:

>> <Fi | eNanme>, line <line nunber>, col <colum nunber>, pos <absol ute
position in file>

<Portion of code generating the problenr

<nmessage cl ass><nessage nunber>: <Message string>

Example
>> in "placemen\tstpla8. prnf, line 23, col 0, pos 668
fpm data_sec I NTO MY_RAMZ;

END

N

ERROR L1110: MY_RAM2 appears twi ce in PLACEMENT bl ock

See also SmartLinker options -WMsgFi, -WM sgFb, -WM sgFab, -WMsgFali, -
WM sgFonF and -WMsgFonP for different message formats.

Use Information from the SmartLinker Window

Once afile has been linked, the SmartLinker window content area displays the list of
all the errors or warnings detected.

The user can use his usual editor, to open the source file and correct the errors.

Use a User Defined Editor

The editor for Error Feedback must first be configured in the Configuration dialog
box. The way error feedback is performed differently, depending if the editor can be
started with aline number or not.

36 Smart Linker

User Interface
Main Window

Line Number Can be Specified on the Command Line

Editor like WinEdit V95 or Higher or Codewright can be started with aline number in
the command line. When these editors have been correctly configured, they can be
activated automatically by double clicking on an error message. The configured editor
will be started, the file where the error occursis automatically opened and the cursor is
placed on the line where the error was detected.

Line Number Cannot be Specified on The Command Line

Editor like WinEdit V31 or lower, Notepad, Wordpad cannot be started with aline
number in the command line. When these editors have been correctly configured, they
can be activated automatically by double clicking on an error message. The configured
editor will be started, the file where the error occurs is automatically opened. To scroll
to the position where the error was detected, you have to:

» Activate the assembler again

* Click theline on which the message was generated. Thislineis highlighted on the
screen.

* Copy thelinein the clipboard pressing CTRL + C

» Activate the editor again.

» Select Search |Find, the standard Find dialog box is opened.

» Copy the content of the clipboard in the Edit box pressing CTRL +V
» Click Forward to jump to the position where the error was detected.

Smart Linker 37

User Interface
Main Window

38

Smart Linker

Environment

This part of the document describes the environment variables used by the
SmartLinker. Some of those environment variables are also used by other tools (for
example, Macro Assembler, Compiler, ...), so consult also their respective manual.

Various parameters of the SmartLinker may be set in an environment using so-called
environment variables. The syntax is aways the same:

Par amet er = KeyNane "=" Par anDef.
NOTE No blanks are allowed in the definition of an environment variable
Example:

GENPATH=C: \ | NSTALL\ LI B; D: \ PROJECTS\ TESTS; / usr/ 1l ocal /li b;/
home/ me/ ny_pr oj ect

These parameters may be defined in several ways.

» Using system environment variables supported by your operating system.

 Putting the definitionsin afile called DEFAULT.ENV (.hidefaults for UNIX) in
the project directory.

 Putting the definitions in afile given by the value of the system environment
variable ENVIRONMENT

NOTE The project directory mentioned above can be set viathe system
environment variable DEFAULTDIR

When looking for an environment variable, al programs first search the system
environment, then the DEFAULT.ENV (.hidefaults for UNIX) file and finally the
global environment file given by ENVIRONMENT. If no definition can be found, a
default value is assumed.

NOTE The environment may also be changed using the -Env SmartLinker
option.

Smart Linker 39

Environment
The Current Directory

The Current Directory

The most important environment for all toolsis the current directory. The current
directory is the base search directory where the tool startsto search for files (for
example, for the DEFAULT.ENV / .hidefaults)

Normally, the current directory of atool started is determined by the operation system
or by the program who launches another one (for example, WinEdit).

For the UNIX operating system, the directory in which, an executable is started is also
the current directory from where the binary file has been started.

For MS Windows based operating systems, the current directory definition is quite
complex:

 If thetool islaunched using a File Manager/Explorer, the current directory isthe
location of the executable launched.

 If thetool islaunched using an Icon on the Desktop, the current directory isthe
working directory specified and associated with the Icon.

 If thetool islaunched by dragging afile on the icon of the executable under
Windows 95 or Windows NT 4.0, the desktop is the current directory.

 If thetool islaunched by another launching tool with its own working directory
specification (e.g. an editor as WinEdit), the current directory is the one specified
by the launching tool (e.g. working directory definition in WinEdit).

» Changing the current project file does also change the current directory if the
other project fileisin adifferent directory. Note that browsing for a prm file does
not change the current directory.

To overwrite this behavior, the environment variable DEFAULTDIR may be used.

The current directory is displayed among other information with the linker option “-v”
and in the about box.

Global Initialization File (MCUTOOLS.INI)
(PC only)

All tools may store some global datainto the MCUTOOLS.INI. Thetool first searches
for thisfile in the directory of the tool itself (path of the executable). If thereisno
MCUTOOLS.INI filein this directory, the tool looks for aMCUTOOLS.INI file
located in the MS Windows installation directory (for example, CAWINDOWYS).

Example:

40

Smart Linker

Environment
Global Initialization File (MCUTOOLS.INI) (PC only)

C: \ W NDOWS\ MCUTOQLS. | NI
D: \ I NSTALL\ PROG MCUTOOLS. | NI

If atool isstarted in the DANINSTALL\PROG\DIRECTOQY, the current file in the same
directory than thetool isused (D: \ | NSTALL\ PROG. MCUTOCLS. | NI') .

However, if the tool is started outside the D:\INSTALL\PROG directory, the current
filein the Windows directory isused (C. \ W NDOWS\ MCUTOOLS. | NI) .

[Installation] Section

Entry:

Arguments:

Description:

Example:

Entry:

Arguments:

Description:

Example:

Path
Last installation path.

Whenever a tool is installed, the installation script stores the
installation destination directory into this variable.

Path=c:\install

Group
Last installation program group.

Whenever a tool is installed, the installation script stores the
installation program group created into this variable.

Group=ANSI-C Compiler

[Options] Section

Entry:

Arguments:

Description:

Example:

DefaultDir
Default Directory to be used.

Specifies the current directory for all tools on a global level (see
also environment variable DEFAULTDIR).

DefaultDir=c:\install\project

Smart Linker

41

Environment

Global Initialization File (MCUTOOLS.INI) (PC only)

[LINKER] Section

Entry:

Arguments:

Description:

Entry:

Arguments:

Description:

Entry:

Arguments:

Description:

Entry:

Arguments:

Description:

Entry:

Arguments:

Description:

Entry:

Arguments:

Description:

SaveOnExit
1/0

1 if the configuration should be stored when the linker is closed,
0 if it should not be stored. The linker does not ask to store a
configuration in either cases.

SaveAppearance
1/0

1 if the visible topics should be stored when writing a project
file, 0 if not. The command line, its history, the windows position
and other topics belong to this entry.

SaveEditor
1/0

1 if the visible topics should be stored when writing a project
file, O if not. The editor settings contain all information of the
editor configuration dialog.

SaveOptions
1/0

1 if the options should be contained when writing a project file, 0
if not. The options do also contain the message settings.

RecentProject0, RecentProjectl, ...
names of the last and prior project files

This list is updated when a project is loaded or saved. Its current
content is shown in the file menu.

TipFilePos
any integer, e.g. 236

Index which tip is actually shown, used to display different tips
every time.

42

Smart Linker

Environment

Global Initialization File (MCUTOOLS.INI) (PC only)

Entry:

Arguments:

Description:

Entry:

Arguments:

Description:

Example:

ShowTipOfDay
0/1

Should the Tip of the Day dialog be shown at startup.

1: it should be shown

0: no, only when opened in the help menu

TipTimeStamp

date

This entry is used to remark when a new tips are available.
Whenever the date specified here does not match the date of

the tips, the first tip is displayed.

[LINKER]

TipFilePos=357

TipTimeStamp=Jan 25 2000 12:37:41
ShowTipOfDay=0

SaveOnExit=1

SaveAppearance=1

SaveEditor=1

SaveOptions=0
RecentProject0=C:\myprj\project.ini

RecentProject1=C:\otherprj\project.ini

[Editor] Section

Entry:

Arguments:

Description:

Saved:

Editor_Name

The name of the global editor

Specifies the name, which is displayed for the global editor. This
entry has only a description effect. Its content is not used to start

the editor.

Only with Editor Configuration set in the File->Configuration

Save Configuration dialog.

Smart Linker

43

Environment

Global Initialization File (MCUTOOLS.INI) (PC only)

Entry:

Arguments:

Description:

Saved:

Entry:

Arguments:

Description:

Saved:

Example:

Editor_Exe
The name of the executable file of the global editor

Specifies file name (including path), which is called for showing
a text file, when the global editor setting is active. In the editor
configuration dialog, the global editor selection is only active
when this entry is present and not empty.

Only with Editor Configuration set in the File->Configuration
Save Configuration dialog.

Editor_Opts
The options to use the global editor

Specifies options, which should be used for the global editor. If
this entry is not present or empty, “%f” is used. The command
line to launch the editor is build by taking the Editor_Exe
content, then appending a space followed by this entry.

Only with Editor Configuration set in the File->Configuration
Save Configuration dialog.

[Editor]
editor_name=WinEdit
editor_exe=C:\Winedit\WinEdit.exe

editor_opts=%f

Example
The following example shows atypical layout of the MCUTOOLS.INI:

[Instal |l ation]
Pat h=c: \ et r ower ks
G oup=ANSI - C Compi |l er

[Edi tor]

edi t or _name=W nEdi t
editor_exe=C.\Wnedi t\WnEdi t. exe
edi t or _opt s=%

[Opti ons]

Defaul t Di r=c: \ mypr]j

44

Smart Linker

Environment
Local Configuration File (usually project.ini)

[Li nker]

SaveOnExi t =1

SaveAppear ance=1

SaveEdi t or=1

SaveQpti ons=1

Recent Proj ect O=c: \ nmyprj\project.ini
Recent Proj ect 1=c:\ ot herprj\project.ini

Local Configuration File (usually
project.ini)

The SmartLinker does not change the default.env in any way. Its content is only read.
All the configuration properties are instead stored in the configuration file. The same
configuration file can and is intended to be used by different applications.

The shell uses the configuration file with the name “project.ini” in the current
directory only, that iswhy this name is also suggested to be used with the linker. Only
when the shell uses the same file as the linker, the linker can use the editor
configuration written and maintained by the shell. Apart from this, the linker can use
any file name for the project file. The configuration file does have the same format as
windowsini files. The linker stores its own entries with the same section name asin
the global mcutools.ini file. Different versions of the linker are using the same entries.
This mainly plays arole when options only available in one version should be stored
in the configuration file. In such situations, two files must be maintained for the
different linker versions. If no incompatible options are enabled when thefileis last
saved, the same file may can be used for both linker version.

The current directory is aways the directory, where the configurationisin. If a
configuration filein a different directory isloaded, then the current directory also
changes. When the current directory changes, also the whole default.env fileis
reloaded. Always when a configuration file isloaded or stored, the optionsin the
environment variable LINKOPTIONS are reloaded and added to the project options.
Thisbehavior hasto be noticed when in different directories different default.env exist
which do contain incompatible optionsin the LINKOPTIONS. When a project is
loaded using the first default.env, its LINKOPTIONS are added to the configuration
file. If then this configuration is stored in a different directory, where a default.env
exists with the incompatible options, the linker adds options and remarks the
inconsistency. Then a message box appears to inform the user that the default.env
options were not added. In such a situation, the user can either remove the option from
the configuration file with the advanced option dialog or he can remove the option

Smart Linker 45

Environment
Local Configuration File (usually project.ini)

from the default.env with the shell or atext editor depending which options should be
used in the future.

At startup there are two ways to load a configuration:
* use the command line option -Prod
 thefile project.ini the current directory

If the option -Prod is used, then the current directory isthe directory the project fileis
in. If the option -prog is used with a directory, the file project.ini in this directory is
loaded.

[Editor] Section

Entry: Editor_Name
Arguments: The name of the local editor

Description: Specifies the name, which is displayed for the local editor. This
entry has only a description effect. Its content is not used to start
the editor.

Saved: Only with Editor Configuration set in the File->Configuration
Save Configuration dialog.
This entry has the same format as for the global editor
configuration in the mcutools.ini file.

Entry: Editor_Exe
Arguments: The name of the executable file of the local editor (including
path).

Description: Specifies file name with is called for showing a text file, when
the local editor setting is active. In the editor configuration
dialog, the local editor selection is only active when this entry is
present and not empty.

Saved: Only with Editor Configuration set in the File->Configuration
Save Configuration dialog.
This entry has the same format as for the global editor
configuration in the mcutools.ini file.

Entry: Editor_Opts

Arguments: The options to use the local editor

46 Smart Linker

Environment
Local Configuration File (usually project.ini)

Description:

Saved:

Example:

Specifies options, which should be used for the local editor. If
this entry is not present or empty, “%f" is used. The command
line to launch the editor is build by taking the Editor_Exe
content, then appending a space followed by this entry.

Only with Editor Configuration set in the File->Configuration
Save Configuration dialog.

This entry has the same format as for the global editor
configuration in the mcutools.ini file.

[Editor]

editor_name=WinEdit
editor_exe=C:\Winedit\WinEdit.exe
editor_opts=%f

[[LINKER] Section

Entry:

Arguments:

Description:

Saved:

Entry:

Arguments:

Description:

Saved:

Entry:
Arguments:

Special:

Description:

RecentCommandLineX, X= Integer
String with a command line history entry, for example, fibo.prm

This list of entries contains the content of command line
history.

Only with Appearance set in the File > Configuration Save
Configuration dialog.

CurrentCommandLine
String with the command line, for example, fibo.prm -wl
The currently visible command line content.

Only with Appearance set in the File->Configuration Save
Configuration dialog.

StatusbarEnabled
1/0

This entry is only considered at startup. Later load operations
do not use it any more.

Is currently the status bar enabled.

1: the status bar is visible

Smart Linker

47

Environment

Local Configuration File (usually project.ini)

Saved:

Entry:

Arguments:

Special:

Description:

Saved:

Entry:

Arguments:

Special:

Description:

Saved:

Entry:

Arguments:

Description:

Saved:

Example:

0: the status bar is hidden

Only with Appearance set in the File > Configuration Save
Configuration dialog.

ToolbarEnabled
1/0

This entry is only considered at startup. Later load operations
do not use it any more.

Is currently the tool bar enabled.
1: the tool bar is visible
0: the tool bar is hidden

Only with Appearance set in the File > Configuration Save
Configuration dialog.

WindowPos
10 integers, e.g. “0,1,-1,-1,-1,-1,390,107,1103,643"

This entry is only considered at startup. Later load operations
do not use it any more.
Changes of this entry do not show the “*” in the title.

This numbers contain the position and the state of the window
(maximized,..) and other flags.

Only with Appearance set in the File > Configuration Save
Configuration dialog.

WindowFont

size: == 0 -> generic size, < 0 -> font character height, > 0 font
cell height

weight: 400 = normal, 700 = bold (valid values are 0..1000)
italic: 0 == no, 1 == yes

font name: max 32 characters.

Font attributes.

Only with Appearance set in the File > Configuration Save
Configuration dialog.

WindowFont=-16,500,0,Courier

48

Smart Linker

Environment
Local Configuration File (usually project.ini)

Entry:

Arguments:

Description:

Saved:

Entry:

Arguments:

Description:

Saved:

Entry:

Arguments:

Description:

Saved:

Entry:

Arguments:

Description:

Saved:

Entry:

Arguments:

Options
-W2

The currently active option string. Because also the messages
are be contained here, this entry can be very long.

Only with Options set in the File > Configuration Save
Configuration dialog.

EditorType
0/1/2/3

0: global editor configuration (in the file mcutools.ini)

1: local editor configuration (the one in this file)

2: command line editor configuration, entry
EditorCommandLine

3: DDE editor configuration, entries beginning with EditorDDE

For details see also Editor Configuration.

Only with Editor Configuration set in the File > Configuration
Save Configuration dialog.

EditorCommandLine
command line, for WinEdit: “C:\Winapps\WinEdit.exe %f /#:%l"

Command line content to open a file. For details see also Editor
Configuration.

Only with Editor Configuration set in the File > Configuration
Save Configuration dialog.

EditorDDEClientName
client commend, for example, “[open(%f)]”

Name of the client for DDE editor configuration.
For details see also Editor Configuration.

Only with Editor Configuration set in the File > Configuration
Save Configuration dialog.

EditorDDETopicName

topic name, for example, “system”

Smart Linker

49

Environment

Local Config

uration File (usually project.ini)

Description: Name of the topic for DDE editor configuration.
For details see also Editor Configuration.
Saved: Only with Editor Configuration set in the File > Configuration
Save Configuration dialog.
Entry: EditorDDEServiceName
Arguments: service name, for example, “system”
Description: Name of the service for DDE editor configuration.
For details see also Editor Configuration.
Saved: Only with Editor Configuration set in the File > Configuration
Save Configuration dialog.
Example
The following example shows atypical layout of the configuration file (usually
project.ini):
[Edi tor]

Edi t or _Nane=W nEdi t
Editor Exe=C.\WnEdi t\WnEdit.exe % /# %
Edit or _Opt s=%

[Li nker]

St at usbar Enabl ed=1

Tool bar Enabl ed=1

W ndowPos=0, 1,-1,-1,-1, -1, 390, 107, 1103, 643
W ndowFont =- 16, 500, 0, Couri er

Opti ons=-wl

Edi t or Type=3

Recent CommandLi neO=fi bo. prm - w2

Recent ConmandLi nel=fi bo. prm

Cur rent CormandLi ne=cal ¢c. prm - w2

Edi t or DDEC i ent Nane=[open(%)]

Edi t or DDETopi cNanme=syst em

Edi t or DDESer vi ceNane=nsdev

Edi t or CommandLi ne=C:\W nEdi t \WnEdit.exe % /# %

50

Smart Linker

Environment
Paths

Paths

Most environment variables contain path liststelling where to ook for files. A path list
isalist of directory names separated by semicolons following the syntax below:

Pat hList = DirSpec {";" DirSpec}.

DirSpec = ["*"] DirectoryNane.
Example:

GENPATH=C: \ | NSTALL\ LI B; D: \ PROJECT\ TEST; \usr\l oc\nmetrowerks\lib
:\ hone\ ne

If adirectory nameis preceded by an asterisk ("' * "), the programs recursively search
that whole directory tree for afile, not just the given directory itself. The directories
are searched in the order they appear in the path list.

Example:

LI BPATH=*C. \ | NSTALL\ LI B

NOTE Some DOS/UNIX environment variables (like GENPATH,
LIBPATH, etc.) are used. For further details refer to “ Environment.”

Line Continuation

It is possible to specify an environment variable in a environment file (default.env/
hidefautls) over different lines using the line continuation character ‘\':

Example:
COVPOPTI ONS=\
-2\
- Wd
Thisisthe same as
COMPOPTI ONS=- W2 - Whd
However, this feature may be dangerous using it together with paths, for example,
GENPATH=. \

TEXTFI LE=. \ t xt

Smart Linker 51

Environment
Environment Variable Details

will resultin
GENPATH=. TEXTFI LE=. \ t xt

To avoid such problems, we recommend to use a semicolon’;’ at the end of a path if
thereisa‘\’ at the end:

GENPATH=. \ ;
TEXTFI LE=. \ t xt

Environment Variable Detalls

The remainder of this section is devoted to describing each of the environment
variables available for the SmartLinker. Table 3.1 contains options in a phabetical
order and each is divided into several sections.

52 Smart Linker

Environment

ABSPATH
Table 3.1 Environment variables and their description
Topic Description
Tools Lists tools which are using this variable
Synonym For some environment variables, a synonym also exists.
Those synonyms may be used for older releases of the
SmartLinker and will be removed in the future. A synonym has
lower precedence than the environment variable.
Syntax Specifies the syntax of the option in a EBNF format.
Arguments Describes and lists optional and required arguments for the
variable.
Default Shows the default setting for the variable or none.
Description Provides a detailed description of the option and how to use it.
Example Gives an example of usage, and effects of the variable where
possible. The example shows an entry in the default.env for
PC or in the .hidefaults for UNIX.
See also Names related sections.
ABSPATH: Absolute Path
Tools: SmartLinker, Debugger
Synonym: None
Syntax: "ABSPATH=" {<path>}.
Arguments: <path>: Paths separated by semicolons, without spaces.
Description: When this environment variable is defined, the SmartLinker
will store the absolute files it produces in the first directory
specified there. If ABSPATH is not set, the generated absolute
files will be stored in the directory the parameter file was
found.
Example: ABSPATH=\sources\bin;..\..\headers;\usr\local\bin
See also: none
Smart Linker 53

Environment
COPYRIGHT

COPYRIGHT

COPYRIGHT: Copyright Entry in Absolute
File

Tools: Compiler, Assembler, SmartLinker, Librarian

Synonym: none.

Syntax: "COPYRIGHT=" <copyright>.

Arguments: <copyright>: copyright entry.

Default: none.

Description: Each absolute file contains an entry for a copyright string. This
information may be retrieved from the absolute files using the
decoder.

Example: COPYRIGHT=Copyright by PowerUser

See also: Environment variable USERNAME

Environment variable INCLUDETIME

DEFAULTDIR

DEFAULTDIR: Default Current Directory

Tools: Compiler, Assembler, SmartLinker, Decoder, Debugger,
Librarian, Maker, Burner

Synonym: none.

Syntax: "DEFAULTDIR=" <directory>.

Arguments: <directory>: Directory to be the default current directory.

Default: none.

Description: With this environment variable the default directory for all tools
may be specified. All the tools indicated above will take the
directory specified as their current directory instead the one
defined by the operating system or launching tool (e.g. editor).

54 Smart Linker

Environment
ENVIRONMENT

NOTE Thisisan environment variable on system level (global environment
variable) It cannot be specified in a default environment file
(DEFAULT.ENV/.hidefaults)

Example: DEFAULTDIR=CAINSTALL\PROJECT

See also: Section The Current Directory
Section MCUTOOLS.INI File’

ENVIRONMENT

ENVIRONMENT: Environment File

Specification
Tools: Compiler, SmartLinker, Decoder, Debugger, Librarian, Maker
Synonym: HIENVIRONMENT
Syntax: "ENVIRONMENT=" <file>.

Arguments: <file>: file name with path specification, without spaces
Default: none.

Description: This variable has to be specified on system level. Normally the
SmartLinker looks in the current directory for a environment file
named default.env (.hidefaults on UNIX). Using
ENVIRONMENT (e.g. set in the autoexec.bat (DOS) or .cshrc
(UNIX)), a different file name may be specified.

NOTE Thisis an environment variable on system level (global environment
variable) It cannot be specified in a default environment file
(DEFAULT.ENV/.hidefaults)

Example: ENVIRONMENT=\METROWERKS\prog\global.env

See also: none.

Smart Linker 55

Environment
ERRORFILE

ERRORFILE

ERRORFILE: Error File Name Specification

Tools:
Synonym:
Syntax:

Arguments:

Description:

Compiler, SmartLinker, Assembler
none.
"ERRORFILE=" <filename>.

<filename>: File name with possible format
specifiers.

The environment variable ERRORFILE
specifies the name for the error file (used by
the SmartLinker).

Possible format specifiers are:

'%n'": Substitute with the file name, without the
path.

'%p": Substitute with the path of the source
file.

'%f": Substitute with the full file name, i.e. with
the path and name (the same as '%p%n").

In case of an illegal error file name, a
notification box is shown.

56

Smart Linker

Environment
ERRORFILE

Example:

See also:

ERRORFILE=MyETrrors.err
lists all errors into the file MyErrors.err in the
project directory.

ERRORFILE=\tmp\errors

lists all errors into the file errors in the
directory \tmp.

ERRORFILE=%f.err

lists all errors into a file with the same name
as the source file, but with extension .err, into
the same directory as the source file, for
example, if we link a file \sources\test.prm, an
error list file \sources\test.err will be
generated.

ERRORFILE=\dir1\%n.err

For example, for a source file test.prm, an
error list file \dir1\test.err will be generated.

ERRORFILE=%p\errors.txt

For example, for a source file
\dirl\dir2\test.prm, an error list file
\dirl\dir2\errors.txt will be generated.

If the environment variable ERRORFILE is not
set, the errors are written to the file EDOUT in
the project directory.

If the environment variable ERRORFILE is not
set, errors are written to the default error file.

The default error file name depends on the
way the linker is started.

If a file name is provided on the linker
command line, the errors are written to the file
EDOUT in the project directory.

If no file name is provided on the linker
command line, the errors are written to the file
ERR.TXT in the project directory.

none.

Smart Linker

57

Environment
GENPATH

GENPATH

GENPATH: Define Paths to search for input

Files
Tools: Compiler, Assembler, SmartLinker, Decoder, Debugger
Synonym: HIPATH
Syntax: "GENPATH=" {<path>}.

Arguments: <path>: Paths separated by semicolons, without spaces.

Description: The SmartLinker will look for the prm first in the project
directory, then in the directories listed in the environment
variable GENPATH. The object and library files specified in the
linker prm file are searched in the project directory, then in the
directories listed in the environment variable OBJPATH and
finally in those specified in GENPATH

NOTE If adirectory specification in this environment variables starts with
an asterisk (“*), the whole directory tree is searched recursively
depth first, i.e. all subdirectories and their subdirectories and so on
are searched, too. Within one level in the tree, search order of the
subdirectories is indeterminate.

Example: GENPATH=\o0bj;..\.\lib;

See also: none

58 Smart Linker

Environment
INCLUDETIME

INCLUDETIME

Tools:
Synonym:

Syntax:

Arguments:

Default:

Description:

Example:

See also:

INCLUDETIME: Creation Time in Object File

Compiler, Assembler, SmartLinker, Librarian

none.

"INCLUDETIME=" ("ON" | "OFF").

"ON": Include time information into object file.

"OFF": Do not include time information into object file.
"ON"

Normally each absolute file created contains a time stamp
indicating the creation time and data as strings. So whenever a
new file is created by one of the tools, the new file gets a new
time stamp entry.

This behavior may be undesired if for SQA reasons a binary
file compare has to be performed. Even if the information in
two absolute files is the same, the files do not match exactly
because the time stamps are different. To avoid such
problems this variable may be set to OFF. In this case the time
stamp strings in the absolute file for date and time are “none”
in the object file.

The time stamp may be retrieved from the object files using
the decoder.

INCLUDETIME=0OFF
Environment variable COPYRIGHT

Environment variable USERNAME

Smart Linker

59

Environment
LINKOPTIONS

LINK

OPTIONS

LINKOPTIONS: Default SmartLinker

Options

Tools:
Synonym:

Syntax:

Arguments:

Default:

Description:

Example:

See also:

SmartLinker

None

"LINKOPTIONS=" {<option>}.

<option>: SmartLinker command line option
none.

If this environment variable is set, the SmartLinker appends its
contents to its command line each time a file is linked. It can be
used to globally specify certain options that should always be
set, so you do not have to specify them each time a file is linked.

LINKOPTIONS=-W2

SmartLinker options

OBJPATH

OBJPATH: Object File Path

Tools: Compiler, Assembler, SmartLinker, Decoder, Debugger
Synonym: None
Syntax: "OBJPATH=" {<path>}.
Arguments: <path>: Paths separated by semicolons, without spaces.
Description: When this environment variable is defined, the linker search
for the object and library files specified in the linker prm file in
the project directory, then in the directories listed in the
environment variable OBJPATH and finally in those specified
in GENPATH.
60 Smart Linker

Environment
RESETVECTOR

Example:

See also:

OBJPATH=\sources\bin;..\..\neaders;\usr\local\bin
Option -L

RESETVECTOR

RESETVECTOR: Reset Vector Location

Tools:

Synonym:
Syntax:

Arguments:

Description:

Example:

See also:

Compiler, Assembler, SmartLinker, Simulator for HCO5 and St7
only

None
"RESETVECTOR=" <Address>.

<Address>: Address of reset vector. The default is OXFFFE.

For the HCO5 and the St7 architecture, the reset vector location
depends on the actual derivative. For the VECTOR directive,
the linker has to know where the VECTOR 0 has to be placed.

RESETVECTOR=0xFFFE

none

SRECORD

SRECORD: S Record File Format

Tools:
Synonym:
Syntax:

Arguments:

Description:

Assembler, SmartLinker, Burner
None
"SRECORD=" <RecordType>.

<Record Type>: Force the type for the Motorola S record which
must be generated. This parameter may take the value ‘S1’,
‘S2’ or ‘'S3.

This environment variable is only relevant when absolute files
are directly generated by the macro assembler instead of object
files. When this environment variable is defined, the Assembler
will generate a Motorola S file containing records from the
specified type (S1 records when S1 is specified, S2 records
when S2 is specified and S3 records when S3 is specified).

Smart Linker

61

Environment
TEXTPATH

NOTE

If the environment variable SRECORD is set, it isthe user

responsibility to specify the appropriate S record type. If you
specifies S1 while your code isloaded above OXFFFF, the Motorola S
file generated will not be correct, because the addresses will all be

truncated to 2 bytes values.

Example:

See also:

When this variable is not set, the type of S record generated will
depend on the size of the address loaded there. If the address
can be coded on 2 bytes, a S1 record is generated. If the
address is coded on 3 bytes, a S2 record is generated.
Otherwise a S3 record is generated.

SRECORD=S2

none

TEXTPATH

TEXTPATH: Text Path

Tools:
Synonym:
Syntax:
Arguments:

Description:

Example:

See also:

Compiler, Assembler, SmartLinker, Decoder

None

“TEXTPATH=" {<path>}.

<path>: Paths separated by semicolons, without spaces.

When this environment variable is defined, the SmartLinker will
store the map file it produces in the first directory specified
there. If TEXTPATH is not set, the generated map file will be
stored in the directory the prm file was found.

TEXTPATH=\sources..\..\neaders;\usr\local\txt

None

62

Smart Linker

Environment

TMP

TMP: Temporary directory

Tools: Compiler, Assembler, SmartLinker, Debugger, Librarian

Synonym: none.

Syntax: "TMP=" <directory>.

Arguments: <directory>: Directory to be used for temporary files.

Default: none.

Description: If a temporary file has to be created, normally the ANSI
function tmpnam() is used. This library function stores the
temporary files created in the directory specified by this
environment variable. If the variable is empty or does not
exist, the current directory is used. Check this variable if you
get an error message “Cannot create temporary file”.

NOTE Thisisan environment variable on system level (global environment
variable) It CANNOT be specified in a default environment file
(DEFAULT.ENV/.hidefaults).

Example: TMP=C\TEMP

See also: Section ‘The Current Directory’

USERNAME

USERNAME: User Name in Object File

Tools:
Synonym:
Syntax:

Arguments:

Compiler, Assembler, SmartLinker, Librarian
None
"USERNAME=" <user>.

<user>: Name of user.

Smart Linker

63

Environment

USERNAME
Default: None
Description: Each absolute file contains an entry identifying the user who
created the file. This information may be retrieved from the
absolute files using the decoder.
Example: USERNAME=PowerUser
See also: Environment variable COPYRIGHT

Environment variable INCLUDETIME

64

Smart Linker

Files

Input FilesOutput Files

Input Files

Parameter File

The linker takes any file asinput, it does not require the file name to have a special
extension. However, we suggest that al your parameter file names have extension
.prm.. Parameter file will be searched first in the project directory and then in the
directories enumerated in GENPATH. The parameter file must be a strict ASCII text
file.

Object File

Thelist of filesto be linked is specified in the link parameter file entry NAMES.
Additional object files can be specified with the option -Add.

Thelinker looks for the object filesfirst in the project directory, then in the directories
enumerated in OBJPATH and finally in the directories enumerated in GENPATH. The
binary files must be valid HHIWARE, ELRDWARF 1.1 or 2.0 objects, absolute or
library files.

Output Files

Absolute Files

After successful linking session, the SmartLinker generates an absol ute file containing
the target code as well as some debugging information. Thisfile is written to the

directory given in the environment variable ABSPATH. If that variable contains more
than one path, the absolute file is written in the first directory given; if thisvariableis

Smart Linker 65

Files

Output Files

not set at all, the absolute file is written in the directory the parameter file was found.
Absolute files always get the extension .abs.

Motorola S Files

After successful linking session and if the option -B is present, the SmartLinker
generates a Motorola S record file, which can be burnt into an EPROM. Thisfile
contains information stored in all the READ_ONLY sectionsin the application. The
extension for the generated Motorola S record file depends on the setting from the
variable SRECORD.

» |f SRECORD = S1, the Motorola S record file gets the extension . s1.
» |If SRECORD = S2, the Motorola Srecord file gets the extension . s2.
» If SRECORD = S3, the Motorola S record file gets the extension . s 3.
» If SRECORD is not set, the Motorola S record file gets the extension . sx.

Thisfileiswritten to the directory given in the environment variable ABSPATH. If
that variable contains more than one path, the S record file is written in the first
directory given,; if thisvariableis not set at all, the Srecord file iswritten in the
directory the parameter file was found.

Map Files

After successful linking session, the SmartLinker generates a map file containing
information about the link process. Thisfile iswritten to the directory given in the
environment variable TEXTPATH. If that variable contains more than one path, the
map fileiswritten in the first directory given; if thisvariableis not set at all, the map
fileiswritten in the directory the parameter file was found. map files aways get the
extension .map.

Dependency Information

The linker provides useful dependency information in the map file generated.
Basically the dependency information shows which object are used by an object
(function, variable, ...).

The dependency information in the linker map fileis based on fixups/rel ocations. That
isif an object references another object by arelocation, this object is added to the
dependency list.

Example:

66

Smart Linker

Files
Output Files

i nt bar;

void foo(void) {
bar = 0O;

}

In the above example, in foo the compiler has generated a fixup/relocation to the
object bar, so the linker knows that foo uses bar. For the next example, foo will
reference foo itself, because in foo thereis afixup to foo aswell:

void foo(void) {
foo();

}

Now it could be that the compiler will do a common code optimization, that isif the
compiler tries to collect some common code in a function so that the code size can be
reduced. Note that you can switch off this compiler common code optimization.

Example:

void foo(void) {
if (bar == 3) bar = 0;
if (bar == 3) bar = 0;

}

In the above example, the compiler could optimize this to

int foo(void) {
bsr foo: Label:

%66_Labe|
if (bar == 3) bar = 0;
return;

Here the compiler will generate alocal branch inside foo to alocal subroutine. This
produces a rel ocation/fixup into foo, that is for the linker foo references itself.

Error Listing File

If the SmartLinker detects any errors, it does not create an absolute file but an error
listing file. Thisfile is generated in the directory the source file was found (also see
Environment, Environment Variable ERRORFILE).

Smart Linker 67

Files
Output Files

If the Linker window is open, it displaysthe full path of all binary filesread. In case of
error, the position and file name where the error occursis displayed in the linker
window.

If the SmartLinker is started from WinEdit (with '%f' given on the command line) or
Codewright (with '%b%e' given on the command line), this error fileis not produced.
Instead it writes the error messagesin a special format in afile called EDOUT using
the Microsoft format by default. Use WinEdit’'s *Next Error’ or Codewright’s * Find
Next Error’ command to see both error positions and the error messages.

Interactive Mode (SmartLinker window open)

If ERRORFILE is set, the SmartLinker creates a message file named as specified in
this environment variable.

If ERRORFILE is not set, adefault file named ERR.TXT is generated in the current
directory.

Batch Mode (SmartLinker window not open)

If ERRORFILE is set, the SmartLinker creates a message file named as specified in
this environment variable.

If ERRORFILE is not set, adefault file named EDOUT is generated in the current
directory.

68

Smart Linker

Files

Output Files
prm 1. current dir “ o7 1. current dir
2. GENPATH “1ib” 2. OBJPATH
“ abs” 3. GENPATH
SmartLinker
ERRORFILE
.abs [1. ABSPATH | TEXTPATH ERR.TXT
sx |2. Source file path | TP 15T o e path -
EDOUT
Smart Linker 69

Files
Output Files

70

Smart Linker

SmartLinker Options

The SmartLinker offers a number of options that you can use to control the
SmartLinker’s operation. Options are composed of aminus/dash (*-') followed by one
or more letters or digits. Anything not starting with a dash/minusis supposed to be the
name of a parameter file to be linked. SmartLinker options may be specified on the
command line or in the LINKOPTIONS variable. Typically, each linker optionis
specified only once per linking session.

Command line options are not case sensitive, for example, "-W1" isthe same as "—
wl".

LINKOPTIONS

If this environment variableis set, the linker appends its contents to its command line
each time anew fileislinked. It can be used to globally specify certain options that
should always be set, so you do not have to specify them each time afileislinked.

SmartLinker Option Details

The remainder of this section is devoted to describing each of the SmartLinker options
available for the SmartLinker. Table 5.1 lists the options in alphabetical order and
each of the optionsis divided into severa sections.

Smart Linker 71

SmartLinker Options

-Add

-Add

Table 5.1 SmartLinker Option Details

Topic Description

Group Specifies what sort of influence this option has.

Syntax Specifies the syntax of the option in a EBNF format.

Arguments Describes and lists optional and required arguments for the
option.

Default Shows the default setting for the option.

Description Provides a detailed description of the option and how to use
it.

Example Gives an example of usage, and effects of the option where
possible. SmartLinker settings, source code and/or
SmartLinker prm files are displayed where applicable. The
examples shows an entry in the default.env for PC or in the
.hidefaults for UNIX.

See also Names related options.

-Add: Additional Object/Library File

Group: INPUT

Syntax: "-Add" <FileList>.

Arguments: <FileList>: Names of an additional object files or libraries.

Default: none.

Description: With the option -Add, additional files can be added to a project
without modifying the link parameter file.
If all binary files should be specified by the command line
option -add, then an empty NAMES block (just NAMES END)
must be present in the link parameter file.
Object files added with this option are linked before the object
files specified in the NAMES block.
To specify more than one file either use several options -Add:
linker.exe demo.prm -addFileA.o -addFileB.o
or use braces to bind the list to the option -add:
linker.exe demo.prm -add(FileA.o FileB.0)

72 Smart Linker

SmartLinker Options
-AllocFirst,-AllocNext,-AllocChange

To add a file which name contain spaces, use braces together
with double quotes:

linker.exe demo.prm -add(“File A.0” “File B.0")

NOTE To switch off smart linking for the additional object file, usea+ sign
immediately behind the filename.

Example: linker.exe fibo.prm -addfibol.0 -addfibo2.0
In this example, the additional object files fibol.0 and fibo2.0
are linked with the fibo application.

See also: command NAMES.

-AllocFirst,-AllocNext,-AllocChange

-Alloc: Allocation over segment boundaries

(ELF)
Group: OPTIMIZATION
Syntax: "-Alloc" ("First" | "Next" | "Change")
Arguments: “First”: use first free location
“Next”: always use next segment
“Change”: check when segment changes only
Default: -AllocNext.
Description: The linker supports to allocate objects from

one ELF section into different segments. The
allocation strategy controls where space for
the next object is allocated as soon as the first
segment is full.

In the AllocNext strategy, the linker does
always take the next segment as soon as the
current segment is full. Holes generated
during this process are not used later. With
this strategy, the allocation order corresponds
to the definition order in the object files.
Objects defined first in a source file are
allocated before later defined objects.

Smart Linker 73

SmartLinker Options
-AllocFirst,-AllocNext,-AllocChange

In the AllocFirst strategy, the linker checks for
every object, if there is a previously only
partially used segment, into which the current
object does fit. This strategy does not
maintain the definition order.

In the AllocChange strategy, the linker checks
as soon as a object does no longer fit into the
current segment, if there is a previously only
partially used segment, into which the current
object does fit. This strategy does not
maintain the definition order, but it does
however use fewer different ranges than the
AllocFirst case.

NOTE This option has no effect in the HIWARE format. In the HIWARE
format, the linker does always use the “-AllocNext” strategy.
However, the linker does not maintain the allocation order for small
variables.

NOTE This option has no effect if sections are not split into several
segments. Then all strategies behave identically.

NOTE Some compilers do optimization in the assumption that the definition
order is maintained in the memory. But for such code, no splitting up
into several segment is allowed anyway, so this optimization does not
cause new problems.

74 Smart Linker

SmartLinker Options
-AsROMLib

Example:

See also:

Objects: AAAA BB CCC D EEE FFFFF
Segments: "---"" e "

AllocNext: "---""AAAABB-" "CCCDEEEFFFFF"
AllocChange:"CCC" "AAAABBD" "EEEFFFFF----"
AllocFirst: "BBD" "AAAACCC" "EEEFFFFF----"

In this example, the objects A (size 4), B (size 2), ... F (size 5)
should be allocated into 3 segments of size 3, 7 and 12 bytes.
Because the object A does not fit into the first segment, the
AllocNext strategy does not use this space at all. The two other
strategies are filling this space later. The order of the objects is
only maintained by the AllocNext case.

None.

-AsROMLIib

-AsROMLIib: Link as ROM Library

Group:
Syntax:
Arguments:

Default:

Description:

Example:

See also:

OUTPUT

"-AsROMLib".

<FileList>: Names of an additional object files or libraries.
none.

With the option -AsROMLIb set, the application is linked as a
ROM library. This option has the same effect as specifying AS
ROM LIB inthe linker parameter file.

linker.exe myROMIib.prm -AsROMLIib
AS ROM LIB.

Smart Linker

75

SmartLinker Options

-B

-B

-B: Generate S-Record file

Group:
Syntax:

Arguments:

Default:

Description:

Example:

See also:

OUTPUT
"-B".
none.
Disabled.

This option specifies that in addition to an absolute file, also a
srecord file should be generated.

The name of the srecord file is the same as the name of the
abs file, except that the extension “SX” is used. The
default.env variable “SRECORD” may specify an alternative
extension.

LINKOPTIONS=-B

none.

-CAllocUnusedOverlap

-CAllocUnusedOverlap: Allocate not

referenced overlap variables

Group:
Syntax:

Arguments:

Default:

(HIWARE)

OPTIMIZATION
"-CAllocUnusedOverlap”.
none.

none.

76

Smart Linker

SmartLinker Options
-Ci

Description:

Example:

See also:

-Ci

When Smart Linking is switched off, not referenced, but
defined overlap variables are still not allocated by default.
Such variables do not belong to a specific function. Therefore
they cannot be allocated overlapped with other variables.

Note that this option does only change the behavior of
variables in the special _OVERLAP segment. This segment is
only used for the purpose of allocating parameters and local
variables for processors, which do not have a stack. Not
allocating a non referenced overlap variable therefore is
similar to not allocating a variable on the stack for other
processors. If you use this stack analogy, then allocating such
variables this way corresponds to allocate not referenced
stack variables in global memory.

This option is provided to make it possible to allocate all
defined objects. It is not recommended to use this option.
LINKOPTIONS=-CAllocUnusedOverlap

Ovelapping Locals

segment _OVERLAP

-Ci: Link Case Insensitive

Group:
Syntax:

Arguments:

Default:

Description:

INPUT
"_Ci",

none.

none.

With this option, the linker compares all object names case
insensitive.

The main purpose for this option is to support case insensitive
linking of assembly modules. But because all identifiers are
linked case insensitive, this also affects C or C++ modules.
This option might cause sever problems with the name
mangling of C++, therefore it should not be used with C++.
This option does only affect the comparison of names of linked
objects. Section names or the parsing of the link parameter file
are not affected. They remain case sensitive.

Smart Linker

77

SmartLinker Options

-Cocc

Example: void Fun(void);

void main(void) {
fun(); /* with -ci this call is resolved to Fun */

}
The linker will match the fun and Fun identifiers at link time.
However, for the compiler these are still two separate objects
and therefore the code above issues a “implicit parameter
declaration” warning.

See also: none.

-Cocc

-Cocc: Optimize Common Code (ELF)

Group:
Syntax:

Arguments:

Default:

Description:

Example:

See also:

OPTIMIZATION
".Cocc'[“="[D"] [C"]].

“D": optimize Data (constants and strings).
“C": optimize Code

none.

This option defines the default if constants and code should be
optimized. The commands DO_OVERLAP_CONSTS and
DO_NOT_OVERLAP_CONSTS take precedence over the
option.

printf(“Hello World\n*); printf(*\n");
With -Cocc, the string “\n” is allocated inside of the string
“Hello World\n”.

Command DO_OVERLAP_CONSTS

78

Smart Linker

SmartLinker Options
-CRam

-CRam

-CRam: Allocate non specified const
segments in RAM (ELF)

Group:
Syntax:
Arguments:

Default:

Description:

Example:

See also:

-Dist

OPTIMIZATION
"-CRam".

none.

none.

With this option, constant data segments not explicitly allocated
in a READ_ONLY segment are allocated in the default
READ_WRITE segment.

This was the default for old versions of the linker, so this option
provides a compatible behavior with old linker versions.

When C source files are compiled with -CC, the constants are
put into the ROM_VAR segment. If the ROM_VAR segment is
not mentioned in the prm file, then without this option, these
constants are allocated in DEFAULT_ROM. With this option
they are allocated in DEFAULT_RAM.

none.

-Dist: Enable distribution optimization (ELF)

Group:
Syntax:
Arguments:

Default:

Description:

See also:

OPTIMIZATIONS
"-Dist".
none.
none .

With this option the linker optimizer is enabled. Instead of link
the linker generates a distribution file which contains a
optimized distribution.

Automatic Distribution of Paged Functions

Smart Linker

79

SmartLinker Options

-DistFile

-DistFile

-DistFile: Specify distribution file name (ELF)

Group:
Syntax:
Arguments:
Default:

Description:

Example:

See also:

OPTIMIZATIONS

"-DistFile"<file name>.

<file name>: Name of the distribution file.
distr.inc .

When this option is enabled, it's possible to specify the name of
the distribution file. There are listed all distributed functions and
how the compiler has to reallocate them.

LINKOPTIONS=-DistFileMyFile

Automatic Distribution of Paged Functions

-DistInfo

-Distinfo: Generate distribution information
file (ELF)

Group:
Syntax:
Arguments:
Default:

Description:

Example:

See also:

OPTIMIZATIONS

"-DistInfo"<file name>.

<file name>: Name of the information file.
distr.txt .

When this option is enabled, the optimizer generates a
distribution information file with a list of all sections and their
functions. To the functions are several informations available
like: old size, optimized size and new calling convention.

LINKOPTIONS=-DistInfoMyInfoFile

Automatic Distribution of Paged Functions

80

Smart Linker

SmartLinker Options
-DistOpti

-DistOpti

-DistOpti: Choose optimizing metho

Group:
Syntax:

Arguments:

Default:

Description:

Example:

See also:

d (ELP)

OPTIMIZATIONS

"-DistOpti" ("FillBanks" | "CodeSize")
“FillBanks”: Priority is to fill the banks
“CodeSize”: Priority is to minimize the code size
-DistOptiFiliBanks.

When this option is enabled, it's possible to choose the
optimizing method. With the argument “FillBanks” the priority
for the linker is the minimization of the free space in every
bank. This method has the disadvantage that less functions
have a near calling convention. If the code size has to be
minimized and the free space which remains in the banks is
no problem so it is recommendable to use the argument
“CodeSize”.

LINKOPTIONS=-DistOptiFillBanks

Automatic Distribution of Paged Functions

-DistSeg

-DistSeq: Specify distribution segment

name (ELF)
Group: OPTIMIZATIONS
Syntax: "-DistSeg"<segment name>.
Arguments: <segment name>: Name of the distribution segment.
Default: DISTRIBUTE .
Description: When this option is enabled, it's possible to specify the name
of the distribution segment.
Example: LINKOPTIONS=-DistSegMyDistributionSegment
See also: Automatic Distribution of Paged Functions

Smart Linker

81

SmartLinker Options
-E

-E

-E: Define Application Entry Point (ELF)

Group: INPUT

Syntax: "-E=" <FunctionName>.

Arguments: <FunctionName>: Name of the function which is considered
to be the entry point in the application.

Default: none.

Description: This option specifies the name of the application entry point.

The symbol specified must be a externally visible (not defined
as static in an ANSI C source file or XREFed in an assembly
source file).

Example: LINKOPTIONS=-E=entry
This is the same as using the command:
NIT entry
in the prm file

See also: Command INIT

-Env

-Env: Set Environment Variable

Group: HOST
Syntax: "-Env" <Environment Variable> "=" <Variable Setting>.

Arguments: <Environment Variable>: Environment variable to be set
<Variable Setting>: Setting of the environment variable

Default: none.
Description: This option sets an environment variable.
Example: “-EnvOBJPATH=\sources\obj”

82 Smart Linker

SmartLinker Options
-FA, -FE, -FH -F6

See also:

This is the same as:

OBJPATH=\sources\obj

in the default.env

none.

-FA, -FE, -FH -F6

-FA, -FE, -FH -F6: Object File Format

Group:
Syntax:

Arguments:

Default:

Description:

INPUT.

"F (AT “E" | “H" | “6").

none.

“EA”

The linker is able to link different object file formats.

This option defines which object file format should be used.

With “-FA”, the linker determines the object file format
automatically. With “-F2”, this automatism can be overridden
and only ELF files are correctly recognized. With “-FH” only
HIWARE files are known. With “-F6” set, the linker produces a
V2.6 HIWARE absolute file.

NOTE Itisnot possibleto build an application consisting of some HIWARE

and some ELF files. Either al filesare in the ELF format or all files
arein the HIWARE format.

The format of the generated absolute file is the same as the format of
the object files. ELF objects files generate a EL F absolute file and
HIWARE object files generate a HIWARE absolute file.

See also:

none.

Smart Linker

83

SmartLinker Options

-H

-H

-H: Prints the List of All Available Options

Group:
Syntax:

Arguments:

Default:

Description:

See also:

-L

Group:
Syntax:

Arguments:

Default:

Description:

Example:

See also:

. Add a path to the search pat

OUTPUT.

"-H".

none.

none.

Prints the list of all options of the SmartLinker.

The options are sorted by the Group. Options in the same
group, are sorted alphabetically.

none.

h (ELF)

INPUT
"-L" <Directory>.

<Directory>: Name of an additional search directory for object
files.

none.

With this option, the ELF part of this linker searches object
files first in all paths given with this option. Then the usual
environment variables are considered.

LINKOPTIONS=-Lc:\metrowerks\obj
Environment Variable OBJPATH

84

Smart Linker

SmartLinker Options
-Lic

-LiC

-Lic: Print license information

Group:
Syntax:

Arguments:

Default:

Description:

Example:

See also:

-LIcA

Various.

"-Lic"

none.

none.

This options shows the current state of the license information.

When no full license is available, the SmartLinker runs in demo
mode.

In demo mode, the size of the applications which can be linked
is limited
none.

Option -Lica

-LicA: License Information about every
Feature in Directory

Group:
Syntax:
Arguments:
Default:

Defines:

Description:

Various
"-LicA".
none.
none.
none.

The -LicA option prints the license information of every tool or
dll in the directory were the executable is (e.qg. if tool or feature
is a demo version or a full version). Because the option has to
analyze every single file in the directory, this takes a long time.

Smart Linker

85

SmartLinker Options

-M
Example: none.
See also: Option -Lic

-M

-M: Generate Map File

Group:
Syntax:
Arguments:
Default:

Description:

Example:

See also:

-N

OUTPUT
=M
None.
none.

This option force the generation of a map file after a successful
linking session.

LINKOPTIONS=-M

This is the same as using the command:
MAPFILE ALL

in the prm file

Command MAPFILE

-N: Display Notify Box

Group: MESSAGE
Syntax: "-N".
Arguments: none.
Default: none.
Description: Makes the SmartLinker display an alert box if there was an
error during linking. This is useful when running a makefile
since the linker waits for the user to acknowledge the message,
thus suspending makefile processing. (The 'N' stands for
“Notify”.)
86 Smart Linker

SmartLinker Options
-NoBeep

Example:

See also:

This feature is useful for halting and aborting a build using the
Make Utility.

LINKOPTIONS=-N

If during linking an error occurs, an error dialog box will be
opened.

none.

-NoBeep

-NoBeep: No Beep in Case of an Error

Group:
Syntax:
Arguments:
Default:

Description:

Example:

See also:

MESSAGE
"-NoBeep".
none.
none.

Normally there is a ‘beep’ notification at the end of processing
if there was an error. To have a silent error behavior, this
‘beep’ may be switched of using this option.

none.

none.

-NoEnv

-NoEnv: Do not use Environment

Group:
Syntax:
Arguments:

Default:

Startup. (This option can not be specified interactively)
"-NoEnv".
none.

none.

Smart Linker

87

SmartLinker Options

-OCopy

Description: This option can only be specified at the command line while
starting the application. It can not be specified in any other
circumstances, including the default.env file, the command
line or whatever.
When this option is given, the application does not use any
environment (default.env, project.ini or tips file).

Example: linker.exe -NoOEnv

See also: Section Environment

-OCopy

-OCopy: Optimize Copy Down (ELF)

Group: OPTIMIZATION

Syntax: "-OCopy" (“On” | “Off").

Arguments: On: Do the optimization.
Off: Optimization disabled

Default: -OCopyOn.

Description: This optimization changes the copy down structure to use as
few space as possible.
The optimization does assume that the application does
perform both the zero out and the copy down step of the global
initialization. If a value is set to zero by the zero out, then zero
values are removed from the copy down information. The
resulting initialization is not changed by this optimization if the
default startup code is used.
This switch does only have an effect in the ELF Format. The
optimizations done in the HIWARE format cannot be switched
off.

Example: LINKOPTIONS=-OCopyOn

See also: Program Startup

88 Smart Linker

SmartLinker Options
-0

-O: Define Absolute File Name

Group:
Syntax:

Arguments:

Default:

Description:

Example:

See also:

-Prod

OUTPUT
"-O" <FileName>.

<fileName>: Name of the absolute file which must be
generated by the linking session.

none.

This option defines the name of the ABS file which must be
generated. If you are using the Linker with CodeWarrior, then
this option is automatically added to the command line passed
to the linker. You can see this if you enable ‘Display generated
command lines in message window’ in the Linker preference
panel in CodeWarrior.

No extension is added automatically. For the option “-otest”, a
file named “test” is generated. To get the usual file extension
“abs”, use “-otest.abs”.

LINKOPTIONS=-Otest.abs

This is the same as using the command:
LINK test.abs

in the prm file.

Command LINK

-Prod: specify project file at startup (P©)

Group:
Syntax:
Arguments:

Default:

none. (this option can not be specified interactively)
"-Prod="<file>.
<file>: name of a project or project directory

none.

Smart Linker

89

SmartLinker Options
-S

Description: This option can only be specified at the command line while
starting the linker. It can not be specified in any other
circumstances, including the default.env file, the command line
or whatever.

When this option is given, the linker opens the file as
configuration file. When the file name does only contain a
directory, the default name project.ini is appended. When the
loading fails, a message box appears.

Example: linker.exe -prod=project.ini

See also: none.

-S

-S: Do not generate DWARF Information

(ELF)
Group: OUTPUT
Syntax: "-S"
Arguments: None.
Default: none.
Description: This option disables the generation of DWARF sections in the
absolute file. This allow you to save some memory on your
PC.
NOTE If the absolute file does not contain any DWARF information, you
will not be able to debug it any more symbolically.
Example: LINKOPTIONS=-S
See also: None

a0 Smart Linker

SmartLinker Options
-SFixups

-SFixups

-SFixups: Creating Fixups (ELF)

Group:
Syntax:

Arguments:

Default:

Description:

Example:

See also:

-StatF

OUTPUT
"-SFixups".
none.
none.

Usually, absolute files do not contain any fixups because all
fixups are evaluated at link time. But with fixups, the decoder
might symbolically decode the content in absolute files, which is
not possible without fixups. Some debuggers do not load
absolute files which contain fixups because they assume that
these fixups are not yet evaluated. But the fixups inserted with
this option are actually already handled by this linker.

This option is contained mainly because of compatibility with
previous versions of the linker.

LINKOPTIONS=-SFixups

none.

-StatF: Specify the name of statistic file

Group:
Syntax:
Arguments:
Default:

Description:

OUTPUT

"-StatF="<fileName>.

<fileName>: name for the file to be written
none.

With this option set, the linker generates a statistic file. In this
file, each allocated object is reported with it's attributes. Every
attribute is separated by a TAB character, so it can be easily
imported into a spreadsheet/database program for further
processing

Smart Linker

91

SmartLinker Options

-V
Example: LINKOPTIONS=-StatF
See also: none.

-V

-V: Prints the SmartLinker Version

Syntax:
Arguments:
Default:

Description:

Example:

See also:

-View

vV,

none.

none.

Prints the SmartLinker version and the project directory

This option is useful to determine the project directory of the
SmartLinker.

-V produces the following list:
Directory: \software\sources\asm
SmartLinker, V5.0.4, Date Apr 20 1997

none.

-View: Application Standard Occurrence

(PC)
Group: HOST
Syntax: "-View" <kind>.
Arguments: <kind> is one of:

“Window”: Application window has default window size
“Min”: Application window is minimized
“Max”: Application window is maximized

“Hidden”: Application window is not visible (only if arguments)

92

Smart Linker

SmartLinker Options
-w1i

Default:

Description:

Example:

See also:

-W1

Application started with arguments: Minimized.
Application started without arguments: Window.

Normally the application (e.qg. linker, compiler, ...) is started as
normal window if no arguments are given. If the application is
started with arguments (e.g. from the maker to compile/link a
file) then the application is running minimized to allow batch
processing. However, with this option the behavior may be
specified. Using -ViewWindow the application is visible with
its normal window. Using -ViewMin the application is visible
iconified (in the task bar). Using -ViewMax the application is
visible maximized (filling the whole screen). Using -
ViewHidden the application processes arguments (e.g. files to
be compiled/linked) completely invisible in the back ground
(no window/icon in the taskbar visible). However e.g. if you
are using the option -N a dialog box is still possible.

-ViewHidden fibo.prm

none.

-W1: No Information Messages

Group:
Syntax:
Arguments:
Default:

Description:

Example:

See also:

MESSAGE
W1,
none.
none.

Inhibits the Linker to print INFORMATION messages, only
WARNING and ERROR messages are emitted.

LINKOPTIONS=-W1

None

Smart Linker

93

SmartLinker Options
-W2

-W2

-W2: No Information and Warning

Messages
Group: MESSAGE
Syntax: "-W2".
Arguments: none.
Default: none.

Description: Suppresses all messages of type INFORMATION and
WARNING, only ERRORSs are printed.

Example: LINKOPTIONS=-W2

See also: None

94 Smart Linker

SmartLinker Options

-WErrFile
T . 1 [1] T
-WETrrFile: Create "err.log" Error File
Group: MESSAGE
Syntax: "-WErrFile" ("On" | "Off").
Arguments: none.
Default: err.log is created/deleted.
Description: The error feedback from the compiler to called
tools is now done with a return code. In 16 bit
windows environments, this was not possible,
so in the error case a file “err.log” with the
numbers of errors written into was used to
signal an error. To state no error, the file
“err.log” was deleted. Using UNIX or WIN32,
there is now a return code available, so this
file is no longer needed when only UNIX /
WIN32 applications are involved. To use a 16
bit maker with this tool, the error file must be
created in order to signal any error.
Example: -WETrrFileOn
err.log is created/deleted when the application
is finished.
-WErrFileOff
existing err.log is not modified.
See also: Option -WStdout
Option -WOutFile
-Wmsg8x3: Cut file names in Microsoft
PC
format to 8.3 (PC)
Group: MESSAGE
Syntax: "-Wmsg8x3".
Smart Linker 95

SmartLinker Options

-WmsgCE

Arguments: none.

Default: none.

Description: Some editors (e.g. early versions of WinEdit) are expecting the
file name in the Microsoft message format in a strict 8.3 format,
that means the file name can have at most 8 characters with
not more than a 3 characters extension. Using Win95 or
WInNT longer file names are possible. With this option the file
name in the Microsoft message is truncated to the 8.3 format.

Example: x:\mysourcefile.prm(3): INFORMATION C2901: Unrolling loop
With the option -Wmsg8x3 set, the above message will be
x:\mysource.c(3): INFORMATION C2901: Unrolling loop

See also: Option -WmsgFi

Option -WmsgFb

Option -WmsgFoi
Option -WMsgFob

Option -WmsgFonP

-WmsgCE

-WmsgCE: RGB color for error messages

Group:
Scope:

Syntax:

Arguments:

Default:

Defines:

Description:

Example:

See also:

MESSAGE

Function

"-WmsgCE" <RGB>.

<RGB>: 24bit RGB (red green blue) value.
-WmsgCE16711680 (rFF g00 b0O, red)
none.

With this options it is possible to change the error message
color. The value to be specified has to be a RGB (Red-Green-
Blue) value, and has to be specified in decimal.

-WmsgCE255 changes the error messages to blue.

none.

96

Smart Linker

SmartLinker Options
-WmsgCF

-WmsgCF

-WmsgCF: RGB color for fatal messages

Group:
Scope:
Syntax:
Arguments:
Default:
Defines:

Description:

Example:

See also:

MESSAGE

Function

"-WmsgCF" <RGB>.

<RGB>: 24bit RGB (red green blue) value.
-WmsgCF8388608 (r80 g00 b00, dark red)
none.

With this options it is possible to change the fatal message
color. The value to be specified has to be a RGB (Red-Green-
Blue) value, and has to be specified in decimal.

-WmsgCF255 changes the fatal messages to blue.

none.

-WmsqgCl

-WmsgCl: RGB color for information

mesSsages

Group: MESSAGE

Scope: Function

Syntax: "-WmsgCl" <RGB>.

Arguments: <RGB>: 24bit RGB (red green blue) value.

Default: -WmsgClI32768 (r00 g80 b0O0, green)

Defines: none.

Description: With this options it is possible to change the information
message color. The value to be specified has to be a RGB
(Red-Green-Blue) value, and has to be specified in decimal.

Example: -WmsgClI255 changes the information messages to blue.

See also: none.

Smart Linker

97

SmartLinker Options

-WmsgCU

-WmsgCU

-WmsgCU: RGB color for user messages

Group:
Scope:
Syntax:
Arguments:
Default:
Defines:

Description:

Example:

See also:

MESSAGE

Function

"-WmsgCU" <RGB>.

<RGB>: 24bit RGB (red green blue) value.
-WmsgCUO (r00 g00 b00, black)

none.

With this options it is possible to change the user message
color. The value to be specified has to be a RGB (Red-Green-
Blue) value, and has to be specified in decimal.

-WmsgCU255 changes the user messages to blue.

none.

-WmsgCW

-WmsgCW: RGB color for warning

mesSsages

Group: MESSAGE

Scope: Function

Syntax: "-WmsgCW" <RGB>.

Arguments: <RGB>: 24bit RGB (red green blue) value.

Default: -WmsgCW255 (r00 g00 bFF, blue)

Defines: none.

Description: With this options it is possible to change the warning message
color. The value to be specified has to be a RGB (Red-Green-
Blue) value, and has to be specified in decimal.

Example: -WmsgCWO0 changes the warning messages to black.

See also: none.

98 Smart Linker

SmartLinker Options
-WmsgFb (-WmsgFbv, -WmsgFbm)

-WmsgFb (-WmsgFbv, -WmsgFbm)

-WmsgFb: Set message file format for
batch mode

Group:
Syntax:

Arguments:

Default:

Description:

Example:

MESSAGE
"-WmsgFb" [*v" | "m"].
"v": Verbose format.
"m": Microsoft format.
-WmsgFbm

The SmartLinker can be started with additional arguments (for
example, files to be linked together with SmartLinker options).
If the SmartLinker has been started with arguments (for
example, from the Make Tool or with the ‘%f argument from
WinEdit), the SmartLinker links the files in a batch mode, that
is no SmartLinker window is visible and the SmartLinker
terminates after job completion.

If the linker is in batch mode the linker messages are written
to a file instead to the screen. This file only contains the linker
messages (see examples below).

By default, the SmartLinker uses a Microsoft message format
to write the SmartLinker messages (errors, warnings,
information messages) if the linker is in batch mode.

With this option, the default format may be changed from the
Microsoft format (only line information) to a more verbose
error format with line, column and source information

LINK fibo2.abs
NAMES fibo.o start12s.o ansis.lib END
PLACEMENT
.text INTO READ_ONLY 0x810 TO OxAFF;
.data INTO READ_WRITE 0x800 TO 0x80F
END

By default, the SmartLinker generates following error output in
the SmartLinker window if it is running in batch mode:

X:\fibo2.prm(7): ERROR L1004: ; expected

Smart Linker

99

SmartLinker Options
-WmsgFi (-WmsgFiv, -WmsgFim)

See also:

Setting the format to verbose, more information is stored in
the file:

LINKOPTIONS=-WmsgFbv
>> in "X:\fibo2.prm", line 7, col 0, pos 159
.data INTO READ_WRITE 0x800 TO 0x80F
END
A
ERROR L1004: ; expected
Option -WmsgFi

-WmsgFi (-WmsgFiv, -WmsgFim)

-WmsgFi: Set message file format for
Interactive mode

Group:
Syntax:

Arguments:

Default:

Description:

MESSAGE

"-WmsgFi" ["v" | "m"].

"v": Verbose format.
"m": Microsoft format.
-WmsgFiv

If the SmartLinker is started without additional arguments
(e.g. files to be linked together with SmartLinker options), the
SmartLinker is in the interactive mode (that is, a window is
visible).

By default, the SmartLinker uses the verbose error file format
to write the SmartLinker messages (errors, warnings,
information messages).

With this option, the default format may be changed from the
verbose format (with source, line and column information) to
the Microsoft format (only line information).

With this option, the default format may be changed from the
Microsoft format (only line information) to a more verbose
error format with line, column and source information

100

Smart Linker

SmartLinker Options
-WmsgFob

NOTE Using the Microsoft format may speed up the compilation, because
the SmartLinker has to write less information to the screen.

Example: LINK fibo2.abs

NAMES fibo.o start12s.o0 ansis.lib END
PLACEMENT
.text INTO READ_ONLY 0x810 TO OxAFF;
.data INTO READ_WRITE 0x800 TO 0x80F
END

By default, the SmartLinker following error output in the
SmartLinker window if it is running in interactive mode

>> in "X:\fibo2.prm", line 7, col O, pos 159
.data INTO READ_WRITE 0x800 TO 0x80F
END
A
ERROR L1004: ; expected
Setting the format to Microsoft, less information is displayed:
LINKOPTIONS=-WmsgFim
X:\fibo2.prm(7): ERROR L1004: ; expected

See also: Option -WmsgFb

-WmsgFob

-WmsgFob: Message format for Batch
Mode

Group: MESSAGE
Syntax: "-WmsgFob"<string>.
Arguments: <string>: format string (see below).

Smart Linker 101

SmartLinker Options

-WmsgFob
Default: -WmsgFob"%"%f%e%"(%l): %K %d: %m\n"
Description: With this option it is possible modify the default message

format in batch mode. Following formats are supported

(supposed that the source file is
x:\metrowerks\sourcefile.prmx)

Form
at

%s
%p
%f
%n
%e
%N
%E
%l
%c
%0
%K
%k
%d
%m
%

%1

%%

\n

Example: LINKOPTIONS=-WmsgFob"%'%f%e%’'(%l): %k %d: %m\n”

Description

Source Extract
Path

Path and name
File name
Extension

File (8 chars)
Extension (3 chars)
Line

Column

Pos

Uppercase kind
Lowercase kind
Number
Message

" if full name
contains a space
"if full name
contains a space
Percent

New line

produces a message in following format:

Example

x:\metrowerks\

x:\metrowerks\sourcefile

sourcefile
.prmx
sourcefi
.prm

3
47
1000
ERROR
error
L1051

text

%

x:\metrowerks\sourcefile.prmx(3): error L1000: LINK not found

102

Smart Linker

SmartLinker Options
-WmsgFoi

See also:

Environment variable ERRORFILE

Option -WmsqgFb

Option -WmsqgFi

Option -WmsgFonp

Option -WmsgFonf

Option -WmsgFoi

-WmsgFoi

-WmsgFoi: Message Format for Interactive
Mode

Group:
Syntax:
Arguments:
Default:

Description:

MESSAGE
"-WmsgFoi"<string>.
<string>: format string (see below).

-WmsgFoi"\n>> in \"%"%f%e%"\", line %I, col %c, pos
%0\n%s\n%K %d: %m\n"

With this option it is possible modify the default message
format in interactive mode. Following formats are supported
(supposed that the source file is
x:\metrowerks\sourcefile.prmx):

Form Description Example

at

%s Source Extract

%p Path x:\metrowerks\

%f Path and name x:\metrowerks\sourcefile
%n File name sourcefile

%e Extension .prmx

%N File (8 chars) sourcefi

%E Extension (3 chars) .prm

Smart Linker

103

SmartLinker Options

-WmsgFonf
%l Line 3
%c Column 47
%0 Pos 1234
%K Uppercase kind ERROR
%k Lowercase kind error
%d Number L1000
%m Message text
%" " if full name ”
contains a space
%’ "if full name
contains a space
%% Percent %
\n New line
Example: LINKOPTIONS=-WmsgFoi"%f%e(%l): %k %d: %om\n”
produces a message in following format:
x:\metrowerks\SOleceﬁle.prmx(3): error L1000: LINK not found
See also: Environment variable ERRORFILE

Option -WmsgFb

Option -WmsqgFi

Option -WmsgFonp

Option -WmsgFonf

Option -WmsgFob

-WmsgFonf

-WmsgFonf: Message Format for no File

Information
Group: MESSAGE
Syntax: "-WmsgFonf'<string>.
104 Smart Linker

SmartLinker Options

-WmsgFonf
Arguments: <string>: format string (see below).
Default: -WmsgFonf"%K %d: %m\n"
Description: Sometimes there is no file information available for a message
(for example, if a message not related to a specific file). Then
this message format string is used. Following formats are
supported:
Form Description Example
at
%K Uppercase kind ERROR
%k Lowercase kind error
%d Number L10324
%m Message text
%% Percent %
\n New line
Example: LINKOPTIONS=-WmsgFonf'%k %d: %m\n”
produces a message in following format:
information L10324: Linking successful
See also: Environment variable ERRORFILE
Option -WmsgFb
Option -WmsgFi
Option -WmsgFonp
Option -WmsgFoi
Option -WmsgFob
Smart Linker 105

SmartLinker Options

-WmsgFonp

-WmsgFonp

-WmsgFonp: Message Format for no

Group:
Syntax:

Arguments:

Default:

Description:

MESSAGE

"-WmsgFonp"<string>.

Position Information

<string>: format string (see below).
-WmsgFonp"%"%f%e%”": %K %d: %m\n"

Sometimes there is no position information available for a
message (e.g. if a message not related to a certain position).
Then this message format string is used. Following formats
are supported (supposed that the source file is

x:\metrowerks\sourcefile.prmx)

Form
at

%p
%of
%n
%e
%N
%E
%K
%k
%d
%m
0%

%'

Description

Path

Path and name
File name
Extension

File (8 chars)
Extension (3 chars)
Uppercase kind
Lowercase kind
Number
Message

" if full name
contains a space
" if full name

contains a space

Example

x:\metrowerks\
x:\metrowerks\sourcefile
sourcefile

.prmx

sourcefi

.prm

ERROR

error

L10324

text

106

Smart Linker

SmartLinker Options

-WmsgNe
%% Percent %
\n New line
Example: LINKOPTIONS=-WmsgFonf'%k %d: %m\n”
produces a message in following format:
information L10324: Linking successful
See also: Environment variable ERRORFILE
Option -WmsgFb
Option -WmsgFi
Option -WmsgFonf
Option -WmsgFoi
Option -WmsgFonfob
-WmsgNe
-WmsgNe: Number of Error Messages
Group: MESSAGE
Syntax: "-WmsgNe" <number>.
Arguments: <number>: Maximum number of error messages.
Default: 50
Description: With this option the amount of error messages can be set until
the SmartLinker stops the current linking session. Note that
subsequent error messages which depends on a previous one
may be confusing.
Example: LINKOPTIONS=-WmsgNe2
The SmartLinker stops compilation after two error messages.
See also: Option -WmsgNi
Option -WmsgNw
Smart Linker 107

SmartLinker Options

-WmsgNi

-WmsgNi

-WmsgNi: Number of Information Messages

Group:
Syntax:

Arguments:

Default:

Description:

Example:

See also:

MESSAGE

"-WmsgNi" <number>,

<number>; Maximum number of information messages.
50

With this option the amount of information messages can be
set.

LINKOPTIONS=-WmsgNi10
Only ten information messages are logged.

Option -WmsgNe

Option -WmsgNw

-WmsgNu

-WmsgNu: Disable User Messages

Group:
Syntax:

Arguments:

Default:

Description:

MESSAGE
"-WmsgNu" ['=" {"a" | "b" | "c" | "d"}].

“a”: Disable messages about include files

“b”: Disable messages about reading files

“c": Disable messages about generated files

“d”: Disable messages about processing statistics

[T}

e”: Disable informal messages

none.

The application produces some messages which are not in
the normal message categories (WARNING,
INFORMATION, WRROR, FATAL). With this option such
messages can be disabled. The idea of this option is to
reduce the amount of messages and to simplify the error
parsing of other tools.

108

Smart Linker

SmartLinker Options
-WmsgNw

Note:

Example:

See also:

“a”. The application informs about all included files. With
this suboption this can be disabled.

“b”: With this suboption messages about reading files e.g.
the files used as input can be disabled.

“c”: Disables messages informing about generated files.

“d”: At the end the application may inform about statistics,
e.g. code size, RAM/ROM usage and so on. With this
suboption this can be disabled.

“e”: With this option informal messages (e.g. memory
model, floating point format, ...) can be disabled.

Depending on the application, not all suboptions may make
sense. In this case they are just ignored for compatibility.

-WmsgNu=c

none.

-WmsgNw

-WmsgNw: Number of Warning Messages

Group:
Syntax:
Arguments:
Default:

Description:

Example:

See also:

MESSAGE

"-WmsgNw" <number>.

<number>: Maximum number of warning messages.

50

With this option the amount of warning messages can be set.
LINKOPTIONS=-WmsgNw15

Only 15 warning messages are logged.

Option -WmsgNe

Option -WmsgNi

Smart Linker

109

SmartLinker Options

-WmsgSd

-WmsgSd

-WmsgSd: Setting a Message to Disable

Group:
Syntax:

Arguments:

Default:

Description:

Example:

See also:

MESSAGE

"-WmsgSd" <number>.

<number>; Message number to be disabled, for example, 1201
none.

With this option a message can be disabled, so it does not
appear in the error output.

LINKOPTIONS=-WmsgSd1201
disables the message for no stack declaration.

Option -WmsgSi

Option -WmsgSw

Option -WmsgSe

-WmsgSe

-WmsgSe: Setting a Message to Error

Group:
Syntax:

Arguments:

Default:

Description:

Example:

See also:

MESSAGE

"-WmsgSe" <number>.

<number>: Message number to be an error, for example, 1201
none.

Allows changing a message to an error message.
LINKOTIONS=-WmsgSe1201

Option -WmsgSd

Option -WmsgSi

Option -WmsgSw

110

Smart Linker

SmartLinker Options
-WmsgSi

-WmsgSi

-WmsgSi: Setting a Message to Information

Group:
Syntax:
Arguments:

Default:

Description:

Example:

See also:

MESSAGE

"-WmsgSi" <number>.

<number>; Message number to be an information, e.g. 1201
none.

With this option a message can be set to an information
message

LINKOPTIONS=-WmsgSi1201
Option -WmsgSd

Option -WmsagSw

Option -WmsgSe

-WmsgSw

-WmsgSw: Setting a Message to Warning

Group:
Syntax:
Arguments:

Default:

Description:

Example:

See also:

MESSAGE

"-WmsgSw" <number>.

<number>: Error number to be a warning, for example, 1201
none.

With this option a message can be set to a warning message.
LINKOPTIONS=-WmsgSw1201

Option -WmsgSd

Option -WmsgSi

Option -WmsgSe

Smart Linker

111

SmartLinker Options
-WOutFile

-WOutFile

-WOutFile: Create Error Listing File

Group: MESSAGE

Syntax: "-WOutFile" ("On" | "Off").
Arguments: none.

Default: Error listing file is created.

Description: This option controls if a error listing file should be created at all.
The error listing file contains a list of all messages and errors
which are created during a compilation. Since the text error
feedback can now also be handled with pipes to the calling
application, it is possible to obtain this feedback without an
explicit file. The name of the listing file is controlled by the
environment variable ERRORFILE.

Example: -WOutFileOn
The error file is created as specified with ERRORFILE.
-WOUutFileOff
No error file is created.

See also: Option -WErrFile

Option -WStdout

-WStdout

-WStdout: Write to standard output

Group: MESSAGE

Syntax: "-WStdout" ("On" | "Off").
Arguments: none.

Default: Output is written to stdout.

112 Smart Linker

SmartLinker Options
-WStdout

Description:

Example:

See also:

With Windows applications, the usual standard streams are
available. But text written into them does not appear anywhere
unless explicitly requested by the calling application. With this
option is can be controlled if the text to error file should also be
written into the stdout.

-WStdoutOn

All messages are written to stdout.
-WETrrFileOff

Nothing is written to stdout.
Option -WETrrFile

Option -WOutFile

Smart Linker

113

SmartLinker Options
-WStdout

114 Smart Linker

Linking Issues

Object Allocation

The whole object allocation is performed trough the SEGMENTSELP (or
SECTIONSH'WARE)y and pPL ACEMENT blocks.

The SEGMENTS Block (ELF)

The SEGMENTS Block isoptional, it only increases the readability of the linker input
file. It allows to assign meaningful names to contiguous memory areas on the target
board. Memory within such an area share common attribute:

o gualifier
o adlignment rules

 filling character

Two types of segments can be defined:

» physical segments
e virtual segments

Physical Segments

Physical segments are closely related to hardware memory areas.

For example, there may be one READ_ONLY segment for each bank of the target
board ROM area and another one covering the whole target board RAM area.

Example:

For ssmple memory model you can define a segment for the RAM area and another
one for the ROM area.

Smart Linker 115

Linking Issues
Object Allocation

LINK test.abs
NAVES test.o startup.o END

SEGVENTS
RAM AREA = READ WRI TE 0x00000 TO O0xO7FFF,
ROM AREA = READ ONLY 0x08000 TO OxOFFFF,
END
PLACEMENT
DEFAULT_RAM I NTO RAM_AREA;
DEFAULT_ROM I NTO ROM_AREA;
END

STACKSI ZE 0x50

For banked memory model you can define a segment for the RAM area, another for

the non-banked ROM area and one for each target processor bank.

LINK test.abs
NAMES test.o startup.o END

SEGMVENTS
RAM_AREA = READ WRI TE 0x00000 TO OxO7FFF;
NON_BANKED AREA = READ ONLY 0x00000 TO OxOFFFF;
BANKO_AREA = READ ONLY 0x08000 TO OxOBFFF;
BANK1_AREA = READ ONLY 0x18000 TO Ox1BFFF;
BANK2_AREA = READ ONLY 0x28000 TO Ox2BFFF;
END
PLACEMENT
DEFAULT_RAM | NTO RAM_AREA;
_PRESTART, STARTUP,
ROM VAR,
NON_BANKED, COPY | NTO NON_BANKED AREA;
DEFAULT_ROM | NTO BANKO_AREA, BANK1_AREA,
BANK2_AREA;
END

STACKSI ZE 0x50

Virtual Segment

A physical segment may be split into several virtual segments, allowing a better
structuring of object allocation and also allowing to take advantage of some processor

specific property.

116

Smart Linker

Linking Issues
Object Allocation

Example:

For HC12 is small memory model you can define a segment for the direct page area,
another for the rest of the RAM area and another one for the ROM area.

LINK test.abs
NAVES test.o startup.o END

SEGVENTS
DI RECT_RAM = READ WRI TE 0x00000 TO OxO0O0O0FF;
RAM AREA = READ WRI TE 0x00100 TO OxO7FFF;
ROM AREA = READ ONLY 0x08000 TO OxOFFFF;
END
PLACEMENT
myRegi st er | NTO DI RECT_RAM
DEFAULT_RAM | NTO RAM_AREA;
DEFAULT_ROM | NTO ROM_AREA;
END

STACKSI ZE 0x50

Segment Qualifier

Different qualifiers are available for segments. Table 6.1 describes the available
qualifiers:

Table 6.1 Qualifiers and their description

Qualifier Description

READ_ONLY Qualifies a segment, where read only access is allowed.
Objects within such a segment are initialized at
application loading time.

READ_WRITE Qualifies a segment, where read and write accesses are
allowed. Objects within such a segment are initialized at
application startup.

Smart Linker 117

Linking Issues
Object Allocation

Qualifier

Description

NO_INIT

Qualifies a segment, where read and write accesses are
allowed. Objects within such a segment remain
unchanged during application startup. This qualifier may
be used for segments referring to a battery backed RAM.
Sections placed in a NO_INIT segment should not contain
any initialized variable (variable defined as ‘int ¢ = 8’).

PAGED

Qualifies a segment, where read and write accesses are
allowed. Objects within such a segment remain
unchanged during application startup. Additionally,
objects located in two PAGED segments may overlap.
This qualifier is used for memory areas, where some user
defined page-switching mechanism is required. Sections
placed in a NO_INIT segment should not contain any
initialized variable (variable defined as ‘int ¢ = 8).

NOTE

For debugging purposes one sometimes wants to load code into
RAM areas. Because this code should be loaded at oad time, such
areas should be qualified as READ_ONLY.

READ_ONLY meansfor thelinker that such objectsareinitialized at
program load time. The linker does not know (and does not care) if at
runtime the target code doeswriteto aREAD_ONLY area.

NOTE

Anything located inaREAD_WRITE segment isinitialized at
application startup time. So especially the application code, which
does thisinitialization and the data used for thisinitialization (init,
zero out, copy down) cannot be located inaREAD_WRITE section,
but only inaREAD_ONLY section.

The program loader can however at program loading time write the
content of READ_ONLY sectionsinto aRAM area.

NOTE

If aapplication does not use any startup code to initialize
READ_WRITE sections, then no such sections should be present in
the prm file. Instead use NO_INIT sections.

118

Smart Linker

Linking Issues
Object Allocation

Segment Alignment

The default alignment rule depends on the processor and memory model used. The
HC12 processor do not require any alignment for code or data objects. One can choose
to define his own alignment rule for a segment. The alignment rule defined for a
segment block overrides the default alignment rules associated with the processor and
memory model.

The alignment rule has the following format:
[defaul t Alignment] {“["“Obj Si zeRange”:”alignnment”]”}

where;

defaultAlignment is the alignment value for all objects which do not match
the conditions of any range defined afterward.

ObjSizeRange defines a certain condition. The condition is from the form:
size: the rule applies to objects, which size is equal to
‘size’.
< size: the rule applies to objects, which size is smaller
than ‘size’.
> size: the rule applies to objects, which size is bigger
than ‘size’
<= size: the rule applies to objects, which size is smaller
or equal to ‘size’
>= size: the rule applies to objects, which size is bigger or
equal to ‘size’
from sizel to size2: the rule applies to objects, which size
is bigger or equal to ‘sizel’and smaller or equal to ‘size2’.

alignment defines the alignment value for objects matching the
condition defined in the current alignment block (enclosed
in square bracket).

Example:

LINK test.abs
NAMES test.o startup.o END

SEGVENTS
DI RECT_RAM = READ WRI TE 0x00000 TO OxO000FF
ALICN 2 [< 2: 1];
RAM AREA = READ WRI TE 0x00100 TO OxO7FFF
ALIGN [1:1] [2..3:2] [>=4:4];
ROM AREA = READ ONLY 0x08000 TO OxOFFFF;
END
PLACEMENT

Smart Linker 119

Linking Issues
Object Allocation

myRegi st er | NTO DI RECT_RAM

DEFAULT_RAM | NTO RAM _AREA;

DEFAULT_ROM | NTO ROM_AREA;
END

STACKSI ZE 0x50

In previous example:

* Insegment DIRECT_RAM, objectswhich sizeis 1 byte are aligned on byte
boundary, all other objects are aligned on 2-bytes boundary.

* Insegment RAM_AREA, objects which sizeis 1 byte are aligned on byte
boundary, objects which size is equal to 2 or 3 bytes are aligned on 2-bytes
boundary, all other objects are aligned on 4-bytes boundary.

» Default alignment rule appliesin the ssgment ROM_AREA.

Segment Fill Pattern

The default fill pattern for code and data segment isthe null character. One can choose
to define his own fill pattern for a segment The fill pattern definition in the segment
block overrides the default fill pattern. Note that the fill pattern is used too to fill up a
segment to the segment end boundary.

Example:

LINK test. abs
NAVES test.o startup.o END

SEGVENTS
DI RECT_RAM = READ WRI TE 0x00000 TO 0x000FF
FI LL OXxAA;
RAM AREA = READ WRI TE 0x00100 TO OxO07FFF
FILL 0x22;
ROM AREA = READ ONLY 0x08000 TO OxOFFFF;
END
PLACEMENT
myRegi st er | NTO DI RECT_RAM
DEFAULT_RAM | NTO RAM _AREA;
DEFAULT_ROM | NTO ROM_AREA;
END

STACKSI ZE 0x50

In previous example:

120 Smart Linker

Linking Issues
Object Allocation

* Insegment DIRECT_RAM, alignment bytes between objects are initialized with
OxAA.

* Insegment RAM_AREA, alignment bytes between objects are initialized with
0x22.

* Insegment ROM_AREA, alignment bytes between objects are initialized with
0x00.

The SECTIONS Block (HWARE +ELF)

The segments block isoptional, it only increases the readability of the linker input file.
It allows to assign meaningful names to contiguous memory areas on the target board.
Memory within such an area share common attribute:
o gualifier,
Two types of segments can be defined:

» physical segments
» virtual segments.

Physical Segments

Physical segments are closely related to hardware memory areas.

For example, there may be one READ_ONLY segment for each bank of the target
board ROM area and another one covering the whole target board RAM area.

Example:

For simple memory model you can define a segment for the RAM area and another
one for the ROM area.

LINK test. abs
NAVES test.o startup.o END

SECTI ONS
RAM_AREA = READ WRI TE 0x00000 TO OxO7FFF;
ROM_AREA = READ _ONLY 0x08000 TO OxOFFFF,;
PLACEMENT
DEFAULT_RAM I NTO RAM_AREA;
DEFAULT_ROM I NTO ROM_AREA;
END

STACKSI ZE 0x50

Smart Linker 121

Linking Issues
Object Allocation

For banked memory model you can define a segment for the RAM area, another for

the non-banked ROM area and one for each target processor bank.

LI NK t est. abs

NAVES test.o startup.o END

SECTI ONS
RAM AREA

NON_BANKED_AREA

READ WRI TE 0x00000 TO OxO07FFF:
READ ONLY 0x0C000 TO OxOFFFF;

BANKO_AREA READ ONLY 0x08000 TO OxOBFFF,
BANK1_AREA READ ONLY 0x18000 TO Ox1BFFF,;
BANK2_AREA READ ONLY 0x28000 TO O0x2BFFF,
PLACEMENT
DEFAULT_RAM | NTO RAM_AREA,;

PRESTART, STARTUP,

ROM VAR,

NON_BANKED, COPY | NTO NON_BANKED AREA;
DEFAULT_ROM | NTO BANKO_AREA, BANK1_AREA,
BANK2_AREA;
END

STACKSI ZE 0x50

Virtual Segment

A physical segment may be split into several virtual segments, allowing a better
structuring of object allocation and also allowing to take advantage of some processor
specific property.

Example:

For HC12 is small memory model you can define a segment for the direct page area,

another for the rest of the RAM area and another one for the ROM area.

LI NK t est. abs

NAVES test.o startup.o END

SECTI ONS
DI RECT_RAM = READ _WRI TE 0x00000 TO 0xO0O0O0FF;
RAM AREA = READ WRI TE 0x00100 TO OxO7FFF;
ROM AREA = READ ONLY 0x08000 TO OxOFFFF;
PLACENMENT
myRegi st er | NTO DI RECT_RAM
DEFAULT_RAM | NTO RAM_AREA;
DEFAULT_ROM | NTO ROM_AREA;

122

Smart Linker

Linking Issues
Object Allocation

END
STACKSI ZE 0x50

Segment Qualifier

Different qualifiers are available for segments. Table 6.2 describes the available

qualifiers:

Table 6.2 Qualifiers and their description

Qualifier

Meaning

READ_ONLY

Qualifies a segment, where read only access is allowed.
Objects within such a segment are initialized at
application loading time.

coDE (ELF)

Qualifies a code segment in a harvard architecture in the
ELF object file format. For cores with Von Neumann
Architecture (combined code and data address space) or
for the HIWARE object file format use READ_ONLY
instead.

READ_WRITE

Qualifies a segment, where read and write accesses are
allowed. Objects within such a segment are initialized at
application startup.

NO_INIT

Qualifies a segment, where read and write accesses are
allowed. Objects within such a segment remain
unchanged during application startup. This qualifier may
be used for segments referring to a battery backed RAM.
Sections placed in a NO_INIT segment should not
contain any initialized variable (variable defined as ‘int ¢
=8).

PAGED

Qualifies a segment, where read and write accesses are
allowed. Objects within such a segment remain
unchanged during application startup. Additionally,
objects located in two PAGED segments may overlap.
This qualifier is used for memory areas, where some
user defined page-switching mechanism is required.
Sections placed in a NO_INIT segment should not
contain any initialized variable (variable defined as ‘int ¢
=8).

Smart Linker

123

Linking Issues
Object Allocation

NOTE For debugging purposes one sometimes wants to load code into
RAM areas. Because this code should be |oaded at load time, such
areas should be qualified as READ_ONLY.

READ_ONLY meansfor thelinker that such objectsareinitialized at
program load time. The linker does not know (and does not care) if at
runtime the target code doeswriteto aREAD_ONLY area.

NOTE Anything located inaREAD_WRITE segment isinitialized at
application startup time. So especially the application code, which
does thisinitialization and the data used for thisinitialization (init,
zero out, copy down) cannot be located inaREAD_WRITE section,
but only inaREAD_ONLY section.

The program loader can however at program loading time write the
content of READ_ONLY sectionsinto aRAM area.

NOTE If aapplication does not use any startup code to initialize
READ_WRITE sections, then no such sections should be present in
the prm file. Instead use NO_INIT sections.

PLACEMENT Block

The placement block allows to physically place each section from the applicationin a
specific memory area (segment). The sections specified inaPLACEMENT block may
be linker-predefined sections or user sections specified in one of the sourcefile
building the application.

A programmer may decide to organize his datainto sections:
* toincrease structuring of the application
* to ensure that common purpose data are grouped together
* totake advantage of target processor specific addressing mode.

Specifying a List of Sections

When several sections are specified on a PLACEMENT statement, the sections are
allocated in the sequence they are enumerated.

Example:

124

Smart Linker

Linking Issues
Object Allocation

LINK test.abs
NAVES test.o startup.o END

SECTI ONS
RAM AREA = READ WRI TE 0x00100 TO 0x002FF;
STK AREA = READ VWRI TE 0x00300 TO 0x003FF;
ROV _AREA = READ ONLY 0x08000 TO OxOFFFF;
PLACEMENT
DEFAULT_RAM dat aSecl,
dat aSec?2 | NTO RAM _AREA,;
DEAFULT _ROM nyCode | NTO ROM AREA;
SSTACK | NTO STK_AREA;
END

In previous example:

* Inside of segment RAM_AREA, the objects defined in the section .data are
allocated first, then the objects defined in section dataSec1 then objects defined in
section dataSec?2.

* Inside of segment ROM_AREA, the objects defined in section .text are allocated
first, then the objects defined in section myCode

NOTE Asthe linker is case sensitive, the name of the sections specified in
the PLACEMENT block must be valid predefined or user defined
section. For the linker the sections DataSec1 and dataSecl are two
different sections

Specifying a List of Segments

When several segments are specified on aPLACEMENT statement, the segments are
used in the sequence they are enumerated. Allocation is performed in the first segment
in thelist, until this segment isfull. Then allocation continues on the next segment in

the list, an so on until all objects are allocated.

Example:

LINK test.abs
NAMES test.o startup.o END

SECTI ONS
RAM_AREA = READ WRI TE 0x00100 TO Ox002FF;
STK_AREA = READ WRI TE 0x00300 TO Ox003FF;

NON_BANKED_AREA = READ ONLY 0x0C000 TO OxOFFFF,;

Smart Linker 125

Linking Issues
Object Allocation

BANKO_AREA = READ ONLY 0x08000 TO OxOBFFF;
BANK1_AREA = READ ONLY 0x18000 TO Ox1BFFF;
BANK2_AREA = READ ONLY 0x28000 TO Ox2BFFF;
PLACEMENT
DEFAULT _RAM | NTO RAM AREA;
SSTACK | NTO STK_AREA;
_PRESTART, STARTUP,
ROM VAR,
NON_BANKED, COPY | NTO NON_BANKED AREA;
DEFAULT_ROM | NTO BANKO_AREA, BANK1_AREA,
BANK2_AREA;
END

In previous example:

* Functionsimplemented in section .text are allocated first in segment
BANKO_AREA. When there is not enough memory available in this segment,
allocation continues in segment BANK _1 AREA, then in BANK2_AREA

NOTE Asthe linker is case sensitive, the name of the segments specified in
the PLACEMENT block must be valid segment names defined in the
SEGMENTS block. For the linker the segments Ram_Area and
RAM_AREA are two different segments.

Allocating User Defined Sections (ELF)

All sections do not need to be enumerated in the placement block. The segments where
sections, which do not appear in the PLACEMENT block, are allocated depends on
the type of the section.

 Sections containing data are allocated next to the section.data.

 Sections containing code, constant variables or string constants are all ocated next
to the section .text.

Allocation in the segment where .datais placed is performed as follows:
» Objects from section .data are allocated

» Objects from section .bss are alocated (if .bss is not specified in the
PLACEMENT block).

* Objectsfrom thefirst user defined data section, which is not specified in the
PLACEMENT block, are allocated.

126 Smart Linker

Linking Issues
Object Allocation

» Objects from the next user defined data section, which is not specified in the
PLACEMENT block, are allocated.

« and so on until al user defined data sections are all ocated.

 If the section .stack is not specified in the PLACEMENT block and is defined
with a STACKSIZE command, the stack is allocated then.

.data | .bss | User Data 1. .. |User Data/nstack

Allocation in the segment where .text is placed is performed as follows:

» Objects from section .init are alocated (if .init is not specified in the
PLACEMENT block).

» Objects from section .startData are allocated (if .startDatais not specified in the
PLACEMENT block).

» Objects from section .text are allocated

» Objects from section .rodata are allocated (if .rodata is not specified in the
PLACEMENT block).

» Objects from section .rodatal are allocated (if .rodatal is not specified in the
PLACEMENT block).

» Objects from the first user defined code section, which is not specified in the
PLACEMENT block, are allocated.

» Objects from the next user defined code section, which is not specified in the
PLACEMENT block, are allocated.

* and so on until al user defined code sections are allocated.

» Objects from section .copy are allocated (if .copy is not specified in the
PLACEMENT block).

init | .startData | .text | .rodata |.rodatal |User Codel | ... | User Coden | .copy

Allocating User Defined Sections (HIWARE)

All sections do not need to be enumerated in the placement block. The segments where
sections, which do not appear in the PLACEMENT block, are allocated depends on
the type and attributes of the section.

Smart Linker 127

Linking Issues
Object Allocation

Sections containing code are allocated next to the section DEFAULT_ROM.

Sections containing constants only are allocated next to the section
DEFAULT_ROM. This behavior can be changed with option -CRam.

Sections containing string constants are allocated next to the section
DEFAULT_ROM.

Sections containing data are allocated next to the section DEFAULT_RAM.

Allocation in the segment where DEFAULT_RAM is placed is performed as follows:

Objects from section DEFAULT_RAM are alocated

If the option -CRam is specified, Objects from section ROM_VAR are allocated,
if ROM_VAR isnot mentioned in the PLACEMENT block.

Objects from user defined data sections, which are not specified in the
PLACEMENT block, are allocated. If option -CRam is specified, constant
sections are allocated together with non constant data sections.

If the section SSTACK isnot specified inthe PLACEMENT block and is defined
with a STACKSIZE command, the stack is allocated then.

DEFAULT_RAM UserDatal | ... User Data n SSTACK

Allocation in the segment where DEFAULT_ROM is placed is performed as follows:

Objectsfrom section _PRESTART areallocated (if _PRESTART is not specified
inthe PLACEMENT block).

Objects from section STARTUP are allocated (if STARTUP is not specified in
the PLACEMENT block).

Objects from section ROM_VAR are alocated (if ROM_VAR isnot specified in
the PLACEMENT block). If option -CRam is specified, ROM_VAR is allocated
inthe RAM.

Objects from section SSTRING (string constants) are allocated (if SSTRING is
not specified in the PLACEMENT block).

Objects from section DEFAULT_ROM are allocated

Objects from all user defined code sections and constant data sections, which are
not specified in the PLACEMENT block, are alocated.

Objects from section COPY are allocated (if .copy is not specified in the
PLACEMENT block).

_PRESTART

STARTUP | ROM_VAR | SSTRING DEFAULT_ROM User Code 1 | ... User Code n

COPY

128

Smart Linker

Linking Issues
Initializing Vector Table

Initializing Vector Table

Vector tableinitialization is performed using the VECTOR command.

VECTOR Command

This command is specialy defined to initialize the vector table.

The syntax “VECTOR <Number>" can be used. In this case the Linker allocates the
vector depending on the target CPU. The vector number zero is usually the reset
vector, but depends on the target. The Linker knows about the default start |ocation of
the vector table for each target supported.

The Syntax VECTOR ADDRESS can be used as well. The size of the entries in the
vector table depends on the target processor.

Different syntax are available for the VECTOR command. Table 6.3 describes the
VECTOR command syntax.

Table 6.3 VECTOR command syntax and their description

Command Description

VECTOR ADDRESS 0OxFFFE 0x1000 | indicates that the value 0x1000 must
be stored at address OxFFFE

VECTOR ADDRESS 0OxFFFE FName | indicates that the address of the
function FName must be stored at
address OxFFFE.

VECTOR ADDRESS 0xFFFE FName | indicates that the address of the
OFFSET 2 function FName incremented by 2
must be stored at address OxFFFE

The last syntax may be very useful, when working with a common interrupt service
routine.

Smart Linker 129

Linking Issues
Smart Linking (ELF)

Smart Linking (ELF)

Because of smart linking, only the objects referenced are linked with the application.
The application entry points are:

» Theapplication init function
» Themain function
» The function specified in a VECTOR command.

All the previously enumerated entry points and the objects they referenced are
automatically linked with the application.

The customer can specify additional entry points using the command ENTRIES in the
prm file.

Mandatory Linking from an Object

One can choose to link some non-referenced objects in his application. This may be
useful to ensure that a software version number is linked with the application and
stored in the final product EPROM.

This may also be useful to ensure that a vector table, which has been defined asa
constant table of function pointersis linked with the application.

Example:
ENTRI ES
nmyVarl nyVar2 nyProcl nyProc?2
END

In previous example:

* ThevariablesmyVarl and myVar2 aswell asthe function myProcl and myProc2
are specified to be additional entry points in the application

NOTE Asthelinker is case sensitive, the name of the objects specified in the
ENTRIES block must be objects defined somewhere in the
application. For the linker the variable MyVarl and myVarl are two
different objects.

130 Smart Linker

Linking Issues
Smart Linking (HIWARE + ELF)

Mandatory Linking from all Objects defined
In a File
One can choose to link all objects defined in a specified object filein his application.

Example:
ENTRI ES
myFilel.o:* nyFile2. 0:*
END

In previous example:

 All the objects (functions, variables, constant variables or string constants)
defined in filemyFilel.o and myFile2.0 are specified to be additional entry points
in the application.

Switching OFF Smart Linking for the
Application

One can choose to switch OFF smart linking. All objects are linked in the application.

Example:

ENTRI ES
*

END

In previous example:

» Smart linking is switched OFF for the whole application. That means that all
objects defined in one of the binary file building the application are linked with
the application.

Smart Linking (HWARE +ELF)

Because of smart linking, only the objects referenced are linked with the application.
The application entry points are:

* Theapplication init function

Smart Linker 131

Linking Issues
Smart Linking (HIWARE + ELF)

* Themain function
» Thefunction specified inaVECTOR command.

All the previously enumerated entry points and the objects they referenced are
automatically linked with the application.

The customer can specify additional entry points using the command ENTRIES in the
prm file.

Mandatory Linking from an Object

One can choose to link some non-referenced objects in his application. This may be
useful to ensure that a software version number is linked with the application and
stored in the fina product EPROM.

This may also be useful to ensure that a vector table, which has been defined as a
constant table of function pointersis linked with the application.

Example:
ENTRI ES
myVarl nyVar2 nyProcl nyProc?2
END

In previous example:

* ThevariablesmyVarland myVar2 aswell asthe function myProcl and myProc2
are specified to be additional entry points in the application

NOTE Asthelinker is case sensitive, the name of the objects specified in the
ENTRIES block must be objects defined somewhere in the
application. For the linker the variable MyVarl and myVarl are two
different objects.

Mandatory Linking from all Objects defined
In a File
One can chooseto link al objects defined in a specified object file in his application.

In that purpose, you only need to specify a‘+’ after the name of the module in the
NAMES block.

132

Smart Linker

Linking Issues
Binary Files building an Application (ELF)

Example:
NAMVES
myFil el. o+ nyFile2. 0o+ start.o ansi.lib
END

In previous example:

 All the objects (functions, variables, constant variables or string constants)
defined in filemyFilel.o and myFile2.0 are specified to be additional entry points
in the application.

Binary Files building an Application (ELF)

The names of the binary files building an application may be specified in the NAMES
block or in the ENTRIES block. Usually aNAMES block is sufficient.

NAMES Block

Thelist of all the binary files building the application are usually listed in the NAMES
block. Additional binary files may be specified by the option -add. If all binary files
should be specified by the command line option -add, then an empty NAMES block
(just NAMES END) must be specified.

Example:

NAMVES
myFilel.o nmyFile2.0
END

In previous example:
* Thebinary files myFilel.o and myFile2.o build the application.

ENTRIES Block

If afile nameis specified in the ENTRIES block, the corresponding file is considered
to be part of the application, even if it does not appear in the NAMES block. Thefile
specified in the ENTRIES block may also be present in the NAMES block. Name
from absolute, ROM library or library files are not allowed in the ENTRIES block.

Smart Linker 133

Linking Issues
Binary Files building an Application (HIWARE)

Example:

LINK test.abs
NAMES test.o startup.o END

SEGVENTS
DI RECT_RAM = READ WRI TE 0x00000 TO Ox00O0FF;
STK AREA = READ WRI TE 0x00200 TO 0x002FF;
RAM AREA = READ WRI TE 0x00300 TO OxO7FFF;
ROM AREA = READ ONLY 0x08000 TO OxOFFFF;
END
PLACENMENT
myRegi st er | NTO DI RECT_RAM
DEFAULT_RAM | NTO RAM AREA,;
DEFAULT_ROM | NTO ROM_AREA,;
SSTACK | NTO STK_AREA,;
END
ENTRI ES
testl.o:* test.o:*
END

In previous example:

» Thefiletest.o, testl.0 and startup.o build the application. All objects defined in
the module test1.0 and test.o will be linked with the application.

Binary Files building an Application
(HIWARE)

The names of the binary files building an application may be specified in the NAMES
block or inthe ENTRIES block. Usually aNAMES block is sufficient.

NAMES Block

Thelist of al the binary files building the application are usually listed in the NAMES
block. Additional binary files may be specified by the option -add. If all binary files
should be specified by the command line option -add, then an empty NAMES block
(just NAMES END) must be specified.

134 Smart Linker

Linking Issues
Allocating Variables in "OVERLAYS"

Example:
NAVES
myFilel.o nyFile2.0
END

In previous example:
» Thebinary files myFilel.o and myFile2.o build the application.

Allocating Variables in "OVERLAYS"

When your application consist in two distinct parts (or execution unit), which are
never activated at the same time, you can ask the linker to overlap the global variables
of both parts. For this purpose you should pay attention to the following pointsin your
application sourcefiles:

» Theglobal variable from the different parts must be defined in separate data
segments. Do not use the same segment for both execution units.

» Theglobal variablesin both execution units must not be defined with initializer,
but should be initialized using assignments in the application source code.

In the prm file, you can then define two distinct memory areas with attribute PAGED.
Memory areas with attributes PAGED are not initialized during startup. For this
reason they cannot contain any variable defined with initializer. The linker will not
perform any overlap check on PAGED memory areas.

Example:

In your source code support you have two execution unit: APPL_1 and APPL_2.
» All global variablesfrom APPL_1 are defined in segment APPL1 DATA_SEG

» All global variablesfrom APPL_2 are defined in segment DEFAULT_RAM and
APPL2 DATA_SEG

The prm file will look as follows:

LI NK t est. abs
NAMES test.o appll.0 appl 2.0 startup.o END

SECTI ONS
MY_ROM = READ ONLY 0x800 TO Ox9FF;

Smart Linker 135

Linking Issues
Overlapping Locals

MY_RAM 1 = PAGED OxAO0 TO OXxAff;

MY_RAM 2 = PAGED OxA00 TO OxAff;

MY_STK = READ WRI TE 0xB0O0 TO OxBFF;
PLACEMENT

DEFAULT_ROM INTO MY_ROM

DEFAULT_RAM

APPL2 DATA SEG | NTO MY_RAM 2;
APPL1 DATA SEG I NTO MY_RAM 1;
SSTACK INTO MY_STK; /* Stack cannot be allocated in a

PAGED

menory area. */

END

Overlapping Locals

This section isonly for targets which do allocated local variables like global variables
at fixed addresses.

Some small targets do not have a stack for local variables. So the compiler uses
pseudo-statically objects for local variables. In contrast to other targets which alocate
such variables on the stack, these variables must then be allocated by thelinker. Onthe
stack multiple local variables are automatically allocated at the same address at a
different time. A similar overlapping scheme isimplemented by the linker to save
memory for local variables.

Example:
void f(void) { long fa;; }
void g(void) { long ga;; }

void main(void) { long Im f(); g(); }

In the example above, the functions f and g are never active at the same time.
Therefore the local variable fa and ga can be allocated at the same address.

NOTE When local variables are allocated at fixed addresses, the resulting
code is not reentrant. One function must be called only once at a
time. Special care has to be taken about interrupt functions. They
must not call any function which might be active at the interrupt time.

136

Smart Linker

Linking Issues
Overlapping Locals

To be on the save side, usually interrupt functions are using a
different set of functions than non interrupt functions.

NOTE For the view of the linker, parameter and spill objects do not differ
from local variables. All these objects are allocated together.

The linker analyses the call graph of one root function at atime and allocates all local
variables used by all depending functions at this time. Variables depending on
different root functions are allocated non-overlapping except in the specia case of an
OVERLAP_GROUPELR),

Algorithm

Algorithm for the overlap allocation is quite simple:

1. If current object depends on other objectsfirst allocate the dependents

2. Calculate the maximum address used by any dependent object. If none exist, use
the base reserved for the current root.

3. Allocateall locals starting at the maximum.

Thisagorithmis called for al roots. The base of the root isfirst calculated as the
maximum used so far.

Example

void g(long g_par) { }
void h(long | _par) { }
void main(void) {
char ch;
9(1);
h(2);
}
void interrupt 1 inter(void) {
long inter_I oc;

}

The function main is aroot becauseit is the application main function and inter isa
root because it is called by ainterrupt.

Smart Linker 137

Linking Issues

Overlapping Locals

SECTI ONS

OVERLAP_RAM = NO_INIT 0x0060 TO 0x0068;

PLACEMENT

_OVERLAP | NTO OVERLAP_RAM
END
NOTE In the ELF object file format the name“_OVERLAP” isasynonym
for the “.overlap” segment.
O0x60 0x61 0x62 [(x63 [0x64 [0x65 [0x66 [0x67 |0X68
g_par ch inter_loc
|_par

Theagorithmis started with main. As h and g depend on main, their parametersg_par
and |_par are alocated starting at address 0x60 in the _OVERLAP segment. Next the
local chisallocated at 0x64 because all lower addresses were already used by
dependents. After main was finished, the base for the second root is calculated as
0x65, whereinter_loc is also allocated.

The following items are considered as root points for the overlapping allocation in the
ELF object file format:

objects specified inaDEPENDENCY ROOT block
objects specified ina OVERLAP_GROUP block

application main function (specified with prm file entry MAIN) and
application entry point (specified with prm file entry INIT)

objects specified in aENTRIES block
absolute objects

interrupt vectors
All objectsin non Smart Linked object files.

138

Smart Linker

Linking Issues
Overlapping Locals

NOTE The main function (main) and the application entry point (_Startup)
areimplicitly defined as one OVERLAP_GROUP. In the startup
code delivered with the compiler, this saves about 8 bytes because
the locals of Init, Copy and main are overlapped. When _Startup
itself is changed and now also needs locals which must be alive over
the call to main, define the _Startup function as single entry in an
OVERLAP_GROUP:

OVERLAP_GROUP _Startup END

The overlap section _OVERLAP (in ELF also named .overlap) must be allocated in a
NO_INIT area. The section _OVERLAP cannot be split into several areas.

Name Mangling for Overlapping Locals

When parameters are passed on the stack, then the matching of the callers and the
callee arguments works by their position on the stack. For overlapped locals (which do
include parameters not passed in registers as well), the matching is done by the linker
using the parameter name.

Consider the following example:

void callee(long i);
void caller(void) {

call ee(1);

void callee(long k) {

}

The namei of the declaration of callee does not match the name used in the definition.
Actually, the declaration might not specify anameat all. Asthelink between the caller
and callees argument is done by the name, they both have to use the same name.
Because of this, the compiler does generate an artificial name for the callee’s
parameter _calleepO. This name is built starting with an underscore (*_"), then
appending the function name, a"p" and finally the number of the argument.

NOTE In ELF, thereis a second name mangling needed to encode the name
of the defining function into its name. For details, see below.

Compiler users do not need to know about the name mangling at all. The compiler
doesit for them automatically.

Smart Linker 139

Linking Issues
Overlapping Locals

However, if you want to write functions with overlapping locals in assembler, then
you have to do the name mangling yourself. Thisis especially important if you are
calling C functions from assembler code or assembler functions from C code.

Name Mangling in the ELF Object File
Format

In the ELF Object File Format, there is no predefined way to specify to which function
an actual parameter does belong. So the compiler does some special name mangling
which adds the name of the function into the link time name.

In ELF, the name is build the following way:

If the object isafunction parameter, usea"p" followed by the number of the argument
instead of the object name given in the sourcefile.

1. prefix"_OVL_"

2. If the function name contains a underscore ("_"), the number of characters of the
function name followed by a underscore ("_"). Nothing if the function name does
not contain an underscore.

The function name.
Anunderscore ("_").

If the object name contains a underscore (*_"), the number of characters of the
object followed by one underscore ("_"). Nothing if the object name does not
contain an underscore.

6. The object name.
Example (ELF):

void f(long p) {
char a;
char b_c;

Does generate the following mangled names

QRDT

" _OVL_f_pO" (H WARE format: "_fp0")
" OVL_f_a" (H WARE format: "a")
" OVL_f_3 b c" (HWARE format: "b_c")

140

Smart Linker

Linking Issues
Overlapping Locals

Defining an function with overlapping
parameters in Assembler

This section covers advanced topics which are only important if you plan to write
assembler functions using a C calling convention with overlapping parameters.

As example, we want to define the function callee:

void callee(long k) {
k= 0;
}

In assembler, first the parameter must be defined with its mangled name. The
parameter must be in the section OVERLAP:

_OVERLAP: SECTI ON
callee_pl: DS 4

NOTE The OVERLAP section is often allocated in a short segment. If so,
use“ OVERLAP: SECTION SHORT"” to specify this.

Next we define the function itself.

cal | ee_code: SECTI ON

cal | ee:

CLEAR cal l ee_pl, 4

RETURN
To avoid processor specific examples, we assume that there is an assembler macro
CLEAR which writes as many zero bytes as its second argument to the address
specified by itsfirst argument. The second macro RETURN should just generate a
return instruction for the actually used processor. The implementations of these two
macros are processor specific and not contained in this linker manual.
Finally, we have to export callee and its argument:

XDEF cal |l ee

XDEF cal | ee_p1l

The whole example in one block:

; Processor specific nmacro definition, please adapt to your target
CLEAR: MACRO

Smart Linker 141

Linking Issues
Overlapping Locals

ENDM

RETURN: MACRO
ENDM
OVERLAP: SECTI ON

cal | ee pl: DS 4
cal |l ee_code: SECTI ON

cal | ee:
CLEAR callee _p1,4
RETURN

; export function and paraneter
XDEF cal | ee
XDEF cal | ee_pl

Some additional points to consider

* Inthe ELF format, the name of the pl parameter must be _OVL _callee pl
instead of callee pl.

Example for ELF:

_OVERLAP: SECTI ON
_OVL_callee_pl: DS 4

cal | ee_code: SECTI ON

cal | ee:
CLEAR _OVL_callee_pl,4
RETURN
; export function and paraneter
XDEF cal | ee
XDEF _OVL_cal lee_pl

» Every function defined in assembler should be in a separate section as a linker
section containing code corresponds to a compiler function.

Example two functions put into one segment:

XDEF cal | ee0
XDEF cal | eel

142 Smart Linker

Linking Issues
Overlapping Locals

_ OVERLAP: SECTI ON
| ocO: DS 4
| ocl: DS 4

code_seg: SECTI ON

cal | eeO:
CLEAR | 0ocO, 4
RETURN
cal | eel: ; ERROR function should be in separate segnment
CLEAR |l oc1, 4
RETURN

Because callee0 and calleel are in the same segment, the linker treats them asif they
were two entry points of the same function. Because of this, locO and loc1 will not be
overlapped and additional dependencies are generated.

To solve the problem, put the two functions into separate segments:

XDEF cal | ee0
XDEF cal | eel

_ OVERLAP: SECTI ON
| ocO: DS 4
| ocl;: DS 4

code_seg0: SECTI ON
cal | eeO:
CLEAR | 0cO, 4
RETURN
code_segl: SECTI ON
cal |l eel:
CLEAR | oc1, 4
RETURN

» Parameter objects are exported if the corresponding function is exported too.
Locals are usually not exported.

Example of an illegal non exported definition of a parameter:

XDEF cal | ee
_OVERLAP: SECTI ON
call ee_pl: DS 4

cal |l ee_code: SECTI ON

cal | ee:
CLEAR callee _p1,4

Smart Linker 143

Linking Issues
Overlapping Locals

RETURN

Because callee pl isnot exported, an external caller of callee will not use the correct
actual parameter. Actually, the application will not be able to link because of the
unresolved externa callee pl.

To correct it, export callee_pl too:

XDEF cal | ee
XDEF cal | ee_p1l
_OVERLAP: SECTI ON

call ee_pl: DS 4
cal |l ee_code: SECTI ON
cal | ee:

CLEAR cal l ee_pl, 4
RETURN

» Do only use parameters of functions which are actually called. Do not use local
variables of other functions. The assembler does not prevent the usage of locals,
which would not have been possiblein C. Such additional usages are not taken
into account for the allocation and may therefore not work as expected. Asrule,
only access objects defined in the _ OVERLAP section from one single
SECTION unless the object is a parameter. Parameters can be safely accessed
from all sections containing calls to the callee and from the section defining the
callee.

Example of anillegal usage of alocal variable

_ OVERLAP: SECTI ON
| oc: DS 4

cal | ee0_code: SECTI ON
cal | eeO:

CLEAR loc,4 ; error: usage of local var loc fromtwo functs
RETURN

cal l eel _code: SECTI ON

cal | eel:
CLEAR loc,4 ; error: usage of local var loc fromtwo functs
RETURN
Instead use two different locals for two different functions:
_ OVERLAP: SECTI ON

144 Smart Linker

Linking Issues
Overlapping Locals

| ocO: DS 4; |ocal var of function calleeO
| ocl: DS 4; local var of function calleel

cal | ee0_code: SECTI ON

cal | eeO:
CLEAR | 0c0,4 ; OK, only callee 0 uses |ocO
RETURN

cal |l eel code: SECTI ON

cal |l eel:
CLEAR locl,4 ; OK, only callee 0 uses locl
RETURN

* Inthe HIWARE format, functions defined in assembly must access all its
parameters and locals allocated in the _OVERLAP segment.

There must be no unused parametersin the_ OVERLAP segment. If thisruleis
violated, then the linker allocates the parameter in the overlap area of one of the
callers. This object can then overlap with the local variables of other callers.

In the ELF format, the binding to the defining function is done by the name
mangling and this restriction does therefore not exists.

The following example does not work in the HIWARE format because callee pl
IS not accessed.

_OVERLAP: SECTI ON
call ee_pl: DS 4; error: paraneter MJST be accessed

cal | ee_code: SECTI ON
cal |l ee:
RETURN

To correct it, do use the paraneter even if the usage is not actually

necessary:
_OVERLAP: SECTI ON
call ee_pl: DS 4; K paraneter is accessed

cal |l ee_code: SECTI ON

cal | ee:
CLEAR callee _p1,1
RETURN

Smart Linker 145

Linking Issues
Overlapping Locals

DEPENDENCY TREE in the Map File

The DEPENDENCY TREE section in the map file was especially built to provide
useful information about the overlapped allocation.

Example:

volatile int intPending; /* interrupt being handl ed? */

void interrupt 1 inter(void) {
i nt ol dl nt Pendi ng=i nt Pendi ng;
i nt Pendi ng=TRUE;
while (0 == read((voi d*)0x1234)) {}
i nt Pendi ng=ol dI nt Pendi ng;
}

unsi gned char read(void* adr) {
return *(volatile char*)adr;

}
Does generate the following tree:
_Vector_1 . 0x808. .0x80B
I
+* inter . 0x808..0x80B
| +* ol dl nt Pendi ng : Ox80A..0x80B
I
+* read : 0x808..0x809
+* readpO . 0x808..0x809

Vector_1isfor the interrupt vector 1 specified in the C source.

The parameter name adr is encoded to _readpO because in C, parameter names may
have different names in different declarations, or even no name as in the example.

Vector_1, inter and read do all depend on the adr parameter of read, which isallocated
at 0x808 to 0x809 (inclusive). So thisareaisincluded for al these objects. Only
Vector_1 and inter do depend on oldintPending, so the area 0x80A to 0x80B is only
contained in these functions.

146 Smart Linker

Linking Issues
Overlapping Locals

Optimizing the overlap size

The area of memory used by one function is the area of this function plus the
maximum of the areas of all used functions. The branches with the maximum area are
marked with a star “*”.

When alocal variable is added to afunction with a“*”, the whole overlap area will
grow by the variable size. More useful, when a variable of afunction marked with a
“*" isremoved, then the size of the overlap may decrease (it may also not, because
there can be severa functionswith a* on the same level). When a marked function is
using some variables of its own, then splitting this function into several parts may also
reduce the overlap area.

Recursion Checks

Assume, that for the previous example, a second interrupt function exists:

Example

void interrupt 2 inter2(void) {
i nt ol dl nt Pendi ng=i nt Pendi ng;
i nt Pendi ng=TRUE;
while (0 == read((voi d*)0x1235)) {}
i nt Pendi ng=ol dl nt Pendi ng;

}
Now, there are two dependency treesin the map file
_Vector_2 . 0x808..0x80B
|
+* inter2 : 0x808..0x80B
| +* ol dl nt Pendi ng : Ox80A. . 0x80B
I
+* read : 0x808. . 0x809
+* readpO . 0x808..0x809
_Vector 1 . 0x80C. . 0x80D
|
+* inter : 0x80C. . 0x80D
| +* ol dl nt Pendi ng : 0x80C. . 0x80D
|
+* read : 0x808..0x809 (see above) (object allocated

in area of another root)

Smart Linker 147

Linking Issues
Overlapping Locals

The subtree of the read function is printed only once. The second time, the “(see
above)” is printed instead of the whole subtree. The second remark “(object allocated
in area of another root)” is more serious. Both interrupt functions are using the same
read function. If oneinterrupt handler can interrupt the other handler, then the
parameter of the read functions may be overwritten, the first handler would fail. But if
both interrupt are exclusive, which is common for the small processors using
overlapped variables, then thisinformation should be added to the prm file to allow an
optimal allocation.

Example (prm file):

DEPENDENCY
ROOT inter inter2 END
END

Now the warning disappears and both inter and inter2 are contained in the same tree:

DEPENDECY ROOT
|

+* inter2 : 0x808..0x80B
| | +* ol dlntPending : Ox80A. . 0x80B
|
| +* read : 0x808..0x809
| +* _readpO : 0x808. . 0x809
|
+* inter : 0x808..0x80B
| +* ol dl nt Pendi ng . Ox80A. . 0x80B
I
+* read : 0x808..0x809 (see above)

Because the oldintPending’ s of both handlers are now allocated overlapping, this
saves 2 bytesin this example.

NOTE Vector_1 and Vector_2 are till handled by the linker as additional
roots. But because al is allocated using the DEPENDENCY ROOT,
the have no influence on the generated code. But their trees are still
listed in the DEPENDENCY TREE section in the map file. These
trees can be safely ignored.

148 Smart Linker

Linking Issues
Linker Defined Objects

See Also

ROM L.ibraries and Overlapping L ocals
DEPENDENCY command

OVERLAP_GROUP command
ENTRIES command

Linker Defined Objects

The linker supports to define special objectsin order to get the address and size of
sections at link time. Objects to be defined by the linker must have a specia prefix.
Their name must start with one of the strings below and they must not be defined by
the application at all.

NOTE Because the linker defines C variables automatically when their size
is known, the usual variables declaration fails for this feature. For an
“externint__ SEG_START_SSTACK;”, thelinker allocates the size
of an int, and does not define the object as address of the stack.
Instead use the following syntax so that the compiler/linker has no
sizefor the object: “externint _ SEG_START_SSTACK]];”.

Usual applications of this feature are the initialization of the stack pointer and to get
the last address of an application to compute a code checksum at runtime.

The object name is built by using a special prefix and then the name of the symbol.
The following tree prefixes are supported:
o “ SEG START ”: start address of the segment

e “ SEG END ": end address of the segment
o “ SEG SIZE ": size of the segment

NOTE The“ SEG END ” end addressisthe address of thefirst byte
behind the named segment.

Theremaining text after the prefix istaken as segment name by the linker. If the linker
does not find such a segment, awarning isissued an 0 istaken as address of this
object.

Smart Linker 149

Linking Issues
Linker Defined Objects

Because identifiersin C must not contain a period in their name, the HIWARE format
aliases can be used for the special ELF names (for example, “SSTACK” instead of

“.stack”).
Example:

With the following C source code:

#define _ SEG START REF(a) _ SEG START
#define _ SEG END_REF(a) __SEG END_
#define __ SEG S| ZE_REF(a) __ SEG SI ZE_

a
a
a

#define _ SEG START DEF(a) extern char _ SEG START _REF(a) []

#define __ SEG END DEF(a) extern char __SEG END REF(

a) []

#define __ SEG Sl ZE DEF(a) extern char __ SEG SIZE REF(a) []

/* To use this feature, first define the synbols to be used: */
__SEG START_DEF(SSTACK); // start of stack
__SEG _END_DEF(SSTACK) ; /1 end of stack
__SEG SI ZE_DEF(SSTACK); /I size of stack

/* Then use the new synbols with the _REF nacros:

int error;
voi d mai n(void) {

char* stackBottom= (char*)__SEG START_REF(SSTACK) ;

char* stackTop = (char*)__SEG END REF(SSTACK) ;

int stackSize= (int)__SEG SI ZE_REF(SSTACK) ;

error=0;

if (stackBottomtstackSize != stackTop) { // top is bottom + size
error=1;

}

for (;;); /* wait here */

And the following corresponding prm file (must be adapted for some processors):

LI NK exanpl e. abs
NAMES exanple.o END
SECTI ONS
MY_RAM = READ WRI TE 0x0800 TO OxOFFF;
MY_ROM = READ ONLY 0x8000 TO OxEFFF;
MY_STACK = NO_INIT 0x400 TO Ox4ff;

END
PLACEMENT
DEFAULT_ROM | NTO MY_ROM
DEFAULT_RAM | NTO MY_RAM
150 Smart Linker

Linking Issues
Automatic Distribution of Paged Functions

SSTACK | NTO MY_STACK;
END
INIT main

The linker defined symbols are defined the following way:

__SEG_START_SSTACK 0x400
_SEG_END_SSTACK 0x500
__SEG S| ZE_SSTACK 0x100

NOTE To use the same source code with other linkers or old linkers, define
the symbolsin a separate module for them.

NOTE In C, you must use the address as value, and not any value stored in
the variable. So in the previous example,
“(int)__ SEG_SIZE _REF(SSTACK)” was used to get the size of the
stack segment and not a C expression like
“ SEG_SIZE _REF(SSTACK)[0]".

Automatic Distribution of Paged
Functions

One common problem with applications distributed in several pagesis how to
distribute the functions into the pages. The simple approach isto compile all function
calls so that they can take place across page boundaries. Then the linker can distribute
the functions without any restrictions.

The disadvantage of this conservative approach is that functions, which are only used
within one page would not actually need the paged calling convention. Compiling
these functions with aintrapage calling convention does both save memory and
execution time. But to guarantee that all calls to an optimized function are within one
page, all callers and the callee have to be allocated in a special segment, whichis
allocated in one single page. The callee’ s calling convention must be additionally
marked as “intrapage’.

Example:
C Source:

Smart Linker 151

Linking Issues
Automatic Distribution of Paged Functions

#pragma CODE_SEG FUNCTI ONS

void f(void) { ... }
void g(void) { fQ); ...}
void h(void) { ... g); ...}

Link parameter File:

SECTI ONS
MY_ROMD = READ ONLY 0x06000 TO OxO7FFF;
MY_ROML = READ ONLY 0x18000 TO Ox18FFF;
MY_ROW = READ ONLY 0x28000 TO Ox28FFF;
PLACEMENT

FUNCTI ONS | NTO MY_ROML, MY_ROWR,

Assume that f and g have placein MY_ROM1. The function histoo large and
therefore allocated in MY_ROM2. Further assume for now that f isonly caled by g.

Evenin thissimple case, the compiler does not know that f and g are on the same page,
so the compiler hasto use a page crossing calling convention to call f. Because thisis

not really needed, the source can be adapted:

#define _ INTRAPAGE _ .../* actually nane depends on the */

/* target processor. E.g. _ _near, _ far,...

#pragma CODE_SEG F_AND_G_FUNCTI ONS

void __ INTRAPAGE f(void) { ... }
void g(void) { ... f(); ... }
#pragma CODE_SEG FUNCTI ONS

void h(void) { ... g(); ...}

*/

Link parameter File:

MY_ROML = READ ONLY 0x18000 TO Ox18FFF,;
MY_ROW = READ ONLY 0x28000 TO Ox28FFF;
PLACEMENT

F_AND_G_FUNCTI ONS | NTO MY_ROML
FUNCTI ONS | NTO MY_ROVR;

152

Smart Linker

Linking Issues
Automatic Distribution of Paged Functions

Now the compiler is explicitly told that he can call f with the intrapage calling
convention. So this example will generate the most effective code.

But aready this very simple case shows that such a solution is very hard to maintain
by hand. Just consider that h must not call f directly, otherwise the code will fail.

Also there are usually not just 3 functions, but thousands or even more. The larger the
project, the less this approach is applicable.

Some new linker and compiler features do allow now to optimize complex cases
automatically.

This happensin several steps.

1. All functions which should be optimized are put into one distribution segment. As
this can be done on a per module, or even on a per application basis with one
header file, this does not cause much effort.

2. Then the application is compiled with the conservative assumption that all callsin
this segment use the interpage calling convention.

3. Thelinker isrun with this application with the special option -Dist.
The linker builds a new header file, which assigns a segment for every function to
be distributed. The name of this header file can be specified with the option -
DistFile.
Functions only called within the same segment are especially marked. This step
does actually build classes of functions which must to be allocated in the same

page.

/* 1ist

#pragma
#pragma

/* 1ist

#pragna
#pragna

of all used code segnents */

CODE_SEG __ DEFAULT_SEG CC__ FUNCTI ONSO
CODE_SEG __ DEFAULT_SEG CC__ FUNCTI ONS1

of all mapped objects with their calling convention */

REALLOC_OBJ "FUNCTI ONSO" f __ NON_I NTERSEG CC__
REALLOC_OBJ "FUNCTI ONSO" g __| NTERSEG CC__

Smart Linker 153

Linking Issues
Automatic Distribution of Paged Functions

#pragma REALLOC_OBJ "FUNCTI ONS1" h __ | NTERSEG CC__

Themacros DEFAULT SEG CC_, INTERSEG CC and
__NON_INTERSEG_CC ___ are set depending on the target processor so that the
compiler is using the optimized calling convention, if applicable.

The #pragma CODE_SEG's are defining all used segments, thisis a precondition
of the "#pragma REALLOC_OBJ'. This pragma does then cause the functions to
be allocated into the correct segments and tells the compiler when he can use the
optimized calling convention.

4. The application isrebuild. Thistime the linker generated header file isincluded
into every compilation unit.

5. Thelinker isrun again, thistime the usual way without the special option.
Because of the shorter calling convention used now, some segments will not be
completely full. Functions which have the intrasegment calling convention can fill
such pages, so that the resulting application does not only runs faster, but also
needs |less pages.

NOTE Steps 2 to 5 are two usual build processes and can be done with the
maker or a batch file.

NOTE As soon as new function calls are added to the sources, all stepsfrom
2 haveto bererun (or the user hasto be sure no to call afunction with
intrapage calling convention across pages).

When the source is modified gets larger, the linking in step 5 may
fail. Then steps 2 to 5 have to be repeated.

NOTE The linker does not know whether some functions are called with
function pointers.
If thisisthe case all such functions must be removed from the
segment to be optimized in step 1.
Thisis especialy the case for C++ virtual function calls. From the
linker’ s point of view, avirtual function call islike afunction pointer
call. So the calling convention of virtual functions cannot be
automatically optimized.

New qualifiers and keywords for the optimization:

154 Smart Linker

Linking Issues
Automatic Distribution of Paged Functions

To determine which sections are banked or not banked it has to be added an
IBCC_NEAR (interbank calling convention near) respectively an IBCC_FAR
(interbank calling convention far) flag. The distribution segment (in the example
down: FUNCTIONS) hasto be followed by the "DISTRIBUTE_INTO" keyword
(instead of "INTO").

NOTE If you want to use the optimizer don’t forget to write
“DISTRIBUTE_INTO" instead of “INTO” in the placement of the
distribution segment, otherwise the optimizer doesn‘t work.

Example:

C Source:
#pragma CODE_SEG FUNCTI ONS
void f(void) { ... }
void g(void) { ... f();: ... }
void h(void) { ... g(); ...}

Link parameter File:

SECTI ONS
MY_ROMD = READ ONLY | BCC_NEAR 0x06000 TO OxO7FFF
MY_ROML = READ ONLY | BCC_FAR 0x18000 TO Ox18FFF
MY_ROMR2 = READ ONLY | BCC_FAR 0x28000 TO Ox28FFF
PLACENENT

FUNCTI ONS DI STRI BUTE_| NTO MY_ROML, MY_ROWR;

How the optimizer works:

The functions with the most incoming calls and they which are called from outside the
distribution segment are inserted into the not banked sections (sections with the
“IBCC_Near” flag). Thusthey can be called with anear calling convention. The
remained functions are arranged like this that in every section will be asfew as
possible incoming calls (this mean as few as possible calls from afunction which is
not in the section to an inside one). This can be reached when the caller and the callee
are in the same section. A function which isin a banked section (sections with the
“IBCC_Far” flag) can only then have a near calling convention if it isn‘t called by an
other function from outside this bank.

Smart Linker 155

Linking Issues
Checksum Computation

Result of the optimization:

With the option -Distinfo an output file can be generated. It contains the result of the
optimized distribution. To seethe full result of linking it is recommendable to use the -
M option to generate aMAPFILE . If necessary it is possible to check which
functions from outside of the distribution segment call such from inside. For thisthe
message “_Function is not in the distribution segment “ has to be enabled which has as
default “ disabled”.

Appropriate options:

Requirements:

The explained method does only work with recent linker version and a compiler
supporting the pragma REALLOC_OBJ.

Limitations

There are several points to consider while distributing code in the linker:

» Thelinker cannot know about calling convention used for function pointers. The
compiler can check some simple cases, but in general thisis not possible. So be
careful while using function pointers that all targets called by function pointers
have the correct calling convention set by the memory model. Best isto exclude
functions being target of a function pointer call from distribution.

» Actualy only one segment can be specified for distribution.

» Usageof HLI: The compiler/linker does not change the HLI code for calling
convention. E.g. if a‘far’ calling instructionisused in HLI to call a“near’
function, thiswill not work.

» Linker assumesfixed code sizesfor ‘far’ and ‘near’ function calling sequences.
Thisis used by the linker to calculate the impact of calling convention change.
Thisway the linker may put some more functions into a segment/bank. However
the linker cannot know about other effects of calling convention change.

Checksum Computation

The linker supports two ways how the computation of a checksum can be invoked:
» prm file controlled checksum computation

The prm file specifies which kind of checksum should be computed over which
area and where the resulting checksum should be stored. This method gives the
full flexibility, but it also requires more user configuration effort. With this
method the linker only computes the actual checksum value. It’s up to the

156

Smart Linker

Linking Issues
Checksum Computation

application code to ensure that the area specified in the prm file does match the
area computed at runtime.

» automatic linker controlled checksum computation

With this method, the linker generates a data structure which contains all
information to compute the checksum. The linker lists all ROM areas, he
computes the checksum and stores them together with area information and type
information in a data structure which can then be used at runtime to verify the

code.

Table 6.4 Comparison of Checksum methods

Method Prm file controlled Checksum | Automatic Linker controlled Checksum
Computation Computation
Complexity needs some configuration easy to use
prm file needs adaptations | Just call _Checksum_Check
Robustness values used in the prm file and | Good.
in the source code have to nothing (or few things) to configure
match. All areas to be checked
have to be listed in the prm
and the source code.
Control Everything isin full user Poor. Only if asegment should be
control. checked can be controlled.
Target Good, only what is needed is | Needs more memory because of the
Memory Usage | Present. control data structure.
Execution time. mainly depends on method. mainly depends on method.
Too much might be checked only needed areas are checked.
as the code size is not exactly
known.

Prm file controlled Checksum Computation

The linker can be instructed by some special commandsin the prm file to compute the
checksum over some explicitly specified areas.

All necessary information for thisis specified in the prm file:

Example (in the prm file):

Smart Linker

157

Linking Issues
Checksum Computation

CHECKSUM
CHECKSUM ENTRY

END
END

METHOD_CRC_CCI TT

OF READ ONLY OxE020 TO OXFEFF
INTO READ ONLY OxEO010 Sl ZE 2
UNDEFI NED Oxf f

See the linker command CHECKSUM description for the exact syntax to be used in
the prm file and also for more examples.

Automatic Linker controlled Checksum
Computation

Thelinker itself is the one who knows all the memory areas used by an application,
therefore this method is using this knowledge to generate a data structure, which then
can be used at runtime to validate the complete code.

Thelinker is providing thisinformation similar to the way it provides copy down and
zero out information.

The linker does automatically generate the checksum data structure if the startup data
structure has two have additional fields:

extern struct _tagStartup {

struct _ Checksunt checkSum
i nt nof CheckSuns;

The structure _ Checksum is defined in the header file checksum.h:

struct _

_Checksum {

voi d* start;
unsigned int |en;

#if _CHECKSUM CRC CCI TT
_CheckSunByt eType checkSunCRC _CCI TT;

#endi f

#i f _CHECKSUM CRC 16
_CheckSun2Byt eType checkSunmCRC16;

#endi f

#if _CHECKSUM CRC 32

158

Smart Linker

Linking Issues
Checksum Computation

_CheckSumiByt eType checkSuntTRC32;
#endi f
#i f _CHECKSUM ADD BYTE
_CheckSunilByt eType checkSunByt eAdd;
#endi f
#i f _CHECKSUM XOR BYTE
_CheckSunlByt eType checkSunByt eXor ;
#endi f

b

The __checksum structure is allocated by the linker in a*.checksum” section after all
the other code or constant sections. As the .checksum section itself must not be
checked, it must be the last sectionin a SECTION list.

The linker isissuing checksum information for al the used segments in the prm file.
However, if some segments are filled with a FILL command, then thisfill areais not
contained.

The checksum types to be computed is derived by the linker by using the field names
of the __ Checksum structure. Usually only one of the alternatives should be present,
but the linker does support to compute any combination checksum methods together.

Automatic struct detection
The linker does read the debug information of the module containing _tagStartup

to detect which checksums it should actually generate and how the structure is built.

Because of this, the structure used by the compiler does always match the structure
generated by the linker.

The linker does know the structure field names and the name __ Checksum of the
checksum structure itself. These names cannot be changed.

The types of the structure fields can be adapted to the actual needs.

.checksum section:

The ".checksum™ section must be the last section in a placement. It is allowed to be
after the .copy section.

If it is not mentioned in the prm file, its automatically allocated when needed.

The checksum areas do not cover .checksum itself.

Smart Linker 159

Linking Issues
Linking an Assembly Application

Partial Fields

The__ Checksum structure can also contain checkSumWordAdd, checkSumL ongAdd,
checkSumWordXor and checkSumL ongXor fields to have checksums computed with
larger element sizes. However, asthe FILL areas are not considered, the len field
might be not a multiple of the element size. When this happens, 0 has to be assumed
for the missing bytes. Because thisis not handled in the provided example code,
automatic generated word or long size add or xor checksums are not officially
supported.

Runtime support

The file checksum.h does contain functions prototypes and utilities to compute the
various checksums.

The corresponding source file is checksum.c. Check it to find out how to compute the
various checksums.

The automatic generated checksum feature does not need any customer code.

A simplecal "_Checksum_Check(_startupData.checkSum,
_startupData.nof CheckSums);" does state if the checksums are OK.

Linking an Assembly Application

Prm File

When an application consists in assembly files only, the linker prm file can be
simplified. In that case:

» No startup structure is required.

* No stack initialization is required, because the stack is directly initialized in the
sourcefile.

* No main functionisrequired
* Anentry point in the application is required

160

Smart Linker

Linking Issues
Linking an Assembly Application

Example:

LI NK test. abs
NAVES test.o test2.0 END

SECTI ONS
DI RECT_RAM = READ WRI TE 0x00000 TO 0xOO0O0FF;
RAM AREA = READ WRI TE 0x00300 TO O0xO7FFF;
ROM_AREA = READ ONLY 0x08000 TO OxOFFFF;
PLACEMENT
nyRegi st er | NTO DI RECT_RAM
DEFAULT_RAM | NTO RAM _AREA,;
DEFAULT_ROM | NTO ROM_AREA,;
END
INIT Start ; Application entry point
VECTOR ADDRESS OxXFFFE Start ; Initialize Reset Vector

In the previous example:

» All data sections defined in the assembly input files are alocated in the segment
RAM_AREA.

 All code and constant sections defined in the assembly-input files are alocated in
the segment ROM_AREA.

» Thefunction MyStart is defines as application entry point and is also specified as
reset vector. MyStart must be XDEFed in the assembly sourcefile.

WARNINGS

An assembly application does not need any startup structure or root function.

The two warnings:
“WARNI NG _startupbata not found

and
‘WARNI NG Function nain not found

can be ignored.

Smart Linking

When an assembly application is linked, smart linking is performed on section level
instead of object level. That means that the whol e sections containing referenced
objects are linked with the application.

Smart Linker 161

Linking Issues

Linking an Assembly Application

Example:

Assembly sourcefile

dat aSec1:
dat al:
dat aSec?2:
dat a2:
codeSec:
entry:

| oop:

XDEF entry
SECTI ON
DS. W1
SECTI ON
DS. W2
SECTI ON

NOP

NOP

LDX #datal
LDD #5645
STD 0, X
BRA | oop

SmartLinker prm file

LI NK t est. abs
NAVES test.o END

SECTI ONS
RAM AREA = READ WRI TE 0x00300 TO OxO7FFF
ROM AREA = READ _ONLY 0x08000 TO OxOFFFF
PLACEMENT
DEFAULT_RAM | NTO RAM_AREA
DEFAULT_ROM I NTO ROM_AREA,;
END
INIT entry

VECTOR ADDRESS OxXFFE entry

In the previous example:

The function entry is defines as application entry point and is also specified as
reset vector.

The data section ‘dataSecl’ defined in the assembly input file is linked with the
application because ‘datal’ isreferenced in entry. The section ‘dataSecl’ is
allocated in the ssgment RAM_AREA at address 0x300.

The code section ‘ codeSec’ defined in the assembly-input fileis linked with the
application because ‘entry’ isthe application entry point. The section ‘ codeSec’
isallocated in the segment ROM_AREA at address 0x8000.

162

Smart Linker

Linking Issues
Linking an Assembly Application

» Thedata section ‘dataSec2’ defined in the assembly input file is not linked with
the application, because the symbol ‘data2’ defined thereit is never referenced.

One can choose to switch smart linking OFF for his application. In that case the whole
assembly code and objects will be linked with the application.

For the previous example, the prm file used to switch smart linking OFF will ook as
follows:

ELF Format: (E-P)

LI NK t est. abs
NAVES test.o END

SEGVENTS
RAM AREA = READ WRI TE 0x00300 TO OxO7FFF;
ROM AREA = READ ONLY 0x08000 TO OxOFFFF,;
END
PLACEMENT
DEFAULT_RAM I NTO RAM_AREA;
DEFAULT_ROM | NTO ROM_AREA,;
END
INIT entry

VECTOR ADDRESS OxXFFE entry
ENTRI ES * END

HIWARE Format: (H'WARE)

LI NK t est. abs
NAVES test.o+ END

SEGVENTS
RAM AREA = READ WRI TE 0x00300 TO OxO7FFF,;
ROM AREA = READ _ONLY 0x08000 TO OxOFFFF;
END
PLACEMENT
DEFAULT_RAM I NTO RAM_AREA,;
DEFAULT_ROM I NTO ROM_AREA;
END
INIT entry

VECTOR ADDRESS OXFFFE entry

In the previous example:

» Thefunction entry is defines as application entry point and is also specified as
reset vector.

Smart Linker 163

Linking Issues
Linking an Assembly Application

» Thedatasection ‘dataSecl’ defined in the assembly input fileis alocated in the
segment RAM_AREA at address 0x300.

» Thedatasection ‘dataSec2’ defined in the assembly input file is allocated next to
the section ‘dataSecl’ at address 0x302.

» The code section ‘codeSec’ defined in the assembly-input file is alocated in the
segment ROM_AREA at address 0x8000.

LINK_INFO(ELF)

Some compiler support to write additional information into the ELF file. This
information consists out of atopic name and specific content.

#pragma LI NK_| NFO BUI LD NUMBER “ 12345”
#pragma LI NK_| NFO BUI LD _KI ND “ DEBUG’

The compiler then stores thisinformation into the ELF object file. The linker checksiif
different object files contain the same topic with a different content. If so, the linker
issues awarning.

Finally, the linker issues all LINK_INFO’sinto the generated output ELF file.

This feature can be used to warn the user about linking incompatible object files
together. Also the debugger can use this feature to pass information from header files
used by the compiler into the generated application.

The linker does currently not have any internal knowledge about specific topic names,
but it might in the future.

164 Smart Linker

The Parameter File

Thelinker’s parameter fileisan ASCII text file. For each application you have to write
such afile. It contains linker commands specifying how the linking isto be done. This
section describes the parameter file in detail, giving examples you may use as
templates for your own parameter files. Y ou might also want to take alook at the
parameter files of the examplesincluded in your installation version.

The Syntax of the Parameter File

The following isthe EBNF syntax of the parameter file.
ParameterFile={ Command} .

Command= LINK NameOfABSFile[ASROM_LIB]
| NAMES ObjFile { ObjFile} END

| SEGMENTS { SegmentDef} END

| PLACEMENT { Placement} END

| (STACKTOP | STACKSIZE) exp

| MAPFILE MapSecSpecList

| ENTRIES EntrySpec { EntrySpec} END

| VECTOR (InitByAddr | InitByNumber)

| INIT FuncName

| MAIN FuncName

| HAS BANKED DATA

| OVERLAP_GROUP { FuncName} END

| DEPENDENCY {Dependency} END

| CHECKSUM { ChecksumEntry} END.
NameOfABSFile= FileName.

Smart Linker 165

The Parameter File
The Syntax of the Parameter File

ObjFile= FileName[”-"].

ObjName= Ident.

Quallden = FileName “:” Ident.

FuncName= ObjName | Qualldent.
MapSecSpecL ist= MapSecSpec “,” { MapSecSpec} .
EntrySpec= [FileName":"] (* | ObjName).

MapSecSpec= ALL | NONE | TARGET | FILE | STARTUP | SEC_ALLOC
|ISORTED_OBJECT _LIST |

OBJ ALLOC | OBJ DEP | OBJ UNUSED | COPYDOWN |
OVERLAP_TREE | STATSTIC.

Dependency= ROOT { ObjName} END

| ObjName USES { ObjName} END

| ObjName ADDUSE { ObjName} END

| ObjName DELUSE { ObjName} END.

SegmentDef= SegmentName “=" SegmentSpec “;”.

SegmentName= I dent.

SegmentSpec= StorageDevice Range [Alignment] [FILL CharacterList]
[OptimizeConstants].

ChecksumEntry= CHECKSUM_ENTRY

ChecksumMethod

[INIT Number]

[POLY Number]

OF MemoryArea

INTO MemoryArea

[UNDEFINED Number]

END.

ChecksumMethod= METHOD_CRC_CCITT | METHOD_CRCS8
| METHOD_CRC16 | METHOD_CRC32
| METHOD_ADD | METHOD_XOR.

166 Smart Linker

The Parameter File
The Syntax of the Parameter File

MemoryArea= StorageDevice Range.

StorageDevice= READ_ONLY | CODE | READ_WRITE | PAGED | NO_INIT.
Range= exp (TO | SIZE) exp.

Alignment= ALIGN [exp] {“[“ObjSizeRange":” exp”]"}.

ObjSizeRange= Number | Number TO Number | CompareOp Number.

Comparwp: (H <“ 1] <:I‘ | 1] >“ “ >:“).
CharacterList= HexByte { HexByte} .

OptimizeConstants= { (DO_NOT_OVERLAP_CONSTS|
DO_OVERLAP_CONSTS) { CODE | DATA}}.

Placement= SectionList (INTO | DISTRIBUTE_INTO) SegmentL.ist “;".
SectionList= SectionName {“,” SectionName}.

SectionName= | dent.

SegmentList= Segment {“,” Segment}.

Segment= SegmentName | SegmentSpec.

InitByAddr= ADDRESS Address Vector.

InitByNumber= VectorNumber Vector.

Address= Number.

VectorNumber= Number.

Vector= (FuncName [OFFSET exp] | exp) [*,” exp].

|dent= <any C style identifier>

FileName= <any file name>.

exp= Number.

Number= Decima Number | HexNumber | OctalNumber.

HexNumber= OxHexDigit{ HexDigit} .

Decima Number= Decimal Digit{ Decimal Digit} .

HexByte= HexDigit HexDigit.

HexDigit="0" |“1"|“2" |“3" |“4” |“5" |“6" |“7" |“8" |“9"|
“A" |[“B" |“C"|“D" |“E" |“F" |

“anltb’ e | td | e |

Smart Linker 167

The Parameter File
Mandatory SmartLinker Commands

DecimalDigit="0" |“1"|“2" |“3" | “4” | “5" | “6" |“7" |“8" |
“9” |.

Comments may appear anywhere in a parameter file, except where file names are
expected. You may use either C style comments or Modula-2 style comments.

File names should not contain paths, this keeps your sources portable. Otherwise, if
you copy the sourcesto some other directory, the linker might not find all files needed.
The linker uses the paths in the environment variables GENPATH, OBJPATH,
TEXTPATH and ABSPATH to decide whereto ook for files and where to write the
output files.

The order of the commands in the parameter file does not matter. Y ou should only
make sure that the SEGMENTS block is specified before the PLACEMENT block.

There are acouple of default sections, named . data, . text, .stack, .copy,
.rodatal, .rodata, .startData, and . init. Information about these
sections can be found in chapter predefined sections.

Mandatory SmartLinker Commands

A linker parameter file always hasto contain at |east the entries for LINK (or using
option -O), NAMES, and PLACEMENT. All other commands are optional. The
following example shows the minimal parameter file:

LINK mini.abs /* Nane of resulting ABS file */

NAMVES

mni.o startup.o /* Files to link */
END
STACKSI ZE 0x20 /* in bytes */
PLACEMENT

DEFAULT_ROM | NTO READ_ONLY O0xA0O0 TO OxBFF;
DEFAULT_RAM | NTO READ_WRI TE 0x800 TO Ox8FF;
END

In casethe linker is called by CodeWarrior, then the LINK command is not necessary.
The CodeWarrior Plug-1n passes the option -O with the destination file name directly
to the linker. Y ou can see thisif you enable * Display generated command linesin
message window’ in the Linker preference panel in CodeWarrior.

The first placement statement

168 Smart Linker

The Parameter File
The INCLUDE directive

DEFAULT_ROM | NTO READ ONLY OXAO0O0 TO OxBFF;

reserves the address range from OxA00 to OxBE'F for allocation of read only objects
(hence the quaifier READ ONLY). . text subsumesall linked functions, all
constant variables, all string constantsand all initialization parts of variables, copied to
RAM at startup.

The second placement statement

DEFAULT_RAM | NTO READ_WRI TE 0x800 TO Ox8FF;

reserves the address range from 0x800 to Ox8F'F for alocation of variables.

The INCLUDE directive

A special directive INCLUDE alowsto split up aprm file into several text files, for
example to separate atarget specific part of a prm file from acommon part.

The syntax of the include directiveis:
I ncludeDir= “I NCLUDE" Fil eNane.

Because the INCLUDE directive may be everywherein the prmfile, it isnot contained
in the main EBNF.

Example:

LINK mini.abs /* Name of resulting ABS file */
NAMES
startup.o [/* startup object file */
| NCLUDE objlist.txt
END
STACKSI ZE 0x20 /[* in bytes */
PLACEMENT
DEFAULT_ROM | NTO READ_ONLY O0xA00 TO OxBFF;
DEFAULT_RAM | NTO READ_WRI TE 0x800 TO Ox8FF;
END
with objlist.txt:
mni0.o /* user object file(s) */
mnil.o

Smart Linker 169

The Parameter File
The INCLUDE directive

170 Smart Linker

SmartLinker Commands

This section describes the details of each linker parameter command.
Each command has at |east following description:

» Syntax: Description of the command syntax.

» Description: Detailed description of the command.

» Example: Example how to use the command.

Some commands are only available in ELF/Dwarf format, and some commands only
in HIWARE object file format. This marked with the object file format in parenthesis
(ELF) or (HIWARE).

If acommand is only available for a specific language, it is marked too, for example,
‘M2’ denotes that the feature is only available for Modula-2 linker parameter files.

Additionally, if the behavior of acommand is different in HIWARE or in ELF/Dwarf
format, thisis mentioned too.

AUTO LOAD

AUTO LOAD: Load Imported Modules
(HIWARE, M2)

Syntax

AUTOLOAD ON | OFF

Description:

AUTO_LOAD isan optional command having an effect on linking only when there
are Modula2 modules present. When AUTO_LOAD is switched ON, the linker
automatically loads and processes all modulesimported in some Modula2 module, i.e.

Smart Linker 171

SmartLinker Commands
CHECKSUM

it is not necessary to enumerate all object files of Modula-2applications. The linker
assumes that the object file name of a Modula-2 module is the same as the module
name with extension."o". Modules loaded by the linker automatically (i.e. imported in
some Modula-2 Module present in the NAMES list) must not appear in the NAMES
list. The default Setting is ON.

AUTO_LOAD must be switched OFF when linking withaROM library. If itis
switched ON, the linker would automatically load the missing object files, thus
disregarding the objects in the ROM library.

Note: AUTO_LOAD must also be switched OFF if the object file names are not the
same as the module names, because in this case the linker is unable to find the object
files.

Example:

AUTOLOAD ON

CHECKSUM

CHECKSUM: Checksum computation ELF)

Syntax

Checksum= CHECKSUM {ChecksumEntry} END.
ChecksumEntry= CHECKSUM_ENTRY

ChecksumMethod

[INIT Number]

[POLY Number]

OF MemoryArea

INTO MemoryArea

[UNDEFINED Number]

END.

ChecksumMethod= METHOD_CRC_CCITT | METHOD_CRC8

172 Smart Linker

SmartLinker Commands
CHECKSUM

| METHOD_CRC16 | METHOD_CRC32
| METHOD_ADD | METHOD_XOR

Description:

The linker can be instructed with this directives to compute the checksum over some
memory aress.

All necessary information for thisis specified in this structure.

Note that the OF MemoryArea specified usually also has its separate SEGMENTS entry.
It is recommended to use the FILL directive there to actually fill all gaps to get a
predictable result.
E.g.:
SEGMENTS
MY_ROM = READ_ONLY O0xE020 TO OXFEFF FILL OxFF;
END
CHECKSUM
CHECKSUM_ENTRY METHOD_CRC_CCITT
OF READ_ONLY 0xE020 TO 0xFEFF
INTO READ_ONLY O0xE010 SIZE 2
UNDEFINED 0xff
END
END

The checksum can only computed over areas with READ_ONLY and CODE
qualifiers.

The following methods are supported:

» METHOD_XOR. The elements of the memory area are xored together.
The element size is defined by the size of the INTO_AREA.

« METHOD_ADD. The elements of the memory area are added together.
The element size is defined by the size of the INTO_AREA.

* METHOD_CRC_CCITT. A 16-hit CRC (cyclic redundancy check) checksum
according to CRC CCITT is computed over al bytesin the area. The
INTO_AREA size must be 2 bytes.

» METHOD_CRCI16. A 16-hit CRC checksum according to the commonly used
CRC 16 iscomputed over al bytesin thearea. The INTO_AREA size must be 2
bytes.

Smart Linker 173

SmartLinker Commands
CHECKSUM

* METHOD_CRC32. A 32-hit CRC checksum according to the commonly used
CRC 32 iscomputed over all bytesinthe area. The INTO_AREA size must be 4
bytes.

The optional [INIT Number] entry isused asinitial value in the checksum
computation. If it is not specified, a default values of Oxffffffff for CRC checksums
and O for addition and xor is used.

The optional [POLY Number] entry allows to specify alternative polynomials for the
CRC checksum computation.

OF MemoryArea: The area of which the checksum should be computed.

INTO MemoryArea: The areainto which the computed checksum should be stored. It
be distinct from any other placement in the prm file and from the OF MemoryArea.

The optional [UNDEFINED Number] value is used when no memory is at certain
places. However it is recommended to use the FILL directive to avoid this (for an
example see above).

Example 1:

CHECKSUM
CHECKSUM_ENTRY
METHOD_CRC_CCITT
OF READ ONLY OxE020 TO OXFEFF
INTO READ ONLY OxEO10 SIZE 2
UNDEFINED Oxff
END
END

This entry causes the computation of a checksum from 0XxE020 up to OXFEFF
(including this address).

The checksum is calculated according to the CRC CCITT.

Example 2:
Example:

Assume the following memory content:
0x1000 02 02 03 04

174

Smart Linker

SmartLinker Commands
CHECKSUM

Then the XOR 1 byte checksum from 0x1000 to 0x1003 is 0x06
(=0x02"0x02"0x03"0x04).

Notes:
- METHOD_XOR isthe fastest method to compute together with METHOD_ADD.

- However, for METHOD_XOR and METHOD_ADD, multiple regular one bit
changes can cancel each other out. The CRC methods avoid this weakness.

As example, assume that both 0x1000 and 0x1001 are getting cleared, then, the XOR
checksum does not change. There are similar cases for the addition as well.

- METHOD_XOR/METHOD_ADD do aso support to compute the checksum with
larger element sizes.

The element size istaken as the size of the INTO MemoryArea part.

With a element size of 2, the checksum of the example would be 0x0506 (= 0x2020
0x0304).

Larger element sizes do allow afaster computation of the checksums on 16 or 32 bit
machines.

The size and the address of the OF MemoryArea part have to be a multiple of the
element size.

CRC checksums do only compute the values byte wise (or more precisely they are
even defined bitwise).

- Often, the actual size of the areato be checked is not known in advance.

Depending on how much code the compiler is generating for C source code, the
placements do fill up more or less.

This method however does not support varying sizes. Instead, the unused areas in the
placement have to be filled with the FILL directive to a known value. This causes a
certain overhead as the checksum is computed over thesefill areas as well.

Smart Linker 175

SmartLinker Commands
CHECKKEYS

CHECKKEYS

CHECKKEYS: Check Module Keys (HWARE,
M2)
Syntax

CHECKKEYS ON | OFF

Description:

The CHECKKEY S command is optional. If switched ON (which isthe default), the
linker compares module keys of the Modula-2 modules in the application and issues
an error message if there is an inconsistency (symbol file newer than the object file).
CHECKKEY S OFF turns off this module key check.

Example:

CHECKKEYS ON

DATA

DATA: Specify the RAM Start (HWARE)

Syntax

DATA Address

Description

Thisisacommand supported in ‘old-style’ linker parameter files and will be not
supported in a future release.

With this command the default ROM begin can be specified. The specified address has
to be in hexadecimal notation. Internally this command is tranglated into

176

Smart Linker

SmartLinker Commands
DEPENDENCY

DATA 0x?7?7?? =>'DEFAULT_RAM INTO READ_WRITE 0x???? TO 0x7?7??

Note that because the end addressisof DEFAULT_RAM isnot known, the linker tries
to specify/find out the end address itself. Because thisis not a very transparent
behavior, this command will not be supported any more.

Example

START 0x1000

DEPENDENCY

DEPENDENCY: Dependency Control

Syntax

DEPENDENCY { Dependency} END.
Dependency = ROOT {Cbj Nane} END
| Cbj Name USES { Obj Name} END
| Cbj Name ADDUSE { Qbj Nane} END

| Obj Name DELUSE {Cbj Nane} END.

Description

The keyword DEPENDENCY allows the modification of the automatically detected
dependency information.

New roots can be added (ROOT keyword) and existing dependencies can be
overwritten (USES), extended (ADDUSE) or removed (DELUSE).

The dependency information is mainly used for 2 purposes:
» Smart Linking Only objects depending on some roots are linked at all.

» Overlapping of local variables and parameters
Some small 8 hit processors are using global memory instead of stack space to
allocate local variables and parameters. The linker uses the dependency

Smart Linker 177

SmartLinker Commands
DEPENDENCY

information to allocate local variables of different functions which never are
active at the same time to the same addresses.

ROOT

With the ROOT keyword a group of root objects can be specified.

A ROQOT entry with asingle object is semantically the same as if the object would be
inaENTRIES section. A ROOT entry with several objectsis semantically the same as
an OVERLAP_GROUP entry (which is however only available in ELF). If several
objects however are in one root group, there is an additional semantic that only one
object of the group is active at the sametime. Thisinformation is used for an improved
overlapped allocation of variables. Variables of functions of the same group are
allocated in the same area. If you do not want to specify this, either use several ROOT
blocks or add the objects in the ENTRIES section.

Example (Overlapped allocation of variables, only for
some targets):

C source:
void main(void) { int i;}
void interrupt intl(void) { int j; ... }
void interrupt int2(void) { int k; ... }
prm file:
. . . DEPENDENCY

ROOT mai n END
ROOT intl int2 END
END

In this example, the variables of the function main and al its dependents are allocated
first. Then the variables of intl and int2 are allocated into the same area. So j and k

may overlap.

USES

The USES keyword defines all dependenciesfor a single object. Only the given
dependencies are used. Any not listed dependencies are not taken into account. If a
needed dependency is not specified after the USES, the linker will complain.

178 Smart Linker

SmartLinker Commands
DEPENDENCY

Example (Overlapped allocation of variables, only for
some targets)

C Source:

void f(void(* fct)(void)) { int i; ... fct();...}

void g(void) { int j;... }

void h(void) { int k;... }

void main(void) { f(g); f(h); }
prm file:

DEPENDENCY

f USES g h END

END
This USES statement does assure that the variable i of f does not overlap any of the
variables of g or h.
The automatic detection does not work for functions called by a function pointer
initialized outside of the function asin this case.
However the USES keyword hides any dependencies specified by the compiler. Only
if the code of f not shown above does not call additional functions, this USES is safe.
It isusually better to use ADDUSE, explained below, than to use USES.
ADDUSE
The ADDUSE keyword allows to add additional dependencies to the ones
automatically detected. The ADDUSE is safe in the way that no dependencies arelost.
So the generated application might use more memory than necessary, but it does
consider al known dependencies.
Example (Overlapped allocation of variables, only for
some targets)
C Source:

void f(void(* fct)(void)) { int i; ... fct();...}

void g(void) { int j;... }

void h(void) { int k;... }

void main(void) { f(g); f(h); }

Smart Linker 179

SmartLinker Commands

DEPENDENCY
prm file:

DEPENDENCY

f ADDUSE g h END

END
This example is safer than the pervious version with USES because only new
dependencies are added.
For smart linking, the automatic detection covers almost al cases. Only if some
objects are accessed by afix address, for example, one must link additional depending
objects.
Example (Smart Linking)
C-Code:

i nt @ 0x8000;

void main(void) {
(int)0x8000 = 3;

}
Totell thelinker that i hasto be linked too, if mainislinked, the following line can be
added to the link parameter file:
DEPENDENCY nai n ADDUSE i END
DELUSE
The DELUSE keyword allows to remove single dependencies from the set of
automatic detected dependencies.
To get alist of al automatic detected dependencies, comment out any DEPENDECY
block in the prm file, switch on the map file generation and see the "OBJECT-
DEPENDENCIES SECTION" in the generated map file.
The automatic generation of dependencies can generate unnecessary dependencies
because, for example, the runtime behavior is not taken into account.
Example
C Source:

voi d Mai nWaitLoop(void) { int i; for (;;) { ... } }

180 Smart Linker

SmartLinker Commands
DEPENDENCY

void _Startup(void) { int j; InitAl();
Mai nWAi t Loop(void); }

prm file:

DEPENDENCY
_Startup DELUSE Mai nWai t Loop END
ROOT _Startup Mai nWait Loop END
END

Because MainWaitL oop does not take any parameter and does never return, itslocal
variable i can be allocated overlapped with _Startup. The ROOT directive specifies
that the locals of the two functions can be allocated at the same addresses.

Overlapping of local variables and
parameters

The most common application of the DEPENDENCY command isfor the
overlapping.

See Also

Keyword OVERLAP_GOURP
Overlapping Locals

Smart Linker 181

SmartLinker Commands
ENTRIES

ENTRIES

ENTRIES: List of Objects to Link with the
Application

Syntax (ELP).

ENTRI ES
[FileName ” :”] (*| obj Nane)
{[FileName “:7](*|obj Nane)}

END

Syntax (HIWARE)

ENTRI ES obj Nane {obj Nanme} END

Description
The ENTRIES block is optional in aprm file and it cannot be specified several times.

The ENTRIES block is used to specify alist of objects, which must aways be linked
with the application, even when they are never referenced. The specified objects are
used as additional entry point in the application. That means all objects referenced
within these objects will also be linked with the application.

Table 8.1 describes the notation that are supported.

Table 8.1 Notation and their description

Notation Description
<Object Name> The specified global object must be linked with the
application

<File Name>:<Object The specified local object defined in the specified
Name> (ELF) binary file must be linked with the application

182 Smart Linker

SmartLinker Commands
ENTRIES

Table 8.1 Notation and their description

Notation Description

<File Name>:* (ELF) All objects defined within the specified file must be
linked with the application

* (ELF) All objects must be linked with the application. This
switches OFF smart linking for the application

ELF Specific issues (ELP):

If afile name specified in the ENTRIES block is not present in the NAMES block, this
filenameisinserted in thelist of binary files building the application.

Example

NANMES
startup.o
END

ENTRI ES
fibo.o:*
END

In the previous example, the application is build from the files fibo.o and startup.o.

File Names specified in the ENTRIES block may also be present in the NAMES
block.

Example

NAMES
fibo.o startup.o
END

ENTRI ES
fibo.o:*
END

Smart Linker 183

SmartLinker Commands
HAS_BANKED_DATA

In the previous example, the application is build from the files fibo.o and startup.o.
Thefile*fibo.o" specified in the ENTRIES block isthe same as the one specified in the
ENTRIES block.

NOTE We strongly recommend to avoid switching smart linking OFF, when
the ANSI library is linked with the application. The ANSI library
contains the implementation of all run time functions and ANSI
standard functions. This generates alarge amount of code, which is
not required by the application.

HAS BANKED DATA

HAS BANKED_DATA: Application has
banked data (H'WARE)

Syntax

HAS_BANKED DATA

Description

Thisentry is used to specify for the HC12 in the HIWARE object file format that all
pointersin the zero out and in the copy down must be 24 bit in size.

In the ELF object file format, this entry isignored.

184

Smart Linker

SmartLinker Commands
HEXFILE

Example
HAS BANKED DATA

HEXFILE

HEXFILE: Link a Hex File with the
Application

Syntax

HEXFI LE <fil eNane> [OFFSET <hexNunber >]

Arguments

<fileName> isany valid file name. Thisfile is searched in the current directory first,
and then in the directories specified in the environment variable "GENPATH".

<hexNumber> if specified, this number is added to the address found in each record of
the hex file. The result is then the address where the data bytes are copied to.

Description

Using this command a Motorola S-Record file or alntel Hex file can be linked with
the application.

Example:
HEXFI LE fi boram s1 OFFSET OxFFFF9800 /* 0x800 - 0x7000 */

The optional offset specified in the HEXFILE command is added to each record in the
Motorola Sfile. The code at address 0x7000 will be encoded at address 0x800. The
offset OXFFFF9800 used above is the unsigned representation of -0x68000. To
calculate it, use a hex capable calculator, for example the Windows Calculator in
scientific mode, and subtract 0x7000 from 0x800.

NOTE Be careful, in the HHIWARE Format, no checking is performed to
avoid overwriting of any portion of normal linked code by data from
hex files.

Smart Linker 185

SmartLinker Commands

INIT

INIT

Example
HEXFI LE fi boram sl OFFSET OxFFFF9800 /* 0x800 - 0x7000 */

INIT: Specify the Application Init Point

Syntax

INIT FuncName

Description

The INIT command is mandatory for assembly application and optional otherwise. It
cannot be specified several timesin the prm file. This command defines the
initialization entry point for the application used.

When INIT is not specified in the prm file, the linker looks for a function named
‘_Startup’ and use it as application entry point.

If an INIT command is specified in the prm file, the linker uses the specified function
as application entry point. Thisis either the main routine or a startup routine calling
the main routine.

ELF Specific issues (ELF):;

Y ou can specify any static or global function as entry point.

186

Smart Linker

SmartLinker Commands
LINK

Example

INIT Myd obStart /* Specify a gl obal vari abl e as application
entry point.*/

ELF Specific Example (ELF):

INI TnyFile. o:nmyLocStart /* Specify alocal variable
as application entry point.*/

This command is not used for ROM libraries. If you specify an INIT command in a
ROM library prm file, awarning is generated.

LINK

LINK: Specify Name of Output File

Syntax

LI NK <NameCOf ABSFi | e> [* AS ROM LI B’]

Description

The LINK command defines the name of the file which should be generated by the
link session. This command is mandatory and can only be specified oncein aprm file.

After asuccessful link session thefile“NameOfABSFile” iscreated. If the
environment variable ABSPATH is defined, the absolute file is generated in the first
directory listed there. Otherwise, it iswritten to the directory where the parameter file
was found. If afile with this name already exists, it is overwritten.

A successful linking session also creates a map file with the same base name as
“NameOfABSF11le” and with extension .map. If the environment variable
TEXTPATH isdefined, the map file is generated in the first directory listed there.
Otherwise, it iswritten to the directory where the parameter file was found. If afile
with this name already exists, it is overwritten.

If the name of the absolutefileisfollowed by ASROM_LIB, aso-called ROM library
is generated instead of an absolute file (Please see section ROM Libraries). A ROM
library is an absolute file which is not executable alone.

Smart Linker 187

SmartLinker Commands
MAIN

The LINK command is mandatory in aprm file. If the LINK command is missing the
SmartLinker generates an error message unless the option -O is specified on the
command line. Note that if the Linker is started from CodeWarrior, the option -O is
automatically added.

If the option -O is specified on the command line, option -O has higher priority than
LINK command.

Example

LI NK fi bo. abs

NAMES fibo.o startup.o END
SECTI ONS
MY_RAM = READ WRI TE 0x1000 TO Ox18FF;

MY_ROM = READ _ONLY 0x8000 TO Ox8FFF,;
MY_STK = READ WRI TE 0x1900 TO Ox1FFF,;
PLACEMENT

DEFAULT_ROM INTO MY_ROM
DEFAULT_RAM INTO MY_RAM
SSTACK INTO MY_STK;
END
VECTOR ADDRESS OxFFFE _Startup /* set reset vector */

Thefilesfibo.ABS and a fibo.map are generated after successful linking from the
previous prm file.

MAIN

MAIN: Name of the Application Root
Function

Syntax

MAI N FuncName

188 Smart Linker

SmartLinker Commands
MAPFILE

Description

The MAIN command is optional and cannot be specified several timesin the prm file.
This command defines the root function for an ANSI C application (the function
which isinvoked at the end of the startup function.

When MAIN is not specified in the prm file, the linker looks for a function named
‘main’ and use it as application root.

If aMAIN command is specified in the prm file, the linker uses the specified function
as application root.

ELF Specific issues (ELP):

Y ou can specify any static or global function as application root function.

Example

MAIN MyG obMain /* Specify a gl obal variable as
application root.*/

ELF Specific Example (ELF);

MAI NnyFi |l e. o: nyLocMain/* Specify al ocal vari abl e as
application root.*/

This command is not required for ROM libraries. If you specify aMAIN command in
aROM library prm file, awarning is generated.

MAPFILE

MAPFILE: Configure Map File Content

Syntax (ELF):

MAPFI LE (ALL| NONE| TARGET]| FI LE| STARTUP_STRUCT| SEC_ALLCC]
OBJ_ALLOC| SORTED_OBJECT_LI ST| OBJ_DEP| OBJ_UNUSED|

Smart Linker 189

SmartLinker Commands

MAPFILE

COPYDOWN| OVERLAP_TREE| STATI STI C| MODULE_STATI STI C)

[, { (ALL| NONE| TARGET| FI LE| STARTUP_STRUCT| SEC_ALLOC| OBJ_ALLOC

| OBJ_DEP| OBJ_UNUSED| COPYDOWN| OVERLAP_TREE| STATI STI C| MODULE_STA

TISTIO)}]
Syntax (HIWARE).

MAPFI LE (ON| OFF)

Description

This command is optional, it is used to control the generation of the Map file. Per
default, the command MAPFILE ALL isactivated, indicating that a map file must be
created, containing all linking time information.

Table 8.2 describes the map file specifiers that are available.

Table 8.2 Map file specifiers and their description

Specifier Description

ALL (ELF) A map file must be generated containing all
information available

COPYDOWN(ELF) The information about the initialization value for
objects allocated in RAM must be written to the
map file (Section COPYDOWN in the map file)

EILEELF) The information about the files building the
application must be inserted in the map file
(Section FILE in the map file).

NONE(ELF) No map file must be generated

OBJ_ALLOC(ELF)

The information about the allocated objects must
be inserted in the map file (Section OBJECT
ALLOCATION in the map file)

SORTED_OBJECT_LISTE
LF)

The map file must contain a list of all allocated
objects sorted by the address. (Section OBJECT
LIST SORTED BY ADDRESS in the map file)

OBJ_UNUSED(ELR)

The list of all unused objects must be inserted in
the map file (Section UNUSED OBJECTS in the
map file)

190

Smart Linker

SmartLinker Commands

MAPFILE

Table 8.2 Map file specifiers and their description (continued)

Specifier

Description

OBJ_DEP(ELF)

The dependencies between the objects in the
application must be inserted in the map file
(Section OBJECT DEPENDENCY in the map
file).

DEPENDENCY_TREE(ELF)

The dependency tree shows how the overlapped
variables are allocated (Section DEPENDENCY
TREE in the map file).

OFF (HIWARE)

No map file must be generated

ON (HIWARE)

A map file must be generated containing all
information available

SEC_ALLOC(ELP)

The information about the sections used in the
application must be inserted in the map file
(Section SECTION ALLOCATION in the map
file)

STARTUP_STRUCT(ELF)

The information about the startup structure must
be inserted in the map file (Section STARTUP in
the map file).

MODULE_STATISTICELR)

The MODULE STATISTICS tell how much
ROM/RAM is used by a specific module (module
is used here as synonym for compilation unit).

STATISTIC(ELF)

The statistic information about the link session
must be inserted in the map file (Section
STATISTICS in the map file)

TARGET(ELF)

The information about the target processor and
memory model must be inserted in the map file
(Section TARGET in the map file).

The kind of information generated for each specifier is described latter on in chapter
map file.

ELF Specific issue

s (ELF).

AssoonasALL isspecified inthe MAPFILE command, all sectionsareinserted in the
map file.

Smart Linker

191

SmartLinker Commands

NAMES
Example
Following commands are all equivalents. A map file is generated, which contains all
the possible information about the linking session.
MAPFI LE ALL

MAPFI LE TARGET, ALL
MAPFI LE TARCET, ALL, FILE, STATISTIC

As soon as NONE is specified in the MAPFILE command, no map file is generated.

Example

Following commands are all equivalents. No map file is generated.

MAPFI LE NONE
MAPFI LE TARGET, NONE
MAPFI LE TARGET, NONE, FILE, STATISTIC

NOTE For compatibility with old style HIWARE format prm file, following
commands are also supported:
MAPFILE OFF is equivalent to MAPFILE NONE
MAPFILE ON isequivalent to MAPFILE ALL

NAMES

NAMES: List the Files building the
Application.

Syntax

NAVES <FileNane>[‘+ |’ -"] {<FileNane>[‘+|’-']} END

Description

The NAMES block containsalist of binary files building the application. Thisblock is
mandatory and can only be specified oncein aprm file.

192 Smart Linker

SmartLinker Commands
NAMES

The linker reads all files given between NAME'S and END. The files are searched for
first in the project directory, then in the directories specified in the environment
variable OBJPATH and finally in the directories specified in the environment variable
GENPATH. Thefiles may be either object files, absolute or ROM Library files or
libraries.

Additional files may be specified by the option -Add. The object files specified with
the option -Add are linked before the files mentioned in the NAMES block.

Asthe SmartLinker is asmart linker, only the referenced objects (variables and
functions) are linked to the application. Y ou can specify any number of filesin the
NAMES block, because of smart linking, the application only contains the functions
and variables really used.

The plus sign after afile name (e.g. FileName+) switches OFF smart linking for
the specified file. That means, all the objects defined in thisfile will be linked with the
application, regardless whether they are used or not.

A minus sign can aso be specified after an absolute file name (e.g. FileName-).
This indicates that the absolute file should not be involved in the application startup
(global variables defined in the absolute file should not be initialized during
application startup) (Please see section Using ROM Libraries).

No blank is alowed between the file name and the plus or minus sign.

Example

LI NK fi bo. abs

NAMES fibo.o startup.o END

SEGVENTS

MY_RAM = READ VWRI TE 0x1000 TO Ox18FF;

MY_ROM = READ_ONLY 0x8000 TO Ox8FFF;
MY_STK = READ WRI TE 0x1900 TO Ox1FFF;
PLACEMENT

DEFAULT_ROM INTO MY_ROM
DEFAULT_RAM | NTO MY_RAM
SSTACK I NTO MY_STK;

END

VECTOR ADDRESS OxFFFE _Startup /* set reset vector */

In the previous example, the application fibo is build from the files ‘fibo.o’ and
‘startup.o’.

Smart Linker 193

SmartLinker Commands
OVERLAP_GROUP

OVERLAP_GROUP

OVERLAP_GROUP: Application uses
Overlapping (ELF)

Syntax

OVERLAP_GROUP {<(vj ect s>} END

Description

The OVERLAP_GROUP is used for overlapping of locals only. See also the chapter
Overlapping Locals.

In some cases the linker cannot detect that there is no dependency between some
functions, so that local variables are not overlapped, even if thiswould be possible. A
OVERLAP_GROUP block allow the user to specify a group of functions, which does
not overlap.

OVERLAP_GROUP isonly availablein the ELF object file format. However, the
same functionality can be achieved with the DEPENDENCY ROOT command, which
isalso available in the HIWARE format.

Example:

Assume the default implementations of the C startup routines:

o _Startup: the main entry point of the application. It callsfirst Init and then uses
_startupDatato call main.

 Init: Usestheinformation in _startupData to generate the zero out

» startupData: Data-structure filled by the linker containing various information
as the address of the main function and which areas are to be handled by the zero
out in Init.

* main: The main startup point of C code
Between these objects, the following dependencies exist:
e _Startup depends on _startupData, Init
* Init dependson _startupData
» _startupData depends on main.

194

Smart Linker

SmartLinker Commands
OVERLAP_GROUP

Assume the following entry in the prm file:

[* _Startup is a group of it’'s own */
OVERLAP_GROUP _Startup END

When investigating _Startup, linker does not know that Init does not call main.
According to the dependency information, it might call main, so the variables of Init
and main are not overlapped.

But in this case, the following OVERLAP_GROUP is build in the linker:

/[* Overlap the variables of main and the variables of _Startup */
OVERLAP_GROUP main _Startup END

Thisway, the linker overlaps the variables of Init and main because first mainis
allocated and then _Startup.

For the HCO5 with the usua startup code, this entry saves 8 bytesin the _OVERLAP
segment. But if the usual startup code is modified theway that _Startup and main must
not overlap, insert “OVERLAP_GROUP _Startup END” into the prm file.

NOTE All the name of the _Startup function, of main and of _startupData
can be configured in prm file to a non-default one.

Example:

Assume that a processor has two interrupt priorities.

Assume two functions IntPriolA and IntPriolB handle interrupt 1 priority requests
and the two functions IntPrioOA and IntPrioOB handle the interrupt O priority requests.
As never two function on the same priority level can be active at the same time, two
OVERLAP_GROUPs can be used to overlap the functions of the same level.

OVERLAP_GROUP IntPriolA IntPriolB END
OVERLAP_GROUP IntPrioOA IntPrioOB END

See also
keyword DEPENDENCY
Overlapping Locals

Smart Linker 195

SmartLinker Commands
PLACEMENT

PLACEMENT

PLACEMENT: Place Sections into
Segments

Syntax

PLACEMENT
Secti onNane{, secti onNarme} (I NTO | DI STRI BUTE_|I NTO)
SegSpec{, SegSpec};
{SectionNane{, secti onNane} (I NTO | DI STRI BUTE_I NTO
SegSpec{, SegSpec};}

END

Description

The PLACEMENT block is mandatory in aprm file and it cannot be specified several
times.

Each placement statement between the PLACEMENT and END defines arelation
between logical sections and physical memory ranges called segments.

Example

SECTI ONS

= READ _ONLY 0x800 TO OxAFF,

PLACEMENT

DEFAULT_ROM ROM VAR | NTO ROM 1;
END

In the previous example, the objects from section ‘DEFAULT_ROM’ are allocated
first and then the objects from section ‘ROM_VAR'.

Allocation of the objects starts with the first section in thelist; they are allocated in the
first memory rangein thelist as long as there is enough memory left. If asegment is

196

Smart Linker

SmartLinker Commands
PLACEMENT

full (i.e. the next object to be alocated doesn’t fit anymore), allocation continuesin the
next segment in the list.

Example
SEGVENTS
ROM 1 = READ ONLY 0x800 TO OxAFF;
ROM 2 = READ ONLY 0xB0OO TO OxCFF;
END
PLACEMENT
DEFAULT_ROM | NTO ROM 1, ROM 2;
END

In the previous example, the objects from section ‘DEFAULT_ROM’ are allocated
firstin segment ‘ROM_1’". As soon as the segment ‘ROM _1" isfull, alocation
continuesin section ‘ROM_2'.

A statement inside of the PLACEMENT block can be split over several lines. The
statement is terminated as soon as a semicolon is detected.

The SECTIONS block must always be defined in front of the PLACEMENT block,
because the segments referenced in the PLACEMENT block must previously be
defined in the SECTIONS block.

Some restrictions applies on the commands specified in the PLACEMENT block:

» When the .copy section is specified in the PLACEMENT block, it should be the
last section in the section list.

* When the .stack section is specified in the PLACEMENT block, an additional
STACKSIZE command is required in the prm file, when the stack is not the
single section specified in the placement statement.

» The predefined sections .text and .data must always be specified in the
PLACEMENT block. They are used to retrieve the default placement for code or
variable sections. All code or constant sections, which do not appear in the
PLACEMENT block are allocated in the same segment list as the .text section.
All variable sections, which do not appear in the PLACEMENT block are
allocated in the same segment list as the .data section.

Smart Linker 197

SmartLinker Commands
PRESTART

PRESTART

PRESTART: Application Prestart Code
(HIWARE)

Syntax

PRESTART (["+"] HexDigit {HexDigit} | OFF)

Description

Thisisan optional command. It allows the modification of the default init code
generated by the linker at the very beginning of the application. Normally this code
looks like

Di sabl el nterrupts.
On sone processor, setup page registers
JMP StartupRoutine (" _Startup" by default)

If aPRESTART command is given, al code before the IMP is replaced by the code
given by the Hex numbers following the keyword. If thereisa"+" following the
PRESTART, the code given does not replace the standard sequence but isinserted just
before IMP.

Note: After the PRESTART command do not write a sequence of hexadecimal
numbersin C (or Modula-2) format! Just write an even number of hexadecimal digits.
Example:

PRESTART + 4E714E71

PRESTART OFF turns off prestart code completely, i.e. the first instruction executed
isthe first instruction of the startup routine.

198 Smart Linker

SmartLinker Commands
SECTIONS

Example
PRESTART OFF

SECTIONS

SECTIONS: Define Memory Map

Syntax

SECTI ONS { (READ_ONLY| READ_WRI TE| NO_I NI T| PAGED)

<start Addr> (TO <endAddr> | SIZE <si ze>)}

Description

The SECTIONS block isoptional in aprm file and it cannot be specified several
times. The SECTIONS block must be directly followed by the PLACEMENT block.

The SECTIONS command allows the user to assign meaningful names to address
ranges. These names can then be used in subsequent placement statements, thus
increasing the readability of the parameter file.

Each address range you define is associated with

* agqudlifier.
* adtart and end address or a start address and a size.

Section Qualifier

Following qualifier are available for sections:

» READ_ONLY: used for address ranges, which areinitialized at program load
time. The application (*.abs) does only contain content for this qualifier.

» READ_WRITE: used for address ranges, which areinitialized by the startup code
at runtime. Memory area defined with this qualifier will beinitialized with O at
application startup. The information how the READ_WRITE sectionis
initialized isstored inaREAD_ONLY section.

* NO_INIT: used for address ranges, where read write accesses are allowed.
Memory area defined with this qualifier will not be initialized with O at

Smart Linker 199

SmartLinker Commands

SECTIONS

application startup. Thismay be useful if your target has a battery buffered RAM

or to speedup application startup.

* PAGED: used for address ranges, where read write accesses are allowed.
Memory area defined with this qualifier will not be initialized with O at
application startup. Additionally, the linker will not control if thereisan overlap
between segments defined with the PAGED qualifier. When overlapped
segments are used, it isthe user’ s responsibility to select the correct page before
accessing the data allocated on a certain page.

Qualifier Handling

Qualifier Initialized Non- Constants Code
Variables Initialized
Variables
READ_ONLY not applicable not applicable content written content written
() Q) to target to target
address address
READ_WRITE content written | Area contained content written not applicable
into copy down | in zero out into copy down Q) 2
area, together information (4) area, together
with info where with info where
to copy it at to copy it at
startup. startup. Area
Area contained contained in
in zero out zero out
information (3) information (3)
(4) (4)
NO_INIT not applicable just handled as not applicable not applicable
(1) allocated. 1) (1)
Nothing
generated.
PAGED not applicable just handled as not applicable not applicable
Q) allocated. Q) (1)
Nothing
generated.

1. These cases are not intended. The linker does however allow some of them. If so,
the qualifier controls what is written into the application.

areaas READ_ONLY.

To alocate codein aRAM area, for example for testing purposes, declare this

200

Smart Linker

SmartLinker Commands
SECTIONS

3. Initialized objects and constant in READ_WRITE sections do need additionally to
the RAM memory, also space in the copy down area. The copy down contains the
information how the object isinitialized in the startup code.

4. The zero out information consist of the information which areas should be
initialized with O at startup. Because the zero out contains only an address and a
Size per areq, it is usually much smaller than a copy down area, which also
contains the (non zero) content of the objects to be initialized.

Example

SECTI ONS
ROM = READ ONLY 0x1000 SIZE 0x2000;
CLOCK = NOIN'T OxFFOO TO OxFFFF;
RAM = READ WRI TE 0x3000 TO Ox3EFF;
Page0 = PAGED 0x4000 TO Ox4FFF;
Pagel = PAGED 0x4000 TO Ox4FFF;
END

In the previous example:

the segment 'ROM’ isaREAD_ONLY memory area. It starts at address 0x1000
and its size is 0x2000 bytes (from address 0x1000 to Ox2FFF).

The segment ’'RAM’ isaREAD_WRITE memory area. It starts at address
0x3000 and ends at Ox3FFF (size = 0x1000 bytes). All variables allocated in this
segment will be initialized with O at application startup.

The segment 'CLOCK’ isaREAD_WRITE memory area. It starts at address
OxFFOO0 and ends at OXxFFFF (size = 100 bytes). Variables allocated in this
segment will not beinitialized at application startup.

The segments ' Page0’ and ‘' Pagel’ isaREAD_WRITE memory area. These are
overlapping segments. It is the user responsibility to select the correct page
before accessing any data allocated in one of these segment. Variables allocated
in this segment will not be initialized at application startup.

Smart Linke

r

201

SmartLinker Commands
SEGMENTS

SEGMENTS

SEGMENTS: Define Memory Map (ELF)

Syntax

SEGVENTS { (READ_ONLY| READ WRI TE| NO_| NI T| PAGED)
<start Addr> (TO <endAddr> | SIZE <si ze>)
[ALI GN <alignmentRul e>] [FILL <fill Pattern>]
{(DO_OPTI M ZE_CONSTS | DO_NOT_OPTI M ZE_CONSTS)

{ CODE | DATA }

END

Description

The SEGMENTS block is optional in aprm file and it cannot be specified several
times.

The SEGMENTS command allows the user to assign meaningful names to address
ranges. These nhames can then be used in subsequent placement statements, thus
increasing the readability of the parameter file.

Each address range you define is associated with:
* agqualifier.
» astart and end address or a start address and a size.
* anoptiona alignment rule
» anoptional fill pattern.
 optional constant optimization with Common Code commands.

202

Smart Linker

SmartLinker Commands

SEGMENTS

Segment Qualifier

Following qualifier are available for segments:
» READ_ONLY': used for address ranges, which areinitialized at program load

time.

» READ_WRITE: used for address ranges, which areinitialized by the startup code
at runtime. Memory area defined with this qualifier will beinitialized with O at
application startup.

* NO_INIT: used for address ranges, where read write accesses are allowed.
Memory area defined with this qualifier will not be initialized with O at
application startup. Thismay be useful if your target has a battery buffered RAM
or to speedup application startup.

* PAGED: used for address ranges, where read write accesses are allowed.
Memory area defined with this qualifier will not be initialized with O at
application startup. Additionally, the linker will not control if there is an overlap
between segments defined with the PAGED qualifier. When overlapped
segments are used, it is the user’ s responsibility to select the correct page before
accessing the data allocated on a certain page.

Qualifier Handling

Qualifier Initialized Non- Constants Code
Variables Initialized
Variables
READ_ONLY not applicable | notapplicable | content writtento | contentwrittento
(1) D) target address target address
READ_WRITE content Area content written not applicable
written into contained in into copy down 1) 2
copy down zero out area, together
area, together | information with info where to
with info (4) copy it at startup.

where to copy
it at startup.
Area
contained in
zero out
information

(3) (4)

Area contained in
Zero out
information (3) (4)

Smart Linker

203

SmartLinker Commands

SEGMENTS
Qualifier Initialized Non- Constants Code
Variables Initialized
Variables
NO_INIT not applicable | just handled not applicable (1) | not applicable
() as allocated. ()
Nothing
generated.
PAGED not applicable | just handled not applicable (1) | not applicable
(1) as allocated. Q)
Nothing
generated.

1. These cases are not intended. The linker does however alow some of them. If so,
the qualifier controls what is written into the application.

2. Toalocate codein aRAM area, for example for testing purposes, declare this
areaas READ ONLY.

3. Initialized objects and constant in READ_WRITE sections do need additionally to
the RAM memory, also space in the copy down area. The copy down contains the
information how the object isinitialized in the startup code.

4. The zero out information consist of the information which areas should be
initialized with O at startup. Because the zero out contains only an address and a
Size per areq, it is usually much smaller than a copy down area, which also
contains the (non zero) content of the objects to beinitialized.

Example

SEGVENTS
ROM = READ ONLY 0x1000 SI ZE 0x2000;
CLOCK = NOINT OxFFO0O TO OxFFFF;
RAM = READ WRI TE 0x3000 TO Ox3EFF;
Page0 = PAGED 0x4000 TO Ox4FFF;
Pagel = PAGED 0x4000 TO Ox4FFF;
END

In the previous example:

* thesegment 'ROM’ isaREAD_ONLY memory area. It starts at address 0x1000

and its size is 0x2000 bytes (from address 0x1000 to Ox2FFF).

204

Smart Linker

SmartLinker Commands
SEGMENTS

* Thesegment'RAM’ isaREAD_WRITE memory area. It starts at address
0x3000 and ends at Ox3FFF (size = 0x1000 bytes). All variables allocated in this
segment will beinitialized with O at application startup.

e Thesegment ' CLOCK’ isaREAD_WRITE memory area. It starts at address
OXFFO0 and ends at OXFFFF (size = 100 bytes). Variables allocated in this
segment will not beinitialized at application startup.

* The segments’'Page0’ and ‘Pagel’ isaREAD_WRITE memory area. These are
overlapping segments. It is the user responsibility to select the correct page
before accessing any data allocated in one of these segment. Variables allocated
in this segment will not be initialized at application startup.

Defining an Alignment Rule

An alignment rule can be associated with each segment in the application. This may be
useful when specific alignment rules are expected on a certain memory range, because
of hardware restriction for example.

An Alignment rule can be specified as follows:

ALI GN [<defaul t Alignment>] [{'[‘(<Nunber >|
<Number > * TO <Nunber >|
("< | ’> | '<= | '>=)<Nunber>)’]:’<alignnent>}]

defaultAlignment: is used to specify the alignment factor for objects, which do not
match any condition in the following alignment list. If thereis no alignment list
specified, the default alignment factor appliesto all objects allocated in the segment.
The default alignment factor is optional.

Example

SEGVENTS
RAM 1

READ WRI TE 0x800 TO Ox8FF
ALIGN 2 [1:1];

RAM 2 = READ _WRI TE 0x900 TO Ox9FF
ALIGN [2 TO 3:2] [>= 4:4];
RAM 3 = READ _WRI TE 0xA0O0 TO OxAFF

ALIGN 1 [>=2:2];
END

In the previous example:

* Inside of segment RAM _1, all objectswhich sizeisequal to 1 byte are aligned on
1 byte boundary and al other objects are aligned on 2 bytes boundary.

Smart Linker 205

SmartLinker Commands
SEGMENTS

* Inside of segment RAM_2, all objects which sizeisequal to 2 or 3 bytes are
aligned on 2 bytes boundary and all objects which sizeis bigger or equal to 4 are
aligned on 4 bytes boundary. Objects which size is 1 byte follow the default
processor alignment rule.

» Inside of segment RAM _3, al objects which sizeis equal bigger or equal to 2
bytes are aligned on 2 bytes boundary and all other objects are aligned on 1 bytes
boundary.

Alignment rules applying during object allocation are described in chapter alignment.

Defining a Fill Pattern

An fill pattern can be associated with each segment in the application. This may be
useful to automatically initialize not initialized variables in the segments with a
predefined pattern.

An Fill pattern can be specified as follows:
FI LL <HexByt e> {<HexByt e>}

Example

SEGVENTS

END

RAM 1 = READ WRI TE 0x800 TO Ox8FF

FI LL OxAA 0x55;

In the previous example, non-initialized objects and filling bytes are initialized with
the pattern OXAAS55.

If the size of an object to initialize is higher than the size of the specified pattern, the
pattern is repeated as many time as required to fill the objects. In the previous
example, an object which size is 4 byteswill beinitialized with OXAAS5AA55.

If the size of an object to initialize is smaller than the size of the specified pattern, the
pattern is truncated to match exactly the size of the object. In the previous example, an
object which sizeis 1 byte will beinitialized with OXAA.

When the value specified in an element of afill pattern does not fit in abyte, itis
truncated to a byte value.

Example

SEGVENTS

206

Smart Linker

SmartLinker Commands
SEGMENTS

RAM 1 = READ WRI TE 0x800 TO Ox8FF
FI LL OxAAS5;
END

In the previous example, non-initialized objects and filling bytes are initialized with
the pattern 0x55. The specified fill pattern istruncated to a 1-byte value.

Fill patterns are useful to assign an initial value to the padding bytes inserted between
two objects during object allocation. This allows marking from the unused position
with a specific marker and detecting them inside of the application.

For example, unused position inside of a code section can be initialized with the
hexadecimal code for the NOP instruction.

Optimizing Constants with Common Code

Constants having the same byte pattern can be allocated to the same addresses. The
most common usage is to allocate some string in another string.

Example

const char* hwstr="Hell o Wrl d”;
const char* wstr= “World”;

The string “World” is exactly contained in the string “Hello World”. When the
constants are optimized, wstr will point to hwstr+6.

In the HIWARE format, the linker does only optimize strings. In the ELF format,
however all constant objects including strings, constants and code can be optimized.

For all segments it can be specified if code or data (only constants and strings) should
be optimized. If nothing is specified, the default is controlled with the option -Cocc.

Example
C-Source File

void printl(void) {
printf(“Hello”);

}

void print2(void) {
printf(“Hello”);

}

Smart Linker 207

SmartLinker Commands
STACKSIZE

Prm File:

SECTI ONS

MY_ROM = READ _ONLY 0x9000 TO OxFEFF DO _OVERLAP_CONSTS CCODE DATA,
END

Because data is optimized, the string “Hello” will only be once in the ROM-image.
Because code and datais optimized, aso the function print1 and print2 are allocated at
the same address. Note however, if only code should be optimized (thisin not the case
here), then print1 and print2 would not be optimized because they were using a
different instance of the string “Hello”.

If code is optimized the linker issues the warning “L1951: Function printl isallocated
inside of print2 with offset 0. Debugging may be affected”. Thiswarning isissued
because the debugger cannot distinguish between printl and print2. So the wrong
function might be displayed while debugging. This does however not affect the
runtime behavior.

The linker does detect certain branch distance optimizations done by the compiler
because of the special fixups used. If the linker detects such a case, both the caller and
the callee are not moved into other functions. However, other functions can still be
moved into them. Also switching off this compiler optimizations can produce smaller
applications, if the compiler optimizations does prevent linker optimizations.

Oneimportant case of this optimization are C++ applications. In C++ several language
constructs result in identical functionsin different compilation units. Different
instances of the same template might have identical code. Compiler generated
functions and inline functions, which were not actually inlined are defined in every
compilation unit. Finally, constants defined in header files are static in C++. So they
are also contained in every object file once.

STACKSIZE

STACKSIZE: Define Stack Size

Syntax

STACKSI ZE Nunber

208 Smart Linker

SmartLinker Commands
STACKSIZE

Description

The STACKSIZE command is optional in aprm file and it cannot be specified several
times. Additionally, you cannot specify both STACKTOP and STACKSIZE
command in aprm file.

The STACKSIZE command defines the size requested for the stack. We recommend
using this command if you do not care where the stack is allocated but only how large
itis.

When the stack is defined trough a STACK SIZE command alone, the stack is placed
next to the section .data.

Note: In the HIWARE object file format, the synonym STACK instead of
STACKSIZE isalowed too. Thisisfor compatibility only, and may be removed in a
future version.

Example

SECTI ONS
MY_RAM = READ VWRI TE O0xA00 TO OxAFF,;
MY_ROM = READ_ONLY 0x800 TO Ox9FF,;
PLACEMENT
DEFAULT_ROM | NTO MY_ROM
DEFAULT_RAM | NTO MY_RAM
END
STACKSI ZE 0x60

In the previous example, if the section .data is 4 bytes wide (from address OxAQ00 to
0xA03), the section .stack is allocated next to it, from address OxA63 down to address
OxA04. The stack initial value is set to OXA62.

When the stack is defined trough a STACK SIZE command associated with the
placement of the .stack section, the stack is supposed to start at the segment start
address incremented by the specified value and is defined down to the start address of
the segment, where .stack has been placed.

Example
SECTI ONS
MY_STK = NOINIT 0xB0OO TO OxBFF;

MY_RAM = READ VWRI TE 0xA00 TO OxAFF,;
MY_ROM = READ_ONLY 0x800 TO Ox9FF;
PLACEMENT

Smart Linker 209

SmartLinker Commands

STACKTOP
DEFAULT_ROM | NTO MY_ROM
DEFAULT_RAM | NTO MY_RAM
SSTACK I NTO MY_STK;
END

STACKSI ZE 0x60

In the previous example, the section SSTACK is allocated from address OxB5F down
to address OxB0O. The stack initial valueis set to OxB5E.

STACKTOP

STACKTOP: Define Stack Pointer Initial
Value

Syntax

STACKTOP Nunber

Description

The STACKTOP command isoptional in aprm file and it cannot be specified severd
times. Additionally, you cannot specify both STACKTOP and STACKSIZE
command in aprm file.

The STACKTOP command defines the initial value for the stack pointer

Example

If STACKTOP isdefined as
STACKTOP OxBFF

the stack pointer will be initialized with OXBFF at application startup.

When the stack is defined trough a STACKTOP command alone, adefault sizeis
affected to stack. This size depends on the processor and is big enough to store the
target processor PC.

When the stack is defined trough a STACKTOP command associated with the
placement of the .stack section, the stack is supposed to start at the specified address,
and is defined down to the start address of the segment, where .stack has been placed.

210

Smart Linker

SmartLinker Commands
START

Example
SEGVENTS
MY _STK NO INI'T 0xBOO TO OxBFF;

MY_RAM = READ WRI TE 0xAO00 TO OxAFF,;
MY_ROM = READ_ONLY 0x800 TO Ox9FF,
END
PLACEMENT

DEFAULT_ROM | NTO MY_ROM
DEFAULT_RAM | NTO MY_RAM
SSTACK I NTO MY_STK;
END
STACKTOP 0xB7E

In the previous example, the stack pointer will be defined from address OxB7E down
to address OxBOO.

START

START: Specify the ROM Start (HWARE)

Syntax

START Address

Description

Thisisacommand supported in ‘old-style’ linker parameter files and will be not
supported in afuture release.

With this command the default ROM begin can be specified. The specified address has
to be in hexadecimal notation. Internally this command is translated into:

START 0x?7???' => 'DEFAULT_ROM | NTO READ_ONLY 0x?7??? TO 0x????
Note that because the end addressisof DEFAULT _ROM isnot known, the linker tries

to specify/find out the end address itself. Because thisis not a very transparent
behavior, this command will not be supported any more.

Smart Linker 211

SmartLinker Commands

VECTOR

If you get an error message during linking that START is not defined: The reason
could be that there is no application entry point visible for the linker, e.g. the ‘main’
routine is defined as static.

Example
START 0x1000

VECTOR

VECTOR: Initialize Vector Table

Syntax

VECTOR (I nitByAddr | 1nitByNunber)

Description

The VECTOR command is optional in aprm file and it can be specified several times.

A vector isasmall piece of memory, having the size of afunction address. This
command allows the user to initialize the processor’ s vectors while downloading the
absolutefile.

A VECTOR command consist in avector location part (containing the location of the
vector) and a vector target part (containing the value to store in the vector).

The vector location part can be specified:

« through avector number. The mapping of vector numbers to addresses is target
specific.
— For targets with vectors starting at 0, the vector is alocated at <Number> *
<Size of aFunction Pointer>.

— For targets with vectors located from OxFFFE and allocated downwards,
VECTOR 0 maps to OXFFFE. In general the address is OxFFFE- <Number> *
2.

— For HCO5 and St7 the environment variable RESETVECTOR specifies the
address of VECTOR 0. All other vectors are calculated depending on it. As
default, address OXFFFE is used.

212

Smart Linker

SmartLinker Commands
VECTOR

— For al other supported targets, VECTOR numbers do automatically map to
vector locations natural for this target.

 through avector address. In this case the keyword ADDRESS must be specified
in the vector command.

The vector target part can be specified:
« asafunction name
* asan absolute address.

Example

VECTOR ADDRESS OxFFFE _Startup
VECTOR ADDRESS OxFFFC 0xA00
VECTOR 0 _Startup

VECTOR 1 0xA00

In the previous example, if the size of a function pointer is coded on two bytes:

» Thevector located at address OxFFFE isinitialized with the address of the
function*_Startup’.

* The vector located at address OxFFFC is initialized with the absol ute address
OxA00.

» The address of vector numbersistarget specific.
For aHC16, vector number O (located at address 0x000) is initialized with the
address of the function *_Startup’.
For aHCO08 or HC12 vector number O islocated at address OxFFFE.

» The address of vector numbersistarget specific.
For aHC16, the vector number 1 (located at address 0x002) isinitialized with the
absol ute address 0xA00.
For aHCO08 or HC12 vector number 1 islocated at address OxFFFC.

Y ou can specify an additional offset when the vector target is afunction name. In this
case the vector will beinitialized with the address of the object + the specified offset.

Example
VECTOR ADDRESS OxFFFE Commonl SR CFFSET 0x10

In the previous example, the vector located at address OXFFFE isinitialized with the
address of the function ‘CommonISR’ + 0x10 Byte. If ‘CommonISR’ starts at address
0x800, the vector will beinitialized with 0x810.

This notation is very useful for common interrupt handler.

Smart Linker 213

SmartLinker Commands
VECTOR

All objects specified inaVECTOR command are entry pointsin the application. They
are always linked with the application, as well as the objects they refer to.

214 Smart Linker

Sections (ELF)

The section concept gives the user complete control over allocation of objectsin
memory. A section isanamed group of global objects (variables or functions)
associated with a certain memory area that may be non-contiguous. The objects
belonging to a section are alocated in its associated memory range. This chapter
describes the use of segmentation in detail.

There are many different ways to make use of the section concept, the most important
being
 Distribution of two or more groups of functions and other read-only objects to
different ROMs.

 Allocation of asingle function or variable to afixed absolute address (for
example, to access processor ports using high level language variables).

» Allocation of variablesin memory locations where special addressing modes may
be used.

Terms: Segments and Sections

A Section isanamed group of global objects declared in the source file, that is,
functions and global variables.

A Segment is anot necessarily contiguous memory range.

In the linker’s parameter file, each section is associated with a segment so the linker
knows where to allocate the objects belonging to a section.

Definition of Section

A section definition always consists of two parts: the definition of the objects
belonging to it, and the memory area(s) associated with it, called segments. Thefirstis
necessarily done in the source files of the application using pragmas or directive,
please see Compiler or Assembler Manual. The second is done in the parameter file

Smart Linker 215

Sections (ELF)
Definition of Section

using the SEGMENT'S and PLACEMENT commands (Please see section The Syntax of
the Parameter File).

Some predefined sections are handled in a particular way.

Predefined Sections

There are a couple of predefined section names which can be grouped into sections
named by the runtime routines

Sections for other things than variables and functions: . rodatal, . copy,
.stack.

Sections for grouping large sets of objects:
.data, . text.

A section for placing objectsinitialized by thelinker: . startData.
A Section to allocate read-only variables: . rodata

NOTE The sections .data and .text provide default sections for allocating
objects.

Subsequently we will discuss each of these predefined sections.

.rodatal All string literals (for example, Thisis a string) are allocated in section
.rodatal. If thissection is associated with a segment qualified asREAD WRITE,
the strings are copied from ROM to RAM at startup.

.rodata Any constant variable (declared as const inaC module or asDC in an
assembler module), which is not allocated in a user-defined section, is alocated in
section . rodata. Usually, the . rodata section is associated with READ ONLY
segment.

If this section is not mentioned in the PLACEMENT block in the parameter file, these
variables are allocated next to the section . text.

. copy Initialization data belongs to section . copy. If asource file contains the
declaration
int a[] = {1, 2, 3};

the hex string 000100020003 (6 bytes), which is copied to a location in RAM at
program startup, belongs to segment . copy.

216

Smart Linker

Sections (ELF)
Definition of Section

If the . rodatal sectionisallocated toaREAD WRITE segment, al strings also
belong to the . copy section. Any objects in this section are copied at startup from
ROM to RAM.

. stack The runtime stack hasits own segment named . stack. It should always
be allocated to aREAD WRITE segment.

.data Thisisthe default section for all objectsnormally allocated to RAM. It isused
for variables not belonging to any section or to a section not assigned a segment in the
PLACEMENT block in the linker’s parameter file. If any of the sections .bss or

. stack isnot associated with a segment, these sections are included inthe .data
memory areain the following order:

data hzs stack

. text Thisisthe default section for al functions. If afunction isnot assigned to a
certain section in the source code or if its section is not associated with a segment in
the parameter file, it is automatically added to section . text.| f any of the sections
.rodata, .rodatal, .startDataor .init isnotassociatedwitha
segment, these sections are included in the . text memory areain the following
order:

it startData text rodata rodatat

. startData The startup description datainitialized by the linker and used by the
startup routineis allocated to segment . startData. This section must be allocated
toaREAD ONLY segment.

.init The application entry point is stored in the section . init. This section aso
has got to be associated withaREAD ONLY segment.

.overlap Compilers using pseudo-statically variables for locals are allocating
these variablesin .overlap. Variables of functions not depending on each other may be
allocated at the same place. For details see the chapter Overlapping Locals. This
section must be associated withaNO_INIT segment.

Smart Linker 217

Sections (ELF)
Definition of Section

NOTE The .data and .text sections must always be associated with a
segment.

218 Smart Linker

10

Segments (HWARE)

The segment concept gives the user complete control over allocation of objectsin
memory. A segment is a named group of global objects (variables or functions)
associated with a certain memory area that may be non-contiguous. The objects
belonging to a segment are allocated in its associated memory range. This chapter
describes the use of segmentation in detail.

There are many different waysto make use of the segment concept, the most important
being

 Distribution of two or more groups of functions and other read-only objects to
different ROMs.

 Allocation of asingle function or variable to afixed absolute address (for
example, to access processor ports using high level language variables).

» Allocation of variablesin memory locations where special addressing modes may
be used.

Terms: Segments and Sections (HWARE)

A Segment isanamed group of global objects declared in the sourcefile, i.e. functions
and global variables.

A Section isanot necessarily contiguous memory range.

In the linker’s parameter file, each segment is associated with a section so the linker
knows where to alocate the objects belonging to a segment.

Definition of Segment (H'WARE)

A segment definition always consists of two parts: the definition of the objects
belonging to it, and the memory area(s) associated with it, called sections. Thefirst is
necessarily done in the source files of the application using pragmas or directive,
please see Compiler or Assembler Manual. The second is done in the parameter file

Smart Linker 219

Segments (HIWARE)
Definition of Segment (HIWARE)

using the SECTIONS and PLACEMENT commands (Please see section The Syntax of
the Parameter File).

Some predefined sections are handled in a particular way.

Predefined Segments

There are a couple of predefined section names which can be grouped into sections
named by the runtime routines

» Segments for other things than variables and functions; STRINGS, COPY,
SSTACK.

» Segments for grouping large sets of objects:
DEFAULT RAM, DEFAULT ROM.

* A Segment for placing objects initialized by the linker: STARTUP.
* A Segment to allocate read-only variables: ROM VAR

NOTE The Segments DEFAULT_RAM and DEFAULT_ROM provide
default segments for allocating objects.

Subsequently we will discuss each of these predefined segments.

STRINGS All string literals (e.g. “Thisisastring”) are alocated in segment
STRINGS. If this segment is associated with a segment qualified as READ WRITE,
the strings are copied from ROM to RAM at startup.

ROM VAR Any constant variable (declared as const inaC module or asDC inan
assembler module), which is not allocated in a user-defined segment, is allocated in
segment ROM VAR. Usually, the ROM VAR segment is associated with

READ ONLY section.

If this segment is not mentioned in the PLACEMENT block in the parameter file, these
variables are allocated next to the ssgment DEFAULT ROM.

FUNCS Any function code, which is not allocated in a user-defined segment, is
allocated in segment FUNCS. Usually, the FUNCS segment is associated with
READ ONLY section.

COPY Initialization data belongs to segment COPY. If a source file contains the
declaration

220

Smart Linker

Segments (HIWARE)
Definition of Segment (HIWARE)

int a[] = {1, 2, 3};

the hex string 000100020003 (6 bytes), which is copied to a location in RAM at
program startup, belongs to segment COPY.

If the STRINGS segment isalocated to aREAD WRITE section, all strings also
belong to the COPY segment. Any objects in this segment are copied at startup from
ROM to RAM.

SSTACK The runtime stack has its own segment named SSTACK. It should always
be allocated to aREAD WRITE section.

DEFAULT RAM Thisisthe default ssgment for all objects normally allocated to
RAM. It isused for variables not belonging to any segment or to a segment not
assigned a section in the PLACEMENT block in the linker’ s parameter file. If the
segment SSTACK is not associated with a section, it is appended to the
DEFAULT RAMmemory area.

DEFAULT ROM Thisisthe default ssgment for all functions. If afunction is not
assigned to a certain segment in the source code or if its segment is not associated with
asectionin the parameter file, itisautomatically added to segment DEAFULT ROM.
If any of the segments PRESTART, STARTUP or COPY isnot associated with a
section, these segments are included in the DEFAULT ROM memory areain the
following order:

_FRESTART STARTUP DEFAULT_ROM COPY

STARTUP The startup description datainitialized by the linker and used by the
startup routine is allocated to segment STARTUP. This segment must be allocated to a
READ ONLY section.

__PRESTART The application entry point is stored in the ssgment _ PRESTART. This
segment also has got to be associated with aREAD ONLY section.

_OVERLAP This segment contains local variables, which are by the compiler pseudo-
statically for non-reentrant functions.

Thelinker analyzesthe call graph (that is, it keepstrack of which function callswhich
other functions) and chooses memory areasinthe OVERLAP segment that are
distinct if it detects a call dependency between two functions. If it doesn’t detect such
adependency, it may overlap the memory areas used for two separate functions' local
variables (hence the name of the segment).

Smart Linker 221

Segments (HIWARE)
Definition of Segment (HIWARE)

There are cases in which the linker cannot exactly determine whether afunction calls
some other function, especially in the presence of function pointers. If the linker
detects a conflict between two functions, it issues an error message.

In the ELF object file format, the name .overlap isa synonym for _OVERLAP.

For details of the usage of this segment, see also chapter Overlapping L ocals.

NOTE The DEFAULT_RAM and DEFAULT_ROM segments must always
be associated with a section.

222

Smart Linker

11

Examples

Examples 1 and 2 illustrate the use of sectionsto control allocation of variables and
functions precisely.

Example 1

Distributing code into two different ROMs:

LI NK first. ABS
NAMES first.o strings.o startup.o END
STACKSI ZE 0x200
SECTI ONS
ROML = READ_ONLY 0x4000 TO Ox4FFF;
ROV2 = READ_ONLY 0x8000 TO Ox8FFF;
PLACEMENT
DEFAULT_ROM | NTO ROML, ROWR;
DEFAULT_RAM | NTO READ WRI TE 0x1000 TO Ox1FFF;
END

Example 2

Allocation in battery buffered RAM:

/* Extract fromsource file "buframc" */
#pragma DATA_SEG Buf f er ed_RAM
i nt done;
int status[100];
#pragma DATA SEG DEFAULT
/* End of extract from"buframc" */

SmartLinker parameter file:

LI NK buf ram ABS
NAMES

Smart Linker 223

Examples
Example 2

bufram o startup.o
END
STACKSI ZE 0x200
SECTI ONS
Bat t er yRAM
My RAM
PLACEMENT
DEFAULT_ROM | NTO READ _ONLY 0x2000 TO 0x2800;
DEFAULT_RAM | NTO MyRAM
Buf f er ed_RAM | NTO Bat t er yRAM
END

NO INT 0x1000 TO Ox13FF;
READ WRI TE 0x5000 TO Ox5FFF;

224 Smart Linker

12

Program Startup

NOTE This section deals with advanced material. First time users of
HI-CROSS+ may skip this section; standard startup modules taking
care of the common cases are delivered together with the
HI-CROSS+ programs and examples. It suffices to include the
startup module in the filesto link in the parameter file. For more
information about the names of the startup modules and the different
variants see the file Startup.txt in directory LIB.

Prior to calling the application’ s root function (main), one must:
* initialize the processor’ s registers,
¢ zero out memory and
» copy initialization datafrom ROM to RAM.

Depending on the processor and the application’s needs different startup routines may
be necessary.

In HI-CROSSH, there are standard startup routines for every processor and memory
model. They’ re easy to adapt to your particular needs because all these startup routines
are based on a startup descriptor containing all information needed. Different startup
routines only differ in the way they make use of that information.

The Startup Descriptor (ELF)

The startup descriptor of the linker is declared as

t ypedef struct{
unsi gned char *far beg;int size;
} _Range;

t ypedef struct{
int size; unsigned char * far dest;

Smart Linker 225

Program Startup
The Startup Descriptor (ELF)

} _Copy;
t ypedef void (* _PFunc)(void);

t ypedef struct{

_PFunc *startup; /* address of startup desc */
} _Liblnit;
typedef struct Cpp {

_PFunc i nitFunc; /* address of init function */
} _Cpp;

extern struct _tagStartup {
unsi gned char flags;
_PFunc mai n;
unsi gned short stackO fset;
unsi gned short nof ZeroQut s;

_Range *pZer oQut ;
_Copy *t 0CopyDownBeg;
unsi gned short nofLiblnits;
_Liblnit *liblnits;

unsi gned short nofl nitBodi es;
_Cpp *i ni t Bodi es;
unsi gned short nof Fi ni Bodi es;
_Cpp *fini Bodi es;

} _startupbData;

The linker expects somewhere in your application a declaration of the variable
_startupData, thatis:

struct _tagStartup _startupData;

Thefields of this struct areinitialized by the linker and the startupDatais
allocated in ROM in section . startData. If thereisno declaration of thisvariable,
the linker does not create a startup descriptor. In this case, thereisno . copy section,

and the stack is not initialized. Furthermore, global C++ constructor and ROM
libraries are not initialized.

The fields have the following semantics:

flags Contains some flags, which may be used to detect special condition at startup.
Currently two bits are used, as shown in Table 12.1:

226 Smart Linker

Program Startup
The Startup Descriptor (ELF)

Table 12.1 Bits description

Bit # Set if...
0 The application has been linked as a ROM library
1 There is no stack specification

The bit 1 (with mask 2) istested in the startup code, to detect if the stack pointer
should be initialized.

main isafunction pointer set to the application’sroot function. In a C program, this
usualy isfunction main unlessthereisaMATIN entry in the parameter file specifying
some other function as being the root. In aROM library, thisfield is zero. The
standard startup code jumps to this address once the whole initialization is over.

stackOffsetisvdidonlyif (flags & 2) == 0. Thisfield containsthe
initial value of the stack pointer.

nofZeroOuts isthe number of READ WRITE segmentsto fill with zero bytes at
startup.

Thisfield isnot required if you do not have any RAM memory area, which should be
initialized at startup. Be careful, when this field is not present in the startup structure,
thefield pZeroOut must not be present either.

pZeroOut isapointer to avector with elements of type Range. It has exactly
nofZeroOuts eements, each describing amemory areato be cleared. Thisfieldis
not required if you do not have any RAM memory area, which should beinitialized at
startup. Be careful, when this field is not present in the startup structure, the field
nofZeroOuts must not be present either.

toCopyDownBeg contains the address of the first item which must be copied from
ROM to RAM at runtime. All datato be copied is stored in a contiguous piece of ROM
memory and has the following format:

CopyData = {Size;;; TargetAddr {Byte} Size aljgnnent} 0XO0p 7 -
Alignment= 0x0[0..7].

The sizeisabinary number whose most significant byteisstored first. Thisfield is not
required if you do not have any RAM memory area, which should be initialized at
startup. The alignment is used to align the next size and TargetAddr field. The number
of alignment bytes depends on the processors capability to access non aligned data.
For small processors, there is usually no dignment. The sizet of size.; and 0x0 ,
does depend on the target processor and memory model.

Smart Linker 227

Program Startup
User Defined Startup Structure: (ELF)

nofLibInitsisthe number of ROM librarieslinked with the application that must
beinitialized at startup. Thisfield is not required if you do not link any ROM library
with your application. Be careful, when thisfield is not present in the startup structure,
thefield 1ibInits must not be present.

libInitsisavector of pointerstothe startupData recordsof al ROM
librariesin the application. It has exactly nofLibInits elements. These addresses
are needed to initialize the ROM libraries. Thisfield is not required if you do not link
any ROM library with your application. Be careful, when thisfield is not present in the
startup structure, thefield nofLibInits must not be present

nofInitBodies isthe number of C++ global constructors, which must be executed
prior to invoking the application root function. Thisfield is not required if your
application does not contain any C++ module. Be careful, when thisfield is not
present in the startup structure, the field initBodies must not be present

initBodies isapointer to avector of function pointers containing the addresses of
the global C++ constructorsin the application, sorted in the order they have to be
caled. It has exactly nofInitBodies e ements. If an application does not contain
any C++ modules, the vector isempty. Thisfield is not required if your application
does not contain any C++ module. Be careful, when thisfield is not present in the
startup structure, thefield nofInitBodies must not be present either.

nofFiniBodies isthe number of C++ global destructors, which must be executed
after the invocation of the application root function. This field is not required if your
application does not contain any C++ module. Be careful, when thisfield is not
present in the startup structure, the field £iniBodies must not be present either. If
the application root function does not return, nofFiniBodies and £iniBodies
can both be omitted.

finiBodies isapointer to avector of function pointers containing the addresses of
the global C++ destructorsin the application, sorted in the order they haveto be called.
It has exactly nofFiniBodies elements. If an application does not contain any
C++ modules, the vector is empty. Thisfield isnot required if your application does
not contain any C++ module. Be careful, when this field is not present in the startup
structure, thefield nofFiniBodies must not be present either. If the application
root function does not return, nofFiniBodies and £iniBodies can both be
omitted.

User Defined Startup Structure: (E-F)

The user can define his own startup structure. That means it can remove the fields,
which are not required for his application, or move the fields inside of the structure. If

228 Smart Linker

Program Startup
User Defined Startup Structure: (ELF)

the user changes the startup structure, it is his responsibility to adapt the startup
function to match the modification he performs.

Example

If the user does not have any RAM areato initialize at startup, no ROM libraries and
no C++ modules in the application, he can define the startup structure as follows:

extern struct _tagStartup {
unsi gned short fl ags;
_PFunc mai n;
unsi gned short stackO fset;
} _startupDat a;

In that case the startup code must be adapted accordingly in the following way:

extern void near _Startup(void) {
/* purpose: 1) initialize the stack
2) call nmain;
parameters: NONE */
do { /* forever: initialize the program call the root-procedure */
asm{
adapted for the HC12. Please nodify it for other CPUS.
LDD _startupData.fl ags
BNE Initialize
LDS _startupData. stackO fset
Initialize:
}
/* Here user defined code could be inserted,
the stack can be used
*/
[* call main() */
(*_startupData. main)();
} while(l); /* end | oop forever */

NOTE The name of thefields in the startup structure should not be changed.
The user isfree to removefieldsinside of the structure, but he should
respect the names of the different fields, otherwise the SmartLinker
will not be able to initialize the structure correctly.

Smart Linker 229

Program Startup
User Defined Startup Routines (ELF)

User Defined Startup Routines (ELF)

There are two ways to replace the standard startup routine by one of your own:

Y ou may provide a startup module containing afunction named Startup and link
it with the application in place of the startup module delivered.

Y ou can implement a function with another name as _Startup and define it as entry
point for your application using the command INIT

INIT function_name

In the latter case, function function name isthe startup routine.

The Startup Descriptor (HIWARE)

The startup descriptor of the linker is declared as

t ypedef struct{

unsi gned char *beg; int size;
} _Range;
typedef void (*_PFunc)(void);

extern struct _tagStartup{

unsi gned flags;

_PFunc mai n;

unsi gned dat aPage;

| ong stackO f set;

i nt nof Zer oQut s;

_Range *pZer oQut ;

| ong t oCopyDownBeg;
PFunc *mnits;

struct _tagStartup *liblnits;
} _startupbData;

The linker expects somewhere in your application a declaration of the variable
_startupData, thatis:

struct _tagStartup _startupData;

Thefields of this st ruct areinitiaized by the linker and the st ruct isallocated
in ROM in segment STARTUP. If thereis no declaration of this variable, the linker
does not create a startup descriptor. In this case, there isno COPY segment, and the

230 Smart Linker

Program Startup
The Startup Descriptor (HIWARE)

stack isnot initialized. Furthermore, global C++ constructor and ROM libraries are not
initialized.
The fields have the following semantics:

flags Contains some flags, which may be used to detect special condition at startup.
Currently two bits are used, as shown in Table 12.2:

Table 12.2 Bits description

Bit # Set if...
0 The application has been linked as a ROM library
1 There is no stack specification

Thisflag istested in the startup code, to detect if the stack pointer should be
initialized.

main isafunction pointer set to the application’sroot function. In a C program, this
usualy isfunction main unlessthereisaMATIN entry in the parameter file specifying

some other function as being the root. In aROM library, thisfield is zeroed out. The
standard startup code jumps to this address once the whole initialization is over.

datapage isonly used for processor having paged memory and memory models
supporting only one page. In this case, dataPage gives the page.

stackOffsetisvdidonly if flags == 0. Thisfield containstheinitial value
of the stack pointer.

nofZeroOuts isthe number of READ WRITE segmentsto fill with zero bytes at
startup.

pZeroOut isapointer to avector with elements of type Range. It has exactly
nofZeroOuts elements, each describing amemory areato be cleared.

toCopyDownBeg contains the address of the first item which must be copied from
ROM to RAM at runtime. All datato be copied is stored in a contiguous piece of ROM
memory and has the following format:

CopyData = {Size TargetAddr {Byte}> 2} 0x0y.
The size is abinary number whose most significant byte is stored first.

libInitsisapointer to an array of pointersto the _startupDatarecordsof al ROM
librariesin the application. These addresses are needed to initialize the ROM libraries.
To specify the end of the array, the last array element contains the value Ox0000ffff.

Smart Linker 231

Program Startup
User Defined Startup Routines (HIWARE)

mInits isapointer to an array of function pointers containing the addresses of the
global C++ constructors in the application, sorted in the order they have to be called.
The array is terminated by a single zero entry.

User Defined Startup Routines (HWARE)

There are two ways to replace the standard startup routine by one of your own:

Y ou may provide a startup module containing afunction named Startup and link
it with the application in place of the startup module delivered.

Y ou can implement a function with another name as _Startup and define it as entry
point for your application using the command INIT

INIT function_name

In the latter case, function function name isthe startup routine.

Example of Startup Code in ANSI-C

Normally the startup code delivered with the compiler is provided in HLI for code
efficiency reasons. But thereis also aversion in ANSI-C availablein the library
directory (startup.c and startup.h). Y ou may use this startup for your own
modifications or just to get familiar with the startup concept. The code printed here
may vary depending on the actual implementation.

Header File startup.h:

/***

FI LE : startup.h
PURPOSE : data structures for startup
LANGUAGE: ANSI - C
**/
#i f ndef STARTUP_H
#defi ne STARTUP_H
#i fdef _ cpl usplus
extern "C' {
#endi f
/*
the followi ng data structures contain the data needed to
initialize the processor and nenory
*/

t ypedef struct{

232 Smart Linker

Program Startup
User Defined Startup Routines (HIWARE)

unsi gned char *beg;

int size; /* [beg. . beg+size] */
} _Range;
typedef struct _Copy{
int size;
unsi gned char * dest;
} _Copy;
typedef struct _Cpp {
_PFunc initFunc; /* address of init function */
} _Cpp;

t ypedef void (* _PFunc)(void);
typedef struct _Liblnit{
struct _tagStartup *startup; /* address of startup desc */
} _Liblnit;
#defi ne STARTUP_FLAGS_NONE 0
#define STARTUP_FLAGS ROM LIB (1<<0) /* ROMIlibrary */
#defi ne STARTUP_FLAGS NOT_INIT_SP (1<<1) /* init stack */
#i fdef _ ELF_OBJECT_FI LE_FORVAT __
/* ELF/ DWARF object file format */
/[* attention: the linker scans for this structs */
/* to obtain the available fields and their sizes. */
/* So do not change the nanes in this file. */

extern struct _tagStartup {
unsi gned char fl ags; [* STARTUP_FLAGS_xXxXx */
_PFunc mai n; [* first user fct */
unsi gned short stackOffset; /* initial stack pointer */
unsi gned short nof ZeroQuts; /* nunber of zero outs */

_Range *pZer oQut ; /* vector of zero outs */
_Copy *t oCopyDownBeg; /* copy down start */
unsi gned short nofLiblnits; /* number of ROM Libs */
_LiblInit *[iblnits; /* vector of ROMLibs */
unsi gned short noflnitBodies; /* nunber of C++ inits */
_Cpp *i ni t Bodi es; /* C+ init funcs */
unsi gned short nof Fi ni Bodi es; /* nunber of C++ dtors */
_Cpp *fi ni Bodi es; [* C+ dtors funcs */

} _startupbData;
#el se /* H WARE format */

extern struct _tagStartup {
unsi gned fl ags; /* STARTUP_FLAGS xxx */

Smart Linker 233

Program Startup
User Defined Startup Routines (HIWARE)

_PFunc nai n; /* starting point of user code */
unsi gned dat aPage; /* page where data begins */
| ong stackOffset; [/* initial stack pointer */
i nt nof ZeroQuts; /* nunber of zero out ranges */
_Range *pZer oQut ; /* prt to zero out descriptor */
| ong t oCopyDownBeg; /* address of copydown descr */
_PFunc *mnits; /* ptr to C++ init fcts */
_Liblnit *liblnits; [* ptr to ROM Lib descriptors */
} _startupData;
#endi f
extern void _Startup(void); /* execution begins here */
/* ___ -k/
#i fdef _ _cpl uspl us
}
#endi f

#endi f /* STARTUP_H */

Implementation File startup.c

/***

FI LE . startup.c
PURPOSE . standard startup code
LANGUAGE : ANSI-C / HLI

***/

#i ncl ude <hi def. h>
#i ncl ude <startup. h>

/***/

struct _tagStartup _startupData; /* startup info */

static void ZeroQut(struct _tagStartup *_startupbData) {
/* purpose: zero out RAMareas where data is allocated.*/
int i, j;
unsi gned char *dst;
_Range *r;
r = _startupData->pZeroQut;
for (i=0; i<_startupData->nofZeroQuts; i++) {
dst = r->beg;
j = r->size;
do {
dst = '\0'; / zero out */
dst ++;
J--3
} while(j>0);

234

Smart Linker

Program Startup
User Defined Startup Routines (HIWARE)

static void CopyDown(struct _tagStartup *_startupData) {
/* purpose: zero out RAMareas where data is allocated.
this initializes global variables with their val ues,

e.g. 'int i =5;" then'i' is here initialized with '5" */
int i;
unsi gned char *dst;
int *p;
/* _startupData.toCopyDownBeg ---> */

/* {nof (16) dstAddr(16) {bytes(8)}”nof} Zero(16) */
p = (int*)_ startupDat a->t o0CopyDownBeg;
while (*p '=0) {
i = *p; /[* nof */
p++;
dst = (unsigned char*)*p; /* dstAddr */
p++;
do {
/* p points now into 'bytes' */
*dst = *((unsigned char*)p); /* copy byte-w se */
dst ++;
((char*)p) ++;
I--3

} while (i>0);

static void Call Constructors(struct _tagStartup * startupData) {
/* purpose: C++ requires that the gl obal constructors have

to be call ed before main.

This function is only called for C++ */
#i fdef _ ELF_OBJECT_FI LE_FORVAT __

short i;

_Cpp *fktPtr;

fktPtr = startupData->initBodies;

for (i=_startupbData->noflnitBodies; i>0; i--) {
fktPtr->initFunc(); /* call constructors */
fkt Ptr++;

}

#el se

_PFunc *fktPtr;
fktPtr = _startupData->minits;

Smart Linker 235

Program Startup
User Defined Startup Routines (HIWARE)

if (fktPtr !'= NULL) {
while(*fktPtr !'= NULL) {
(**fktPtr)(); /* call constructors */
fkt Ptr++;

}
#endi f

/* __ */
static void InitRonlibraries(struct _tagStartup *_sData) {
/* purpose: ROMIibraries have their own startup functions
whi ch have to be called. This is only necessary if ROM
Li braries are used! */

#ifdef _ ELF_OBJECT FI LE_FORVAT _

short i;

_Liblnit *p;

p = _sData->liblnits;

for (i=_sData->nofLiblnits; i>0; i--) {
ProcessSt art upbDesc(p->startup);
p++;

}

#el se
_Liblnit *p;

p = _sData->liblnits;
if (p !'= NULL) {
do {
ProcessSt art upbDesc(p->startup);
} while ((long)p->startup != 0xO0000FFFF);

}
#endi f

static void ProcessStartupDesc(struct _tagStartup *_sData) {
ZeroQut (_sData);
CopyDown(_sDat a) ;
#i fdef _ cpl uspl us
Cal | Constructors(_sData);
#endi f
i f (_sData->f1ags&STARTUP_FLAGS ROM LI B) {
I nit RonLi braries(_sData);
}

236

Smart Linker

Program Startup
User Defined Startup Routines (HIWARE)

}
/* ___ */

#pragma NO EXIT
#i fdef _ cpl uspl us
extern "C'
#endi f
void _Startup (void) {
for (;;) {
asm {
/* put your target specific initialization */
/* (e.g. CH P SELECTS) here */
}
if (!(_startupbData.fl ags&STARTUP_FLAGS NOT_INIT_SP)) {
[* initialize the stack pointer */
I NI T_SP_FROM STARTUP_DESC(); /* defined in hidef.h */
}
ProcessStart upbDesc(& startupData);
(* _startupbData.nain)(); /* call main function */
} /* end | oop forever */

}

Smart Linker 237

Program Startup
User Defined Startup Routines (HIWARE)

238 Smart Linker

13
The Map File

If linking succeeds, a protocol of thelink processiswrittento alist file called mapfile.
The name of the map file isthe same as that of the .ABSfile, but with extension .map.
The map file is written to the directory given by environment variable TEXTPATH.

Map File Contents

The map file consists of many sections:
TARGET This section names the target processor and memory model.

FILE This section lists the names of all files from which objects were used or
referenced during the link process. In most cases, these are the same names that are
also listed in the linker parameter file between the keywords NAMES and END. If a
filerefersto aROM library or a program, all object files used by the ROM library or
the program are listed with indentation.

STARTUP This section lists the prestart code and the values used to initialize the
startup descriptor startupData. The startup descriptor is listed member by
member with the initialization data at the right hand side of the member name.

SEGMENT ALLOCATION This section lists those segments, in which at least one
object was allocated. At the right hand side of the segment name thereisa pair of
numbers, which gives the address range in which the objects belonging to the segment
were allocated.

OBJECT ALLOCATION This section contains the names of all allocated objects
and their addresses. The objects are grouped by module. If an address of an object is
followed by the “@” sign, the object comes from a ROM library. In this case the
absolutefile contains no code for the object (if it isafunction), but the object’ s address
was used for linking. If an address of a string object is followed by adash “—", the
string is a suffix of some other string. As an example, if the strings "abc" and "bc" are
present in the same program, the string "bc" is not allocated and its address is the
address of "abc" plus one.

OBJECT DEPENDENCY This section lists for every function and variable that uses
other global objects the names of these global objects.

Smart Linker 239

The Map File
Map File Contents

DEPENDENCY TREE This section showsin atreeformat al detected dependencies
between functions._ Overlapping Locals are a so displayed at their defining function.

UNUSED OBJECTS This section listsall objects found in the object files that were
not linked.

COPYDOWN This section lists al blocks that are copied from ROM to RAM at
program startup.

STATISTICS This section deliversinformation like number of bytes of code in the
application.

If linking fails because there are objects which were not found in any object file, no
map fileis written.

240 Smart Linker

14
ROM Libraries

The SmartLinker supports linking to objects to which addresses were assigned in
previous link sessions. Packages of already linked objects are called ROM libraries.
Creation of aROM library only dightly differs from the linkage of a normal program.
ROM libraries can then be used in subsequent link sessions by including them into the
list of files between NAME S and END (Please see section The Semantics of the
SmartLinker Commands).

Examples for the use of ROM libraries are:

o If aset of related functionsis used in different projectsit may be convenient to
burn these thoroughly tested library functionsinto ROM. We call such a set of
objects (functions, variables and strings) at fixed addresses a ROM library.

» To shorten the time needed for downloading, one can build a ROM library with
those modules that are known to be error free and that do not change. Such a
ROM library has to be downloaded only once, before beginning the tests of the
other modules of the application.

* The HI-CROSS+ system allows downloading a program while another program
already is present in the target processor. The most prominent example isthe
monitor program. The linker facility described here enables an application
program to use monitor functions.k

Creating a ROM Library

To create aROM library, the keywords"AS ROM LIB" must follow the LINK
command in thelinker parameter file. In the presence of the ENTRIES command, only
the given objects (functions and variables) are included in the ROM library. Without
an ENTRIES command, all exported objects are written to the ROM library. In both
cases the ROM library will also contain all global objects used by those functions and
variables.

Since a program cannot consist of aROM library alone, aROM library must not
contain afunctionmain oraMAIN or INIT command, and the commands
STACKSIZE and STACKTOP areignored.

Smart Linker 241

ROM Libraries
Using ROM Libraries

Besides al the application modules which form aROM library, the variable
_startupData must aso be defined in the ROM library. The HI-CROSS+ library
includes a module containing only a definition of this variable.

ROM Libraries and Overlapping Locals

To allocate overlapping variables, all dependencies between functions have to be
known at link time. For ROM libraries, the linker does not know the dependencies
between all objectsin the ROM library. Therefore locals of functions inside of the
ROM library cannot overlap locals of the using modules. Instead, the ROM library
must use a separate areafor the .overlap/_OVERLAP segment which isnot used in the
main application.

See Also

Overlapping Locals

Using ROM Libraries

Suppressing Initialization

Linking to ROM librariesis done by adding the name of the ROM library to thelist of
filesinthe NAME S section of the linker parameter file. If the ROM library nameis
immediately followed by adash “~” (no blank between the last character of thefile
name and the “—") the ROM library is not initialized by the startup routine.

An unlimited number of ROM libraries may be included in the list of filesto link. As
long as no two ROM libraries use the same object file, no problems should arise. If
two ROM libraries contain identical objects (coming from the same object file) and
both are linked in the same application, an error is reported becauseit isillegal to
allocate the same object more than once.

Example Application

In this example, we want to build and use a ROM library named ‘romlib.lib’. In this
(smple) example ROM library contains only one object file with one function and one
global variable. Thisisthe header file of it:

/* rl.h
#i f ndef

_R_H

*/

242

Smart Linker

ROM Libraries
Using ROM Libraries

#define _ RL H

char RL_Count (voi d);
/* returns the actual counter and increnments it */

#endi f

Below is the implementation. Note that somewhere in the ROM library we have to
define an object named *_startupData’ for the linker. This startup descriptor is used to
initialize the ROM library (see below).

/* romlibrary (RL_) rl.c */
#include "rl.h"
#i ncl ude <startup. h>

struct _tagStartup _startupbData; /* for |inker */
static char RL_counter; /* initialized to zero by startup */
char RL_Count (void) {

/* returns the actual counter and increnents it */
return RL_counter ++;

}

After compilation of ‘rl.c’ we can now link it and build aROM library using following
linker parameter file. The main difference between a normal application linker
parameter file and a parameter file for ROM librariesis‘ASROM_LIB’ in the LINK
command:

[* rl.prm*/
LINK ronmLib.lib AS ROM LI B

NAMES rl .o END
SECTI ONS

MY_RAM = READ WRI TE 0x4000 TO O0x43FF;
MY_ROM = READ ONLY 0x1000 TO Ox3FFF;

PLACEMENT
DEFAULT_ROM ROM VAR, STRINGS |NTO MY_ROM
DEFAULT_RAM I NTO MY_RAM
END

Smart Linker 243

ROM Libraries
Using ROM Libraries

In this example we have RAM from 0x4000 and ROM from 0x1000. Note that by
default the Linker generates startup descriptors for ROM libraries too. The startup
descriptors are used to zero out global variables or to initialize global variables with
initialization values. Additionally C++ constructors and destructors may be called.
This hole processis called ‘Module Initialization’ too.

To switch off Module Initialization’ for asingle object file in the above linker
parameter file, adash (*-") hasto be added at the end of each object file. For the above
example this would be:

NAMES rl.o- END
After building the ROM library, the linker generatesfollowing map file (extract). Note

that the linker also has generated a startup descriptor at address 0x1000 to initialize the
ROM library.

kkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhkhhkhhhhhhhhhhhhdddddddxdxdxd*xdx*x*x*x**x*x*%

STARTUP SECTI ON

Entry point: none
_startupData is allocated at 1000 and uses 44 Bytes

extern struct _tagStartup{

unsi gned fl ags 3
_PFunc mai n 103C ()
unsi gned dat aPage 0
| ong stackO f set 4202
i nt nof Zer oQut s 1
_Range pZeroQut -> 4000 2
| ong t oCopyDownBeg 102C
_PFunc mnits -> NONE
void * liblnits -> NONE

} _startupbData;

kkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhkhhkhhhhhhhhhhhhdhhddddxdxdxdxdx*xdx*x*x*x*x*x*x%

SEGVENT- ALLOCATI ON SECTI ON

Segnment nane Si ze Type From To Nane

FUNCS 14 R 102E 1041 MWY_ROM
COPY 2 R 102C 102D MY_ROM
STARTUP 2C R 1000 102B MY_ROM
DEFAULT_RAM 2 RR'W 4000 4001 MY_RAM

kkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhhhhhhhhhhkhhkhhkhhkhhkh,kkkkx*xk*x*x*%x

OBJECT- ALLOCATI ON SECTI ON

244 Smart Linker

ROM Libraries
Using ROM Libraries

Type: Nane: Address: Size:
MODULE: --rl.o --
- PROCEDURES:
RL_Count 102E 14
- VARI ABLES:
_startupDat a 1000 2C
RL_counter 4000 2

Now we want to use the ROM library from our application. Our ssimple applicationis:

/* main application using ROMIlibrary: nmain.c */
#include "rl.h"

int cnt;
voi d mai n(void) {
int i;

for (i=0; i<100; i++) {
cnt = RL_Count();
}
}

After compiling this main.c we can link it with our ROM library:

LI NK mai n. abs
NAMES main.o romib.lib startup.o ansi.lib END
SECTI ONS

MY_RAM = READ WRI TE 0x5000 TO Ox53FF;
MY_ROM = READ ONLY 0x6000 TO Ox6FFF;

PLACENENT
DEFAULT_ROM ROM VAR, STRINGS |NTO MY_ROM
DEFAULT_RAM I NTO MY_RAM
END

STACKSI ZE 0x200

Note that depending on your CPU configuration and memory model you have to use
another startup object file than ‘ startup.0’ and another library than ‘ansi.lib’.
Additionally you have to be careful to choose the right startup object file. For

Smart Linker 245

ROM Libraries
Using ROM Libraries

efficiency reasons most of the startup filesimplemented in HLI are optimized for a
specific target. To save ROM usage, they do not support ROM librariesin the startup
code. Aslong asthere is no Module Initialization needed, thisis not a problem. But if
we want to use the Module Initialization feature (asin our example), we use the ANSI-
C implementation in the library directory (startup.c). Because this startup file may not
be delivered in every target configuration, you have to compile this startup file
‘startup.c’ too.

After linking to main.abs, you get following map file (extract):

kkhkkhkkhkkhkkhhhhhhkhhkhkhkhkhkhkhkhkhkhkkkkkkkkk*x*x*%x

STARTUP SECTI ON

Entry point: 0x6000

Li nker generated code (at 0x6000) before calling __ Startup:
MOVE #0x2700, SR

JMP 0x61A0

_startupData is allocated at 600A and uses 48 Bytes

extern struct _tagStartup{

unsi gned fl ags 0
_PFunc mai n 603C (_mai n)
unsi gned dat aPage 0
| ong stackOF f set 5202
i nt nof Zer oQut s 1
_Range pZeroQut -> 5000 2
| ong t oCopyDownBeg 603A
_PFunc mnits -> NONE
void * liblnits -> 1000

} _startupbData;

kkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhhkhhhhhhhdhhdhhhdhdddddrdrdrdxdrdxdxdxxxxx*x%x

SEGVENT- ALLOCATI ON SECTI ON

Segment nanme Size Type From To Nane

FUNCS 184 R 603C 61BF MY_ROM
CcoPY 2 R 603A 603B MY_ROM
STARTUP 30 R 600A 6039 MY_ROM
_PRESTART A R 6000 6009 MY_ROM
SSTACK 200 RF'W 5002 5201 MY_RAM
DEFAULT_RAM 2 RR'wW 5000 5001 MY_RAM

kkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhhkhhhhhhhhdhdhhdhhddddrdrdrdxddxdrdxxxx*x*x%x

OBJECT- ALLOCATI ON SECTI ON

246 Smart Linker

ROM Libraries
Using ROM Libraries

Type: Nane: Address: Size:
VECTOR
val ue: 0 0 4
& Startup 4 4
MODULE: -- main.o --
- PROCEDURES:
mai n 603C 26
- VARI ABLES:
cnt 5000 2
MODULE: -- X\ METROVNERKS\ DEMO\ M68KC\ r| . 0 - -
- PROCEDURES:
RL_Count 102E 14 @
- VARI ABLES:
__startupData 1000 2C @
RL _counter 4000 2 @
MODULE: -- startup.o --
- PROCEDURES:
Zer oCut 6062 50
CopyDown 60B2 54
ProcessSt artupDesc 6142 3E
Handl eRonlLi brari es 6106 3C
Start 6180 20
_Startup 61A0 20
- VARI ABLES:
_startupbDat a 600A 30

Please note that objects linked from the ROM library (RL_Count, RL_counter) are
marked witha‘@’ in the OBJECT-ALLOCATION-SECTION. Again the linker has
generated a startup descriptor at address 0x600A which points with field ‘liblnits' to
the startup descriptor in our ROM library at address 0x1000.

Note that the main.abs does NOT include the code/data of the ROM library, thus they
are NOT downloaded during downloading of main.abs, because they have to be
downloaded (e.g. with a EEPROM) separately.

Smart Linker 247

ROM Libraries
Using ROM Libraries

248 Smart Linker

15

How To ...

How To Initialize the Vector Table

The vector table can beinitialized in the assembly source file or in the linker
parameter file. We recommend to initialize it in the prm file.

Initializing the Vector Table in the
SmartLinker Prm File

Initializing the vector table from the prm file allows you to initialize single entries in
the table. The user can decide if he wantsto initialize all the entriesin the vector table
or not.

The labels or functions, which should be inserted in the vector table, must be
implemented in the assembly sourcefile. All these labels must be published otherwise
they cannot be addressed in the linker prm file.

Example

XDEF | RQFunc, Xl RQFunc, SW Func, OpCodeFunc, ResetFunc
Dat aSec: SECTI ON
Dat a: DS. W5 ; Each interrupt increnents another elenent of the
t abl e.
CodeSec: SECTI ON
I npl erentation of the interrupt functions.

I RQFunc:
LDAB #0
BRA int
Xl RQFunc:
LDAB #2
BRA int
SW Func:
LDAB #4
BRA int

Smart Linker 249

How To ...
How To Initialize the Vector Table

OpCodeFunc:
LDAB #6
BRA int
Reset Func:
LDAB #8
BRA entry
i nt:
LDX #Data ; Load address of synbol Data in X
ABX ; X <- address of the appropriate elenent in the
tabl e
INC 0, X ; The table elenment is increnmented
RTI
entry:
LDS #$AFE
| oop: BRA | oop
NOTE The functions ‘ IRQFunc’, ‘ XIRQFunc', * SWIFunc', * OpCodeFunc’,

‘ResetFunc’ are published. Thisisrequired, because they are
referenced in the linker prm file.

NOTE Asthe HC12 processor automatically pushesall registers on the stack
on occurrence of an interrupt, the interrupt function do not need to
save and restore the registersit is using.

NOTE All Interrupt functions must be terminated with an RTI instruction.

The vector tableisinitialized using the linker command VECTOR ADDRESS.

Example
LI NK test. abs
NAMES
test.o
END
SECTI ONS
MY _ROM = READ ONLY 0x0800 TO Ox08FF;
MY_RAM = READ WRI TE 0x0BOO TO OxO0CFF;
PLACEMENT

250 Smart Linker

How To ...
How To Initialize the Vector Table

DEFAULT_RAM I NTO MY_RAM
DEFAULT_ROM I NTO MY_ROM
END

INI' T Reset Func

VECTOR ADDRESS OxFFF2 | RQFunc
VECTOR ADDRESS OxFFF4 Xl RQFunc
VECTOR ADDRESS OxFFF6 SW Func
VECTOR ADDRESS OxFFF8 OpCodeFunc
VECTOR ADDRESS OxFFFE Reset Func

NOTE The statement *INIT ResetFunc’ defines the application entry point.
Usually, this entry point isinitialized with the same address as the
reset vector.

NOTE The statement ‘' VECTOR ADDRESS 0xFFF2 IRQFunc’ specifies
that the address of function ‘IRQFunc’ should be written at address
OxFFF2.

Initializing the Vector Table in the
Assembly Source File Using a Relocatable
Section

Initializing the vector table in the assembly source file requires that all the entriesin

the table are initialized. Interrupts, which are not used, must be associated with a
standard handler.

The labels or functions, which should be inserted in the vector table must be
implemented in the assembler source file. The vector table can be defined in an
assembly source file in an additional section containing constant variables.

Example

XDEF Reset Func
Dat aSec: SECTI ON

Dat a: DS.W5 ; Each interrupt increnents an elenment of the table.
CodeSec: SECTI ON
; Inplenentation of the interrupt functions.

Smart Linker 251

How To ...
How To Initialize the Vector Table

| RQFunc:
LDAB #0
BRA int
Xl RQFunc:
LDAB #2
BRA int
SW Func:
LDAB #4
BRA int
OpCodeFunc:
LDAB #6
BRA int
Reset Func:
LDAB #8
BRA entry
DumyFunc:
RTI
int:
LDX #Data
ABX
INC 0, X
RTI
entry:
LDS #$AFE
| oop: BRA | oop

Vect or Tabl e: SECTI ON
: Definition of the vector table.

| RQ nt: DC. W I RQFunc

Xl RQ nt : DC. W XI RQFunc

SWInt: DC. W SW Func

OpCodel nt : DC. W OpCodeFunc

COPReset | nt : DC. W DummyFunc; No function attached to COP Reset.

Cl MonResl nt ; DC. W DummyFunc; No function attached to d ock

; Moni tor Reset .
Reset | nt . DC. W Reset Func
NOTE Each constant in the section ‘VectorTable' is defined asaword (2

Byte constant), because the entriesin the HC12 vector table are 16 bit
wide.

252 Smart Linker

How To ...
How To Initialize the Vector Table

NOTE In the previous example, the constant * IRQInt’ isinitialized with the
address of the label *IRQFunc’.

NOTE In the previous example, the constant * XIRQInt’ isinitialized with
the address of the label * XIRQFunc'.

NOTE All the labels specified as initialization value must be defined,
published (using XDEF) or imported (using XREF) before the vector
table section. No forward reference allowed in DC directive.

The section should now be placed at the expected address. Thisis performed in the
linker parameter file.

Example

LI NK test. abs
NAVES test.o+ END

SECTI ONS
MY_ROM = READ ONLY 0x0800 TO OxO8FF;
MY_RAM = READ WRI TE 0x0AO0 TO OxOBFF;

/* Define the nmenory range for the vector table */
Vector = READ ONLY OxFFF2 TO OxFFFF

PLACEMENT
DEFAULT _RAM | NTO MY_RAM
DEFAULT_RAM | NTO MY_ROM

/* Place the section ‘VectorTable' at the appropriated address. */
Vect or Tabl e | NTO Vector;
END

INI T Reset Func

NOTE The statement ‘Vector = READ_ONLY OxFFF2 TO OxFFFF
defines the memory range for the vector table.

NOTE The statement *VectorTable INTO Vector’ specifies that the vector
table should be loaded in the read only memory area Vector. This

Smart Linker 253

How To ...
How To Initialize the Vector Table

means, the constant ‘ IRQInt’ will be allocated at address OxFFF2, the
constant ‘ XIRQInt” will be allocated at address OxFFF4, and so on.
The constant ‘ ResetInt’” will be alocated at address OxFFFE.

NOTE The statement ‘NAMES test.o+ END’ switches smart linking OFF in
the module test.o. If this statement is missing in the prm file, the
vector table will not be linked with the application, becauseit is
never referenced. The smart linker only links the referenced objects
in the absolute file.

Initializing the Vector Table in the
Assembly Source File Using an Absolute
Section

Initializing the vector table in the assembly source file requiresthat all the entriesin
the table are initialized. Interrupts, which are not used, must be associated with a
standard handler.

The labels or functions, which should be inserted in the vector table must be
implemented in the assembly source file. The vector table can be defined in an
assembly source file in an additional section containing constant variables.

Example

XDEF Reset Func

Dat aSec: SECTI ON

Dat a: DS.W5 ; Each interrupt increnents an elenment of the table.
CodeSec: SECTI ON

; Inplenentation of the interrupt functions.

| RQFunc:

LDAB #0

BRA int
Xl RQFunc:

LDAB #2

BRA int
SW Func:

LDAB #4

BRA int
OpCodeFunc:

LDAB #6

254 Smart Linker

How To ...
How To Initialize the Vector Table

BRA int
Reset Func:
LDAB #8
BRA entry
DumryFunc:
RTI
int:
LDX #Data
ABX
INC 0, X
RTI
entry:
LDS #$AFE
| oop: BRA | oop
ORG $FFF2

: Definition of the vector table in an absol ute section

; starting at address

;. $FFF2.
| RQ nt : DC. W | RQFunc
Xl RQ nt : DC. W XI RQFunc
SWint: DC. W SW Func
OpCodel nt : DC. W OpCodeFunc
COPReset I nt : DC. W DumyFunc; No function attached to COP Reset.
Cl MonReslI nt : DC. W DummyFunc; No function attached to O ock
: Moni tor Reset .
Reset | nt : DC. W Reset Func
NOTE Each constant in the section * VectorTable' is defined asaword (2
Byte constant), because the entry in the HC12 vector table are 16 bit
wide.
NOTE In the previous example, the constant ‘ IRQInt’ isinitialized with the
address of the label *IRQFunc’.
NOTE In the previous example, the constant * XIRQInt’ isinitialized with

the address of the label * XIRQFunc'.

Smart Linker

255

How To ...
How To Initialize the Vector Table

NOTE All the labels specified as initialization value must be defined,
published (using XDEF) or imported (using X REF) before the vector
table section. No forward reference allowed in DC directive.

NOTE The statement * ORG $FFF2" specifies that the following section
must start at address $FFF2.
Example
LI NK test. abs
NAMES
test. o+
END
SEGMVENTS
MY _ROM = READ ONLY 0x0800 TO Ox08FF;
MY_RAM = READ WRI TE OxO0A00 TO OxO0BFF;
PLACEMENT
DEFAULT_RAM | NTO MY_RAM
DEFAULT _ROM | NTO MY_ROM
END

I NI T Reset Func

NOTE The statement ‘NAMES test.o+ END’ switches smart linking OFF in
the module test.o. If this statement is missing in the prm file, the
vector table will not be linked with the application, becauseit is
never referenced. The smart linker only links the referenced objects
in the absolute file

256 Smart Linker

16

Messages

Message Kinds

There are four kinds of messsages generated by the SmartLinker:

WARNING
A message will be printed and linking will continue. Warning messages are used to indicate
possible programming errors to the user.

ERROR
A message will be printed and linking will be stopped. Error messages are used to indicate illegal
syntax in the PRM file.

FATAL
A message will be printed and linking will be aborted. A fatal message indicates a severe error
which anyway will stop the linker.

If the Linker prints out a message, the message contains a message code (‘L’ for Linker) and a
four to five digit number. This number may be used to search very fast for the indicated message
in the manual. The messages for the linker linking EL/DWARF object files are counted from L1000
to L1999. The messages for the linker linking HIWARE format object files are counted from L2000
to L2999. The messages common for both are counted until L999 and from L4000 to L4999.

All messages generated by the SmartLinker are documented in increasing number order for easy
and fast retrieaval.

Each message also has a description and if available a short example with a possible solution or
tips to fix a problem.

For each message the type of the message is also noted, e.g. [ERROR] indicates that the
message is an error message.

Messages for Linking ELF/DWARF Object File Format

L1000 <command name> not found
[ERROR]

Description
This message is generated when a mandatory linker command is missing in the

Smart Linker 257

Messages

Message Kinds

PRM file.
<command name>: name of the command, which is not found in the PRM file.

The mandatory commands are:

» LINK, which contains the name of the absolute file to generate. If the option —O
is specified on the command line this message is not generated when the com-
mand LINK is missing in the PRM file.

* NAMES, where the files building the application are enumerated.

+ PLACEMENT, where at least the predefined section ‘.text’ and ‘.data’ must be
associated with a memory range.

When the LINK command is missing the message will be:

‘LINK not found?!

When the NAMES command is missing the message will be:
‘NAMES not found?

When the PLACEMENT command is missing the message will be:
‘PLACEMENT not found!

Example
NAMES fibo.o startl2s.o ansis.lib END
SEGMENTS

MY RAM = READ WRITE 0x800 TO 0Ox80F;

MY ROM = READ ONLY O0x810 TO OxAFF;
MY STK = READ WRITE 0xBOO TO OxBFF;
PLACEMENT

.text INTO MY ROM;

.data INTO MY RAM;

.stack INTO MY STK;
END
/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE _Startup
Tips
Insert the missing command in the PRM file.
Example

LINK fibo.abs
NAMES fibo.o startl2s.o ansis.lib END
SEGMENTS
MY RAM = READ WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OXAFF;
MY_STK = READ WRITE 0xB00 TO OxBFF;
PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;
END

258

Smart Linker

Messages
Message Kinds

L1001

/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE Startup

<command name> multiply defined
[ERROR]

Description
This message is generated when a linker command, which is expected only once, is
detected several times in the PRM file.
<command name>: name of the command, which is found twice in the PRM file.
The commands, which cannot be specified several times in a PRM file, are:
» LINK, which contains the name of the absolute file to generate.
* NAMES, where the files building the application are enumerated.
+ SEGMENTS, where a name can be associated with a memory area.
+ PLACEMENT, where the sections used in the application are assigned to a
memory range.
+ ENTRIES, where the objects, which should always be linked with the applica-
tion, are enumerated.
* MAPFILE, where the information to be stored in the MAP file can be specified.
* MAIN, which defines the application main function.
* INIT, which defines the application entry point.
« STACKSIZE, which defines the size of the stack.
+ STACKTOP, which defines the stack pointer initial value.
+ OBJECT_ALLOCATION, where an absolute address or a section can be as-
signed to the objects in the application.
* LAYOUT, where the allocation order of the different objects can be defined.
+ START_DATA, which defines the name of the startup structure.
When the LINK command is detected several times the message will be:
‘LINK multiply defined®

Example
LINK fibo.abs
NAMES fibo.o startl2s.o ansis.lib END

SEGMENTS
MY RAM = READ WRITE 0x800 TO 0x80F;
MY ROM = READ ONLY 0x810 TO OxAFF;
MY STK = READ WRITE 0xBOO TO OxBFF;

END

PLACEMENT

.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;
END
LINK fibo.abs
/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips

Smart Linker

259

Messages
Message Kinds

Remove one of the duplicated command.

Example
LINK fibo.abs
NAMES fibo.o startl2s.o ansis.lib END
SEGMENTS
MY RAM = READ WRITE 0x800 TO 0x80F;
MY ROM = READ ONLY 0x810 TO OXAFF;
MY_STK = READ WRITE 0xBO0O TO OxBFEF;
END
PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;
END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE Startup

L1003 Only a single SEGMENTS or SECTIONS block is allowed
[ERROR]
Description
The PRM file contains both a SECTIONS and a SEGMENTS block. The SECTIONS
block is a synonym for the SEGMENTS block. It is supported for compatibility with
old style HIWARE PRM file.
Example
LINK fibo.abs
NAMES fibo.o startl2s.o ansis.lib END
SEGMENTS
MY RAM = READ WRITE 0x800 TO O0x80F;
MY ROM = READ ONLY 0x810 TO OxAFF;
MY STK = READ WRITE 0xBOO TO OxBFF;
END
SECTIONS
MY RAM = READ WRITE 0x800 TO O0x80F;
MY ROM = READ ONLY 0x810 TO OxAFF;
MY STK = READ WRITE 0xBOO TO OxBFF;
PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup
Tips
Remove either the SEGMENTS or the SECTIONS block.
260 Smart Linker

Messages
Message Kinds

L1004

L1005

L1006

<Token> expected
[ERROR]

Description

This message is generated, when the specified <Token> is missing at a position
where it is expected.

<Token>: character or expression expected.

Example 1:
SEGMENTS
MY RAM = READ WRITE 0x800 TO Ox8FF
ALIGN [2TO 4, 4]
ERROR: : expected.
Tips

Insert the specified separator at the expected position.

Fill pattern will be truncated (>0xFF)
[DISABLE, INFORMATION, WARNING, ERROR]

Description
This message is generated when the constant specified as fill pattern cannot be cod-
ed on a byte. The constant truncated to a byte value will be used as fill pattern.

Example
SEGMENTS
MY RAM = READ WRITE 0x0800 TO Ox8FF FILL 0xA34;
END
Tips
To avoid this message, split the constant you specify into two byte constants.
Example

SEGMENTS
MY RAM = READ WRITE 0x0800 TO Ox8FF FILL OxA 0x34;
END

<Token> not allowed
[ERROR]

Description

This message is generated when a file name followed by a * is specified in a
OBJECT_ALLOCATION or LAYOUT block. This is not possible, because a section
is either a read only or a read write section. When all objects defined in a file are
moved to a section, the destination section will contain both code and variable. This
is logically not possible.

Example
OBJECT ALLOCATION
fibo.o:* INTO mySec;

A

Smart Linker

261

Messages

Message Kinds

L1007

L1008

ERROR: * not allowed

END

Tips

Move either all functions, or all variables, or all constants to the destination section.
Example

OBJECT_ALLOCATION
fibo.0o:CODE[*] INTO mySec;
END

<character> not allowed in file name (restriction)
[ERROR]

Description
A file name specified in the PRM file contains an illegal character.
<character>: list of characters, which are not allowed in a file name at the pointed
position.
Following characters are not allowed in a file name:
» ', which is used as separator to specify a local object (function or variable) in a
PRM file.
« . which is used as delimiter for a command line in a LAYOUT or
OBJECT_ALLOCATION block.
+ >’ which is used as separator to refer to object located in a section inside of a
LAYOUT or OBJECT_ALLOCATION block.
We also recommend to avoid character ‘+’ and ‘- in a file name. This may generate
a problem when ‘+’ or ‘- are used as suffix for a file name in the NAMES block.

Example
NAMES
file:1l.0;
ERROR: ':' or '>' not allowed in file name (restriction)
END
or
NAMES
filel.o file>2.1lib;
ERROR: ':' or '>' not allowed in file name (restriction)
END
Tips
Change the file name and avoid the illegal characters.

Only single object allowed at absolute address

[ERROR]

Description

Multiple objects are placed at an absolute address in an OBJECT_ALLOCATION
block. Only single objects are allowed there.

262

Smart Linker

Messages
Message Kinds

L1009

Example
OBJECT ALLOCATION

varl var2 AT 0x0800;
ERROR: Only single object allowed at absolute address
END
or
OBJECT ALLOCATION

file.o:DATA[*] AT 0x900;

ERROR: Only single object allowed at absolute address
END
Tips
Split the faulty command from the OBJECT_ALLOCATION command in several
commands referring to single object.

Example

OBJECT_ALLOCATION
varl AT 0x0800;
var2 AT 0x0802;

END

Segment Name <segment name> unknown
[ERROR]

Description

The segment specified in a PLACEMENT or LAYOUT command line was not previ-
ously defined in the SEGMENTS block.

<segment name>: name of the segment, which is not known.

Example
LINK fibo.abs
NAMES fibo.o startl2s.o ansis.lib END
SEGMENTS
MY RAM READ WRITE 0x800 TO 0x80F;
MY ROM = READ ONLY 0x810 TO OxAFF;
MY STK READ WRITE O0xBOO TO OxBFF;
END
PLACEMENT
.text INTO ROM_AREA;
ERROR: Segment Name ROM AREA unknown
.data INTO MY RAM;
.stack INTO MY STK;

END
/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE _Startup

Smart Linker

263

Messages
Message Kinds

Tips
Define the requested segment names in the SEGMENTS block.
Example

LINK fibo.abs

NAMES fibo.o startl2s.o ansis.lib END

SEGMENTS
RAM AREA = READ WRITE 0x800 TO 0Ox80F;
ROM_AREA = READ_ONLY 0x810 TO OXAFF;
STK_AREA = READ WRITE 0xB00 TO OxBFF;

END

PLACEMENT
.text INTO ROM _AREA;
.data INTO RAM AREA;
.stack INTO STK AREA;

END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE Startup

L1010 Section Name <section name> unknown
[ERROR]

Description

The section name specified in a command from the OBJECT_ALLOCATION block
was not previously specified in the PLACEMENT block.

<section name>: name of the section, which is not known.

Example

LINK fibo.abs

NAMES fibo.o startl2s.o ansis.lib END

SEGMENTS
MY RAM = READ WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OXAFF;
MY_STK = READ WRITE 0xB0O0O TO OxBFF;

END

PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;

END

OBJECT ALLOCATION

fibo.o:DATA[*] IN dataSec;
ERROR: Section Name dataSec unknown
END
/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE Startup

264 Smart Linker

Messages
Message Kinds

Tips
Specify the section in the PLACEMENT block.
Example

LINK fibo.abs

NAMES fibo.o startl2s.o ansis.lib END

SEGMENTS
MY RAM = READ WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OXAFF;
MY_STK = READ WRITE 0xB00O TO OxBFF;

END

PLACEMENT
.text INTO MY ROM;
.data, dataSec INTO MY RAM;
.stack INTO MY STK;

END

OBJECT ALLOCATION
fibo.o:DATA[*] IN dataSec;
END
/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE _Startup

L1011 Incompatible segment qualifier: <qualifier1> in previous seg-
ment and <qualifier> in <segment name>
[ERROR]

Description

Two segments specified in the same command line from the PLACEMENT block are
not defined with the same qualifier.

<qualifier1>: segment qualifier associated with the previous segment in the list. This
qualifier may be READ_ONLY, READ_WRITE, NO_INIT, PAGED.

<qualifier2> segment qualifier associated with the current segment in the list. This
qualifier may be READ_ONLY, READ_WRITE, NO_INIT, PAGED.

<segment name >: name of the current segment in the list.

Example

LINK fibo.abs

NAMES fibo.o startl2s.o ansis.lib END

SEGMENTS
MY RAM = READ WRITE 0x800 TO 0Ox80F;
SEC_RAM= READ WRITE 0x020 TO 0x02F;
MY_ROM = READ_ONLY 0x810 TO OXAFF;
MY_STK = READ WRITE 0xB0O0O TO OXxBFF;

END
PLACEMENT
.data INTO MY RAM;
.text INTO MY ROM, SEC_RAM;

Smart Linker 265

Messages

Message Kinds

L1012

L1013

A

ERROR: Incompatible segment qualifier: READ ONLY in previous
segment and READ WRITE in SEC_RAM
.stack INTO MY STK;
END
/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE Startup
Tips
Modify the qualifier associated with the specified segment.
Example

LINK fibo.abs

NAMES fibo.o startl2s.o ansis.lib END

SEGMENTS
MY RAM = READ WRITE 0x800 TO 0x80F;
SEC_ROM= READ ONLY 0x020 TO 0x02F;
MY ROM = READ ONLY 0x810 TO OXAFF;
MY_STK = READ WRITE 0xBOO TO OxBFF;

END

PLACEMENT
.data INTO MY RAM;
.text INTO MY ROM, SEC_ROM;
.stack INTO MY STK;

END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE Startup

Segment is not aligned on a <bytes> boundary

[DISABLE, INFORMATION, WARNING, ERROR]

Description

Some targets (M-CORE, M68Kk) require aligned access for some objects.

Example (M-CORE)

All 4 byte accesses must be aligned to 4. According to the EABI, 8 byte doubles must
be aligned to 8. But if a 8 byte structure only contains chars, then alignment is not
needed.

Tips

Check whether the section contains objects which must be aligned.

Section is not aligned on a <bytes> boundary

[DISABLE, INFORMATION, WARNING, ERROR]

Description

Some targets (M-CORE, M68k) require aligned access for some objects.

Example (M-CORE)

All 4 byte accesses must be aligned to 4. According to the EABI, 8 byte doubles must
be aligned to 8. But if a 8 byte structure only contains chars, then alignment is not

266

Smart Linker

Messages
Message Kinds

L1015

L1016

needed.
Tips
Check whether the section contains objects which must be aligned.

No binary input file specified

[ERROR]
Description
No file names specified in the NAMES block.
Example
LINK fibo.abs
NAMES END
SEGMENTS
MY RAM = READ WRITE 0x800 TO O0x80F;
MY ROM = READ ONLY 0x810 TO OxAFF;
MY STK = READ WRITE 0xBOO TO OxBFF;
END
PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;
END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips

Specify at least a file name in the NAMES block.

File <filename> found twice
[DISABLE, INFORMATION, WARNING, ERROR]

Description

A file name is detected several times. The file may be specified in the NAMES block
in the link parameter file or it may have been added by the option -Add.

<file name >: name of the file, which is detected twice.

Note that CodeWarrior is using the option -Add to add object files which are in the
project. Therefore these files should not be mentioned in the prm file as well.

Example1§
LINK fibo.abs
NAMES fibo.o startup.o fibo.o END
WARNING L1016: File fibo.o found twice
SEGMENTS
MY RAM READ WRITE 0x800 TO 0x80F;
MY ROM = READ ONLY 0x810 TO OxAFF;
MY STK = READ WRITE O0xBOO TO OxBFF;
END
PLACEMENT

Smart Linker

267

Messages

Message Kinds

L1017

L1018

L1037

L1038

.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;

END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE Startup

Tips

Remove the second occurrence of the specified file.

Section <Object/Section> in module <ModuleName> is in-

compatible with previous usages of this section
[DISABLE, INFORMATION, WARNING, ERROR]

Description

In the ELF object file format, two object files do contain the same section with incom-
patible modes. Sections containing code are for example incompatible with sections
containing not initialized variable.

Example§
file1.c:
#pragma DATA SEG MY SEG
int 1;
file2.asm
My_SEG SECTI ON
NOP
file.prm
LINK file.abs
NAMES filel.o file2.o0 .. END
Tips
Use different section names for different types of sections.
Checksum error <Description>
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The checksum function has found a problem with the checksum configuration.

***** Linking of <Linkparameterfile> failed ****

[ERROR]

Description

An error occurred in the linking process and the linking was interrupted and

no output is written. The destination absolute file and the map file are killed by the
Linker.

Tips

See the last error message for interpretation.

Success. Executable file written to <absfile>

268

Smart Linker

Messages
Message Kinds

L1052

L1100

[DISABLE, INFORMATION, WARNING, ERROR]

Description

The application was successfully linked and the specified application was created.
When the linking fails, L1037 is issued. If the linking succeeds this message is is-
sued, but as it is disabled by default, it is only visible if it was enabled with a com-
mand line option.

See also
Command line option -WmsgSi.

User requested stop
Description
[DISABLE, INFORMATION, WARNING, ERROR]

The user has pressed the stop button in the toolbar. The linker stops execution as
soon as possible.

Segments <segment1 name> and <segment2 name> overlap
[DISABLE, INFORMATION, WARNING, ERROR]

Description

Two segments defined in the PRM file overlap.

<segment1 name >: name of the first overlapping segment.
<segment2 name >: name of the second overlapping segment.

Example

Segments MY RAM and MY ROM overlap
LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO 0x80F;
MY ROM = READ ONLY 0x805 TO OxAFF;

MY STK = READ WRITE 0xBOO TO OxBFF;

END

PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;

END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips

Modify the segment definition to remove the overlap.
Example

LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS

Smart Linker

269

Messages

Message Kinds

L1102

L1103

MY RAM = READ WRITE 0x800 TO 0x80F;
MY ROM = READ ONLY 0x810 TO OXAFF;
MY STK = READ WRITE 0xBOO TO OxBFEF;
END
PLACEMENT
.text INTO MY_ROM;
.data INTO MY RAM;
.stack INTO MY STK;
END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE Startup

Out of allocation space in segment <segment name> at ad-

dress <first address free>
[ERROR]

Description

The specified segment is not big enough to contain all objects from the sections
placed in it.

<segment name>: is the name of the segment, which is too small.

<first address free>: is the first address free in this segment (i.e. the address follow-
ing directly the last address used).

Example
In the following example, suppose the section ‘.data’ contains a character variable
and then a structure which size is 5 bytes.
Out of allocation space in segment MY RAM at address 0x801
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY RAM = READ WRITE 0x800 TO 0x803;
MY ROM = READ ONLY 0x805 TO OxAFF;
MY STK = READ WRITE 0xB00 TO OxBFF;
END
PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;
END
/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE _Startup
Tips
Set the end address of the specified segment to an higher value.

<section name> not specified in the PLACEMENT block
[ERROR]

270

Smart Linker

Messages
Message Kinds

L1104

Description

Indicates that one of the mandatory sections is not specified in the placement block.
The sections, which must always be specified in the PLACEMENT block, are .text
and .data.

Example
ERROR: .text not specified in the PLACEMENT block
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY RAM = READ WRITE 0x800 TO 0x80F;
MY ROM = READ ONLY 0x810 TO OxAFF;

MY_STK = READ WRITE 0xBO0O TO OxBFF;
END
PLACEMENT
.init, .rodata INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;
END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE Startup

Tips

Insert the missing section in the PLACEMENT block.
Note:

The sections DEFAULT_RAM is a synonym for .data and DEFAULT_ROM is a syn-
onym for .text. These two sections name have been defined for compatibility with the
old style HIWARE Linker.

Absolute object <Object Name> overlaps with segment <Seg-

ment Name>
[ERROR]

Description

An absolutely allocated object overlaps with a segment, where some section is allo-
cated. This is not allowed, because this may cause multiple objects to be allocated
at the same address.

Example
ERROR: Absolute object globInt overlaps with segment MY RAM
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY RAM = READ WRITE 0x800 TO 0x80F;
MY ROM = READ ONLY 0x810 TO OxAFF;
MY STK READ WRITE 0xBOO TO OxBFF;

Smart Linker

271

Messages

Message Kinds

END

PLACEMENT
.text, .rodata INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;

END

OBJECT ALLOCATION
fiboCount AT 0x802;
END

/* Set reset vector on Startup */

VECTOR ADDRESS OxFFFE Startup
Tips

Move the object to a free address.
Example

LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS

MY RAM = READ WRITE 0x800 TO 0x80F;
MY ROM = READ ONLY 0x810 TO OxAFF;
MY STK = READ WRITE 0xBOO TO OxBFF;
END
PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;
END

OBJECT_ALLOCATION
fiboCount AT 0xCO00;
END

/* Set reset vector on Startup */

VECTOR ADDRESS OxFFFE Startup
Note:

An absolute object can also be placed in a segment, in which no sections are as-

signed.
Example

LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS

MY RAM = READ WRITE 0x800
MY ROM = READ ONLY 0x810
MY STK = READ WRITE 0xBO0O

ABS MEM= READ WRITE 0xCOO
END

TO
TO
TO
TO

0x80F;
OxXAFF;
O0xBFF;
0xCOF;

272

Smart Linker

Messages
Message Kinds

L1105

L1106

PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;
END

OBJECT ALLOCATION
fiboCount AT 0xCO00;
END
/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE _Startup

Absolute object <object name> overlaps with another abso-

lutely allocated object or with a vector

[ERROR]

Description

An absolutely allocated object overlaps with another absolute object or with a vector.

Example

A

ERROR: Absolute object globChar overlaps with another
absolutely allocated object or with a vector

LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO 0x80F;
MY ROM = READ ONLY 0x810 TO OxAFF;
MY STK = READ WRITE O0xBOO TO OxBFF;
END
PLACEMENT
.text, .rodata INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;
END

OBJECT ALLOCATION
fiboCount AT 0xC02;
counter AT 0xCO03;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE Startup
Tips
Move the object to a free position.
<Object Name> not found
[ERROR]

Description
An object referenced in the PRM file or in the application is not found anywhere in

Smart Linker

273

Messages
Message Kinds

the application. This message is generated in following cases:

» An object moved to another section in the OBJECT_ALLOCATION block is not
found anywhere in the application (WARNING).

* An object placed at an absolute address in the OBJECT_ALLOCATION block is
not found anywhere in the application (ERROR).

* An object specified ina VECTOR or VECTOR ADDRESS command is not found
anywhere in the application (ERROR).

* No start-up structure detected in the application (WARNING).

* An object (function or variable) referenced in another object is not found in the
application (ERROR).

» An object (function or variable) specified in the ENTRIES block is not found in
the application (ERROR).

Example

ERROR: globInt not found
LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY RAM READ WRITE 0x800 TO Ox80F;
MY ROM = READ ONLY O0x810 TO OxAFF;
MY STK = READ WRITE O0xBOO TO OxBFF;

END

PLACEMENT
.text, .rodata INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;

END

OBJECT_ALLOCATION
globInt AT 0xCO02;
END

/* Set reset vector on _Startup */

VECTOR ADDRESS OxFFFE Startup
Tips
The missing object must be implemented in one of the module building the applica-
tion.
Make sure that your definition of the OBJPATH and GENPATH is correct and that
the Linker uses the last version of the object files.
You can also check if all the binary files building the application are enumerated in
the NAMES block.

L1107 <Object Name> not found
[DISABLE, INFORMATION, WARNING, ERROR]

274 Smart Linker

Messages
Message Kinds

Description
An object referenced in the PRM file or in the application is not found anywhere in
the application. This message is generated in following cases:
* An object moved to another section in the OBJECT_ALLOCATION block is not
found anywhere in the application (WARNING).
* An object placed at an absolute address in the OBJECT_ALLOCATION block is
not found anywhere in the application (ERROR).
* An object specified ina VECTOR or VECTOR ADDRESS command is not found
anywhere in the application (ERROR).
* No start-up structure detected in the application (WARNING).
* An object (function or variable) referenced in another object is not found in the
application (ERROR).
» An object (function or variable) specified in the ENTRIES block is not found in
the application (ERROR).

Example

A

ERROR: globInt not found
LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO Ox80F;
MY ROM = READ ONLY O0x810 TO OxAFF;
MY STK = READ WRITE 0xB0OO TO OxBFF;
END
PLACEMENT
.text, .rodata INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;
END

OBJECT ALLOCATION
globInt AT 0xC02;
END

/* Set reset vector on Startup */

VECTOR ADDRESS OxFFFE _Startup
Tips
The missing object must be implemented in one of the module building the applica-
tion.
Make sure that your definition of the OBJPATH and GENPATH is correct and that
the Linker uses the last version of the object files.
You can also check if all the binary files building the application are enumerated in
the NAMES block.
A missing _startupData is only issued if there is a non assembly object file or library

Smart Linker

275

Messages
Message Kinds

linked.

L1108 Initializing of Vector <Name> failed because of <Reason>
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The linker can not initialize the named vector because of some target restrictions.
Some processors do not imply any restrictions, while other do only allow the VEC-
TOR's to point into a certain address range or have alignment constraints.

Tips

Try to allocate the interrupt function in a special segment and allocate this segment
separately.

L1109 <Segment Name> appears twice in SEGMENTS block
[ERROR]
Description
A segment name is specified twice in a PRM file. This is not allowed. When this seg-
ment name is referenced in the PLACEMENT block, the Linker cannot detect which
memory area is referenced.
Example
LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO 0x80F;
MY ROM = READ ONLY 0x810 TO OxAFF;

MY STK = READ WRITE O0xBOO TO OxBFEF;
MY RAM READ WRITE 0xC00 TO OxCFF;

ERROR: MY RAM appears twice in SEGMENTS block

END

PLACEMENT
.text, .rodata INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;

END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE Startup

Tips
Change one of the segment names, to generate unique segment names. If the same
memory area is defined twice, you can remove one of the definitions.

L1110 <Segment Name> appears twice in PLACEMENT block
[ERROR]

Description

276 Smart Linker

Messages
Message Kinds

The specified segment appears twice in a PLACEMENT block, and in one of the
PLACEMENT line, it is part of a segment list. A segment name may appear in several
lines in the PLACEMENT block, if it is the only segment specified in the segment list.
In that case the section lists specified in both PLACEMENT line are merged in one
single list of sections, which are allocated in the specified segment.

Example
LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO 0Ox80F;
MY ROM = READ ONLY O0x810 TO OxAFF;

MY_STK = READ WRITE 0xB0O0O TO OxBFF;
ROM_2 = READ_ONLY 0x500 TO Ox7FF;
END
PLACEMENT
.text, .rodata INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;

codeSecl, codeSecZ2 INTO ROM 2, MY ROM;
ERROR: MY ROM appears twice in PLACEMENT block
END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips

Remove one of the instance of the segment in the PLACEMENT block.
L1111 <Section Name> appears twice in PLACEMENT block

[ERROR]

Description

The specified section appears multiple times in a PLACEMENT block.

Example
LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY RAM READ WRITE 0x800 TO Ox80F;
MY ROM = READ ONLY O0x810 TO OxAFF;

MY STK = READ WRITE 0xBOO TO OxBFF;
ROM_Z = READ ONLY 0x500 TO Ox7FF;
END
PLACEMENT
.text, .rodata INTO MY ROM;

Smart Linker 277

Messages

Message Kinds

L1112

.data INTO MY RAM;
.stack INTO MY STK;
.text INTO ROM 2;

A

ERROR: .text appears twice in PLACEMENT block
END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE Startup

Tips
Remove one of the occurrence of the specified section from the PLACEMENT block.

The <Section name> section has segment type <Segment
Qualifier> (illegal)
[ERROR]
Description
A section is placed in a segment, which has been defined with an incompatible qual-
ifier. This message is generated in following cases:
» The section “.stack’ is placed in a READ_ONLY segment.
* The section “.bss’ is placed in a READ_ONLY segment.
» The section ‘.startData’ is placed in a READ_WRITE, NO_INIT or PAGED seg-
ment.
» The section “.init’ is placed in a READ_WRITE, NO_INIT or PAGED segment.
» The section ‘.copy’ is placed in a READ_WRITE, NO_INIT or PAGED segment.
* The section “.text’ is placed in a READ_WRITE, NO_INIT or PAGED segment.
» The section “.data’ is placed in a READ_ONLY segment.

Example

ERROR: The .data section has segment type READ ONLY (illegal)
LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO 0x80F;
MY ROM = READ ONLY O0x810 TO OxAFF;

MY STK = READ WRITE 0xBOO TO OxBFF;

ROM_2 = READ_ONLY 0x500 TO Ox7FF;
END
PLACEMENT
.text, .rodata INTO MY ROM;
.data INTO ROM 2;
.stack INTO MY STK;
END

278

Smart Linker

Messages
Message Kinds

L1113

/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE Startup
Tips
Place the specified section in a segment, which has been defined with an appropri-
ated qualifier.

Example

LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO 0x80F;
MY ROM = READ ONLY 0x810 TO OxAFF;
MY STK = READ WRITE 0xBOO TO OxBFF;

ROM 2 = READ ONLY 0x500 TO Ox7FF;
END
PLACEMENT

.text INTO MY ROM;

.data INTO MY RAM;

.stack INTO MY STK;
END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE _Startup

The <Section name> section has segment type <Segment
Qualifier> (illegal)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
A section is placed in a segment, which has been defined with an incompatible qual-
ifier. This message is generated in following cases:
* The section “.stack’ is placed in a READ_ONLY segment.
» The section ‘.bss’ is placed in a READ_ONLY segment.
» The section ‘.startData’ is placed in a READ_WRITE, NO_INIT or PAGED seg-
ment.
* The section “.init’ is placed in a READ_WRITE, NO_INIT or PAGED segment.
» The section ‘.copy’ is placed in a READ_WRITE, NO_INIT or PAGED segment.
* The section “.text’ is placed in a READ_WRITE, NO_INIT or PAGED segment.
» The section ‘.data’ is placed in a READ_ONLY segment.
Example
ERROR: The .data section has segment type READ ONLY (illegal)
LINK fibo.abs
NAMES fibo.o startup.o END

Smart Linker

279

Messages
Message Kinds

SEGMENTS
MY RAM = READ WRITE 0x800 TO 0x80F;
MY ROM = READ ONLY 0x810 TO OxAFF;
MY_STK = READ WRITE 0xB0O0O TO OxBFF;
ROM_2 = READ_ONLY 0x500 TO Ox7FF;

END

PLACEMENT
.text, .rodata INTO MY ROM;
.data INTO ROM 2;
.stack INTO MY STK;

END

/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE Startup
Tips
Place the specified section in a segment, which has been defined with an appropri-
ated qualifier.

Example

LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO 0x80F;
MY ROM READ ONLY 0x810 TO OxAFF;
MY STK = READ WRITE O0xBOO TO OxBFF;

ROM 2 = READ ONLY 0x500 TO Ox7FF;
END
PLACEMENT

.text INTO MY ROM;

.data INTO MY RAM;

.stack INTO MY STK;
END

/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

L1114 The <Section Name> section has segment type <Segment
Qualifier> (initialization problem)
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The specified section is loaded in a segment, which has been defined with the qual-
ifier NO_INIT or PAGED. This may generate a problem because the section contains
some initialized constants, which will not be initialized at application start-up. This
message is generated in following cases:

280 Smart Linker

Messages
Message Kinds

* The section “.rodata’ is placed in a NO_INIT or PAGED segment.
* The section “.rodata1’ is placed in a NO_INIT or PAGED segment.

Example

A

ERROR: The

SEGMENTS
MY RAM

MY ROM =

MY STK
RAM 2
END
PLACEMENT
.text
.data
.stack

.rodata section has segment type NO INIT
(initialization problem)

LINK fibo.abs

NAMES fibo.o startup.o END

READ WRITE 0x800 TO Ox80F;
READ ONLY 0x810 TO OxAFF;
READ WRITE 0xBOO TO OxBFF;
NO INIT 0x500 TO Ox7FF;

INTO MY ROM;
INTO MY RAM;
INTO MY STK;

.rodata INTO RAM 2;

END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips

Place the specified section in a segment defined with either the READ_ONLY or the
READ_WRITE qualifier.

Example

LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY RAM
MY ROM
MY STK
RAM 2
END
PLACEMENT
.text
.data
.stack
.rodata
END

READ WRITE 0x800 TO Ox80F;
READ ONLY 0x810 TO OxAFF;
READ WRITE 0xB0OO TO OxBFF;
NO INIT 0x500 TO Ox7FF;

INTO MY ROM;
INTO MY RAM;
INTO MY STK;
INTO MY ROM;

Smart Linker

281

Messages

Message Kinds

L1115

L1116

L1117

/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE Startup

Function <Function Name> not found
[ERROR]

Description
The specified function is not found in the application. This message is generated in
following cases:

» No main function available in the application. This function is not required for as-
sembly application. For ANSI C application, if no main function is available in the
application, it is the programmer responsibility to ensure that application start-up
is performed correctly. Usually the main function is called ‘main’, but you can de-
fine your own main function using the linker command MAIN.

* No init function available in the application. The init function defines the entry
point in the application. This function is required for ANSI C as well as for as-
sembly application. Usually the init function is called *_Startup’, but you can de-
fine your own init function using the linker command INIT.

Tips
Provide the application with the requested function.

Function <Function Name> not found
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The specified function is not found in the application. This message is generated in
following cases:

» No main function available in the application. This function is not required for as-
sembly application. For ANSI C application, if no main function is available in the
application, it is the programmer responsibility to ensure that application startup
is performed correctly. Usually the main function is called ‘main’, but you can de-
fine your own main function using the linker command MAIN.

* No init function available in the application. The init function defines the entry
point in the application. This function is required for ANSI C as well as for as-
sembly application. Usually the init function is called *_Startup’, but you can de-
fine your own init function using the linker command INIT.

Tips
Provide the application with the requested function.

<Object Name> allocated at absolute address <Address>

overlaps with sections placed in segment <Segment Name>
[ERROR]

Description

The specified absolutely allocated object is allocated inside of a segment, which is
specified in the PLACEMENT block. This is not allowed, because the object may
then overlap with object defined in the sections, which are placed in the specified
segment.

282

Smart Linker

Messages
Message Kinds

An absolutely allocated object may be allocated inside of a segment, which do not
appear in the PLACEMENT block.

Example

ERROR: fiboCount allocated at absolute address 0x804 overlaps
with sections placed in segment MY RAM

LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO 0Ox80F;
MY ROM = READ ONLY O0x810 TO OxAFF;

MY_STK = READ WRITE 0xB0O0O TO OxBFF;
RAM 2 = NO_INIT 0x500 TO Ox7FF;
END
PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;
.rodata INTO RAM 2;
END

OBJECT ALLOCATION
counter AT 0x500;
fiboCount AT 0x804;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup
Tips
Move the absolutely allocated object to an unused address.
Example

LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO 0Ox80F;
MY ROM = READ ONLY 0x810 TO OxAFF;

MY_STK = READ WRITE 0xB0O0O TO OxBFF;
RAM 2 = NO_INIT 0x500 TO Ox7FF;
END
PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;

Smart Linker

283

Messages
Message Kinds

.rodata INTO MY ROM;
END

OBJECT_ALLOCATION
counter AT 0x500;
fiboCount AT 0x404;

END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE _Startup

L1118 Vector allocated at absolute address <Address> overlaps

with another vector or an absolutely allocated object
[ERROR]

Description
A vector overlaps with an absolute object or with another vector.

Example

A

ERROR: Vector allocated at absolute address OxXFFFE overlaps
with another vector or an absolutely allocated object

LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY RAM READ WRITE 0x800 TO Ox80F;
MY ROM = READ ONLY O0x810 TO OxAFF;

MY STK = READ WRITE 0xB0O0O TO OxBFF;
END
PLACEMENT
.text, .rodata INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;
END

OBJECT_ALLOCATION
counter AT OxFFFD;
END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips
Move the object or vector to a free position.

L1119 Vector allocated at absolute address <Address> overlaps
with sections placed in segment <Segment Name>

284 Smart Linker

Messages
Message Kinds

[ERROR]

Description

The specified vector is allocated inside of a segment, which is specified in the
PLACEMENT block. This is not allowed, because the vector may then overlap with
object defined in the sections, which are placed in the specified segment.

A vector may be allocated inside of a segment, which do not appear in the PLACE-
MENT block.

Example

ERROR: Vector allocated at absolute address OxFFFE overlaps
with sections placed in segment ROM 2

LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO Ox80F;
MY ROM = READ ONLY O0x810 TO OxAFF;
MY STK = READ WRITE O0xB0OO TO OxBFEF;

ROM 2 = READ ONLY OxFF00 TO OxFFFF;
END
PLACEMENT

.text INTO MY ROM;

.data INTO MY RAM;

.stack INTO MY STK;

.rodata INTO ROM 2;
END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE _Startup
Tips
Defined the specified segment outside of the vector table.
Example

LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO 0x80F;
MY ROM = READ ONLY 0x810 TO OxAFF;
MY STK = READ WRITE OxB0OO TO OxBFF;
ROM 2 READ ONLY 0xC00 TO OxCFF;
END
PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;

Smart Linker

285

Messages
Message Kinds

.stack INTO MY STK;
.rodata INTO ROM 2;
END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE Startup

L1120 Vector allocated at absolute address <Address> placed in
segment <Segment Name>, which has not READ_ONLY qual-
ifier
[ERROR]

Description

The specified vector is defined inside of a segment, which is not defined with the
qualifier READ_ONLY. The vector table should be initialized at application loading
time during the debugging phase. It should be burned into EPROM, when application
development is terminated. For these reason, the vector table must always be locat-
ed in a READ_ONLY memory area.

Example

ERROR: Vector allocated at absolute address OxFFFE placed in
segment RAM 2 which has not READ ONLY qualifier

LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO Ox80F;
MY ROM READ ONLY 0x810 TO OxAFF;
MY STK = READ WRITE 0xB0OO TO OxBFF;

RAM 2 = READ WRITE OxFF00 TO OxFFFF;
END
PLACEMENT

.text INTO MY ROM;

.data INTO MY RAM;

.stack INTO MY STK;
END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips
Define the specified segment with the qualifier READ_ONLY.
L1121 Out of allocation space at address <Address> for .copy sec-
tion
[ERROR]

286 Smart Linker

Messages
Message Kinds

L1122

Description

There is not enough memory available to store all the information about the initialized
variables in the ‘.copy’ section.

Tips

Specify an higher end address for the segment, where the ‘.copy’ section is allocat-
ed.

Section .copy must be the last section in the section list
[ERROR]

Description

The section ‘.copy’ is specified in a section list from the PLACEMENT block, but it is
not specified at the end of the list. As the size from this section cannot be evaluated
before all initialization values are written, the .copy section must be the last section
in a section list.

Example
ERROR: Section .copy must be the last section in the section
list

LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO Ox80F;
MY ROM = READ ONLY 0x810 TO OxAFF;
MY STK = READ WRITE O0xB0OO TO OxBFEF;

END

PLACEMENT
.copy, .text INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;

END

/* Set reset vector on Startup */

VECTOR ADDRESS OxFFFE _Startup
Tips
Move the section .copy to the last position in the section list or define it on a separate
PLACEMENT line in a separate segment.
Please note that .copy is also a synonym for COPY (e.g. used in HIWARE object file
format prm files).

Example

LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS

Smart Linker

287

Messages
Message Kinds

MY RAM READ WRITE 0x800 TO Ox80F;
MY ROM = READ ONLY O0x810 TO OxAFF;
MY STK = READ WRITE O0xBOO TO OxBFF;
ROM 2 READ ONLY 0xC00 TO OxDFF;
END
PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;
.copy INTO ROM 2;
END

/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE Startup

L1123 Invalid range defined for segment <Segment Name>. End ad-

dress must be bigger than start address
[ERROR]

Description
The memory range specified in the specified segment definition is not valid. The seg-
ment end address is smaller than the segment start address.

Example
LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO Ox7FF;
ERROR: Invalid range defined for segment MY RAM. End address
must be bigger than start address
MY ROM = READ ONLY 0x810 TO OxAFF;
MY STK = READ WRITE 0xBOO TO OxBFF;

END
PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;
END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips
Change either the segment start or end address to define a valid memory range.

L1124 '+ or'-' should directly follow the file name

288 Smart Linker

Messages
Message Kinds

L1125

[ERROR]
Description

The '+’ or ‘-* suffix specified after a file name in the NAMES block does not directly
follow the file name. There is at least a space between the file name and the suffix.

Example
LINK fibo.abs
NAMES fibo.o + startup.o END

A

ERROR: '+' or '-' should directly
SEGMENTS
MY RAM = READ WRITE 0x800 TO
MY ROM = READ ONLY 0x810 TO
MY STK = READ WRITE 0xBOO TO
END
PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;
END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE _Startup

follow the file name

0x80F;
OxXAFF;
OxXBFF;

0x80F;
OxXAFF;
OxXBFF;

Tips

Remove the superfluous space after the file NAME.

Example

LINK fibo.abs

NAMES fibo.o+ startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO
MY ROM = READ ONLY 0x810 TO
MY STK = READ WRITE 0xB00 TO

END

PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;

END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE _Startup

In small memory model, code and data must be located on

bank 0. (StartAddr EndAddr)

[DISABLE, INFORMATION, WARNING, ERROR]

Smart Linker

289

Messages

Message Kinds

L1127

Description
The application has been assembled or compiled in small memory model and the
memory area specified for some segment is not located on the first 64K (0x0000 to
OxFFFF).
This message is not issued for all processors.
Example
ERROR: In small memory model, code and data must be located
on bank 0
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY RAM = READ WRITE 0x800 TO 0x80F;
MY ROM = READ ONLY 0x10810 TO Ox10AFF;
MY STK = READ WRITE 0xB0OO TO OxBFF;

END

PLACEMENT
.text INTO MY_ROM;
.data INTO MY RAM;
.stack INTO MY STK;

END

/* Set reset vector on Startup */

VECTOR ADDRESS OxFFFE _Startup
Tips
If some memory upper than OxFFFF is required for the application, the application
must be assembled or compiled using the medium memory model. If no memory up-
per than OxFFFF is required, modify the memory range and place it on the first 64K
of memory.

Placement located outside 16 bit area in small memory model

in area StartAddr .. EndAddr
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The application has been assembled or compiled in small memory model and the
memory area specified for some segment is not located on the first 64K (0x0000 to
OxFFFF).

This message is only issued for the HC12 and note that this message is disabled by
default.

Example

Warning: Placement located outside 16 bit area in small memory
model in area 0x10810.. Ox10AFF

LINK fibo.abs

NAMES fibo.o startup.o END

290

Smart Linker

Messages
Message Kinds

L1128

L1130

SEGMENTS
MY RAM = READ WRITE 0x800 TO 0Ox80F;
MY ROM = READ ONLY 0x10810 TO Ox10AFF;
MY_STK = READ WRITE 0xB0O0O TO OxBFEF;
END
PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;
END

/* Set reset vector on Startup */

VECTOR ADDRESS OxFFFE _Startup
Tips
If some memory upper than OxFFFF is required for the application, the application
must be assembled or compiled using the medium memory model. If no memory up-
per than OxFFFF is required, modify the memory range and place it on the first 64K
of memory.

Cutting value <ltemName> from <FullValue> to <WrittenVal-

ue>
[DISABLED|INFORMATION|WARNING|ERROR]

Description

The linker does want to write a startup information entry which does not fit into the
size available. The startup code defines the size available for an address, for exam-
ple. If then larger addresses have to be written, this message is generated.

Example

For a startup code with 16 bits:

int 1@0x12345678=7;

For the initialization of i, the linker has to encode the address of i (0x12345678) into
two bytes. Obviously, the address has to be cutted, and the message is issued.
Tips

Check which kind of information did cause this message. Some startup codes do
only support to initialize some part of the address space. This is especially the case
when using small memory models and allocate variables in paged areas.

To avoid to generate (non working) initialization data, variables can be placed in a
NO_INIT section.

The startup code can be adapted to support larger addresses.

Different memory models do have different limitations.

Section .checksum must be the last section in the section list
[DISABLED|INFORMATION|WARNING|ERROR]

Description

The section .checksum which will contains the linker generated checksum should it-
self not be considered for the checksum calculation. Therefore this section has to be

Smart Linker

291

Messages
Message Kinds

after all other sections.

Example
LINK chesksum.abs
NAMES chesksum.o startup.o END

SEGMENTS

MY RAM = READ WRITE 0x800 TO Ox80F;

MY ROM = READ ONLY 0x810 TO OxAFF;

END
PLACEMENT
.checksum, .text INTO MY ROM;
.data INTO MY RAM;
END

STACKSIZE 0x60
/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE Startup

Tips

Mention the .checksum section at the end of the section list or don’t mention it at all.

See also
Chapter CHECK SUM

L1200 Both STACKTOP and STACKSIZE defined

[ERROR]
Description

Both STACKTOP and STACKSIZE commands are specified in the PRM file. This is
not allowed, because it generates an ambiguity on the definition of the stack.

Example
LINK fibo.abs
NAMES fibo.o startup.o END

STACKTOP OxBFE
SEGMENTS

MY RAM = READ WRITE 0x800 TO Ox80F;

MY ROM = READ ONLY 0x810 TO OxAFF;
END
PLACEMENT

.text INTO MY ROM;

.data INTO MY RAM;
END

STACKSIZE 0x60
/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE Startup

Tips

292

Smart Linker

Messages
Message Kinds

L1201

L1202

Remove either the STACKTOP or the STACKSIZE command from the PRM file.

No stack defined
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The PRM file does not contains any stack definition. In that case it is the programmer
responsibility to initialize the stack pointer inside of his application code. The stack
can be defined in the PRM file in one of the following way:

* Trough the STACKTOP command in the PRM file.

* Trough the STACKSIZE command in the PRM file.

» Trough the specification of the section .stack in the placement block.
Example
WARNING: No stack defined

LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO Ox80F;

MY ROM = READ ONLY O0x810 TO OxAFF;
END
PLACEMENT

.text INTO MY ROM;

.data INTO MY RAM;
END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE Startup
Tips
Define the stack in one of the three way specified above.
Note:

If the customer initializes the stack pointer inside of his source code, the initialization
from the linker will be overwritten.

.stack cannot be allocated on more than one segment
[ERROR]

Description
The section .stack is specified on a PLACEMENT line, where several segments are
enumerated. This is not allowed, because the memory area reserved for the stack
must be contiguous and cannot be split over different memory range.
Example
ERROR: stack cannot be allocated on more than one segment
LINK fibo.abs
NAMES fibo.o startup.o END

Smart Linker

293

Messages
Message Kinds

SEGMENTS
MY RAM = READ WRITE 0x800 TO Ox80F;
MY ROM = READ ONLY 0x810 TO OxAFF;
STK 1 = READ WRITE 0xB0OO TO OxBFF;
STK 2 = READ WRITE 0xD0O0O TO OxDFF;

END
PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO STK 1, STK 2;
END

/* Set reset vector on _Startup */

VECTOR ADDRESS OxFFFE Startup

Tips

Define a single segment with qualifier READ_WRITE or NO_INIT to allocate the
stack.

L1203 STACKSIZE command defines a size of <Size> but .stack

specifies a stacksize of <Size>
[ERROR]

Description

The stack is defined trough both a STACKSIZE command and placement of the
.stack section in a READ_WRITE or NO_INIT segment, but the size specified in the
STACKSIZE command is bigger than the size of the segment where the stack is al-
located.

Example
ERROR: STACKSIZE command defines a size of 0x120 but .stack
specifies a stacksize of 0x100
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY RAM READ WRITE 0x800 TO 0x80F;
MY ROM = READ ONLY 0x810 TO OxAFF;

STK 1 = READ WRITE O0xB0OO TO OxBFF;
END
PLACEMENT

.text INTO MY ROM;

.data INTO MY RAM;

.stack INTO STK 1;
END

STACKSIZE 0x120
/* Set reset vector on Startup */

294 Smart Linker

Messages
Message Kinds

VECTOR ADDRESS OxFFFE _Startup
Tips
To avoid this message you can either adapt the size specified in the STACKSIZE
command to fit into the segment where .stack is allocated or simply remove the com-
mand STACKSIZE.
If you remove the command STACKSIZE from the previous example, The linker will
initialized a stack from 0x100 bytes. The stack pointer initial value will be set to
OxBFE.

Example

LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO 0x80F;
MY ROM = READ ONLY O0x810 TO OxAFF;
MY STK = READ WRITE O0xB0OO TO OxBFF;
END
PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;
END

/* Set reset vector on Startup */

VECTOR ADDRESS OxFFFE _Startup
If the size specified in a STACKSIZE command is smaller than the size of the seg-
ment where the section .stack is allocated, the stack pointer initial value will be eval-
uated as follows:
<segment start address> + <size in STACKSIZE> -
<Additional Byte Required by the processor.>

Example

LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY RAM READ WRITE 0x800 TO 0x80F;
MY ROM = READ ONLY O0x810 TO OxAFF;
MY STK = READ WRITE O0xB0OO TO OxBFEF;

END

PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO MY STK;

END

STACKSIZE 0x60
/* Set reset vector on Startup */

Smart Linker

295

Messages

Message Kinds

L1204

VECTOR ADDRESS OxFFFE _Startup
In the previous example, the initial value for the stack pointer is evaluated as:
0xBO0O + 0x60s -2 = 0OxB5SE

STACKTOP command defines an initial value of <stack top>

but .stack specifies an initial value of <Initial Value>
[ERROR]

Description
The stack is defined trough both a STACKTOP command and placement of the
.stack section in a READ_WRITE or NO_INIT segment, but the value specified in the
STACKTOP command is bigger than the end address of the segment where the
stack is allocated.
Example
ERROR: STACKTOP command defines an initial value of OxCFE but
.stack specifies an initial value of OxBFF
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY RAM = READ WRITE 0x800 TO O0x80F;
MY ROM = READ ONLY 0x810 TO OxAFF;

STK_l = READ WRITE 0xB0O0O TO OxBFEF;
END
PLACEMENT

.text INTO MY ROM;

.data INTO MY RAM;

.stack INTO STK 1;
END

STACKTOP OxCFE
/* Set reset vector on _Startup */

VECTOR ADDRESS OxFFFE _Startup
Tips
To avoid this message you can either adapt the address specified in the STACKTOP
command to fit into the segment where .stack is allocated or simply remove the com-
mand STACKTOP.
If you remove the command STACKTOP from the previous example, the stack point-
er initial value will be set to OxBFE.

Example

LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO Ox80F;
MY ROM = READ ONLY 0x810 TO OxAFF;

296

Smart Linker

Messages
Message Kinds

L1205

L1206

MY STK = READ WRITE 0xB0OO TO OxBFF;

END

PLACEMENT
.text INTO MY_ROM;
.data INTO MY RAM;
.stack INTO MY STK;

END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE Startup

STACKTOP command incompatible with .stack being part of

a list of sections
[ERROR]

Description

The stack is defined trough both a STACKTOP command and placement of the
.stack section in a READ_WRITE or NO_INIT segment, but the .stack section is
specified inside of a list of section in the PLACEMENT block.

Example

ERROR: STACKTOP command incompatible with .stack being part
of a list of sections

LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO O0x80F;
MY ROM = READ ONLY 0x810 TO OxAFF;
STK 1 = READ WRITE 0xB0OO TO OxBFF;
END
PLACEMENT
.text INTO MY ROM;
.data, .stack INTO STK 1;
END

STACKTOP OxBFE

/* Set reset vector on Startup */

VECTOR ADDRESS OxFFFE _Startup

Tips
Specify the .stack section in a placement line, where the stack alone is specified.
.stack overlaps with a segment which appear in the PLACE-
MENT block

[ERROR]

Description
The stack is defined trough the command STACKTOP, and the specified initial value

Smart Linker

297

Messages

Message Kinds

L1207

is inside of a segment, which is used in the PLACEMENT block.

This is not allowed, because the stack may overlap with some allocated objects.

Example

A

ERROR: .stack overlaps with a segment which appear in the

PLACEMENT block
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY RAM = READ WRITE 0x800 TO Ox80F;

MY ROM = READ ONLY 0x810 TO OxAFF;
STK_1 = READ WRITE OxB0O TO OxBFF;
END
PLACEMENT
.text INTO MY ROM;
.data INTO STK 1;
END

STACKTOP OxBFE
/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE Startup

Tips

Define the stack initial value outside of all the segment specified in the PLACEMENT

block.
Example

LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO Ox80F;
MY ROM = READ ONLY 0x810 TO OxAFF;

MY STK = READ WRITE O0xB0OO TO OxBFF;

END
PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
END

STACKTOP OxBFE

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE Startup

STACKSIZE command is missing
[ERROR]

Description

298

Smart Linker

Messages
Message Kinds

L1301

L1302

The stack is defined only trough the placement of the .stack section in a
READ_WRITE or NO_INIT segment, but the .stack section is not alone in the section
list. In this case a STACKSIZE command is required, to specify the size required for
the stack by the application.

Example
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY RAM = READ WRITE 0x800 TO 0x80F;

MY ROM = READ ONLY O0x810 TO OxAFF;
STK_l = READ WRITE 0xB0O0O TO OxBFEF;
END
PLACEMENT
.text INTO MY_ROM;
.data, .stack INTO STK 1;
END

/* Set reset vector on Startup */
VECTOR ADDRESS OxFFFE _Startup
Tips
Indicate the requested stack size in a STACKSIZE command.

Cannot open file <File Name>
[ERROR]

Description

The linker is not able to open the application map or absolute file or to open one of
the binary file building the application.

Tips

If the abs or map file cannot be found, check if there is enough memory on the direc-
tory where you want to store the file. Check also if you have read/write access on this
directory.

If the environment variable TEXTPATH is defined, the MAP file is stored in the first
directory specified there, otherwise it is created in the directory, where the source file
was detected.

If the environment variable ABSPATH is defined, the absolute file is stored in the first
directory specified there, otherwise it is created in the directory, where the PRM file
was detected.

If a binary file cannot be found, make sure the file really exist and his name is cor-
rectly spelled. Then check if your paths are defined correctly. The binary files must
be located in one of the paths enumerated in the environment variable OBJPATH or
GENPATH or in the working directory

File <File Name> not found
[ERROR]

Description

Smart Linker

299

Messages

Message Kinds

L1303

L1305

L1309

L1400

A file required during the link session cannot be found. This message is generated
in following cases:

* The parameter file specified on the command line cannot be found.
Tips
Make sure the file really exist and his name is correctly spelled.
Then check if your paths are defined correctly. The PRM file must be located in one
of the paths enumerated in the environment variable GENPATH or in the working di-
rectory.

<File Name> is not a valid ELF file

[ERROR]

Description

The specified file is not a valid ELF binary file. The linker is only able to link ELF bi-
nary files.

Tips

Check that you have compiled or assembled the specified file with the correct option
to generate an ELF binary file.

Check if your paths are defined correctly. The binary files must be located in one of
the paths enumerated in the environment variable OBJPATH or GENPATH or in the
working directory.

<File Name> is not an ELF format object file (ELF object file

expected)

[ERROR]

Description

The specified file is an old style HIWARE object file format binary file. The linker is
only able to link ELF binary files.

Tips

Check that you have compiled or assembled the specified file with the correct option
to generate an ELF binary file.

Check if your paths are defined correctly. The binary files must be located in one of
the paths enumerated in the environment variable OBJPATH or GENPATH or in the
working directory

Cannot open <File>
[ERROR]

Description
An input file of the linker is missed or the linker can’t open it.

Tips
Check your path environment settings in the “default.env” in your working directory.
Incompatible processor: <Processor Name> in previous files

and <Processor Name> in current file
[DISABLE, INFORMATION, WARNING, ERROR]

300

Smart Linker

Messages
Message Kinds

L1401

L1403

L1404

Description

The binary files building the application have been generated for different target pro-
cessor. In this case, the linked code cannot be compatible.

Note that when this message is disabled, the produced absolute file may or may not
work. The processor of the first read file is taken for the generation of fixups and sim-
ilar entries. Because different processors define fixups and other topics differently, it
is not predictable which combinations do really work.

Tips

Make sure you are compiling or assembling all your sources for the same processor.
Check if your paths are defined correctly. The binary files must be located in one of
the paths enumerated in the environment variable OBJPATH or GENPATH or in the
working directory

Incompatible memory model: <Memory Model Name> in pre-

vious files and <Memory Model Name> in current file
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The binary files building the application have been generated for different memory
model. In this case, the linked code cannot be compatible.

Tips

Make sure you are compiling or assembling all your sources in the same memory
model.

Check if your paths are defined correctly. The binary files must be located in one of
the paths enumerated in the environment variable OBJPATH or GENPATH or in the
working directory.

This error can be moved to a warning to generate an abs file angering the problem.
The problem may occur when linking object files of different vendors, because the
memory model may not be correctly recognized.

When the memory model are compatible, this message can safely be switched off.

Unknown processor <Processor Constant>
[ERROR]

Description

The processor encoded in the binary object file is not a valid processor constant.
Tips

Check if your paths are defined correctly. The binary files must be located in one of
the paths enumerated in the environment variable OBJPATH or GENPATH or in the
working directory.

This message cannot be disabled because the meaning of fixups depends on the
processor.

Unknown memory model <Memory Model Constant>

[DISABLE, INFORMATION, WARNING, ERROR]

Description
The memory model encoded in the binary object file is not a valid memory model for

Smart Linker

301

Messages
Message Kinds

the target processor.

Tips

Check if your paths are defined correctly. The binary files must be located in one of
the paths enumerated in the environment variable OBJPATH or GENPATH or in the
working directory.

This error can be moved to a warning to generate an abs file ignoring the problem.
The problem may occur when linking object files of different vendors, because the
memory model may not be correctly recognized.

When the memory model are compatible, this message can safely be switched off.

L1501 <Symbol Name> cannot be moved in section <Section Name>
(invalid qualifier <Segment Qualifier>)
[ERROR]

Description
An invalid move operation has been detected from an object inside of a section,
which appears only in the PRM file. In that case, the first object moved in a section
determines the attribute associated with the section.
» If the object is a function, the section is supposed to be a code section,
+ if the object is a constant, the section is supposed to be a constant section,
» otherwise, it is supposed to be a data section.
This message is generated:
* When a variable is moved in a section, which is placed in a READ_ONLY seg-
ment.
* When a function is moved in a section, which is placed in a READ_WRITE,
NO_INIT or PAGED segment.

Example
ERROR: counter cannot be moved in section sec2?2 (invalid
qualifier READ ONLY)
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY RAM = READ WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxXAFF;

STK_l = READ WRITE 0xB0O0O TO OxBFF;
END
PLACEMENT
.text, sec2 INTO MY ROM;
.data INTO MY RAM;
.stack INTO STK 1;
END

OBJECT ALLOCATION
counter IN sec2;
END
/* Set reset vector on Startup */

302 Smart Linker

Messages
Message Kinds

L1502

L1503

VECTOR ADDRESS OxFFFE _Startup
Tips

Move the section in a segment with the required qualifier or remove the move com-
mand.

<Object Name> cannot be moved from section <Source Sec-

tion Name> to section <Destination Section Name>
[ERROR]

Description
An invalid move operation has been detected from an object inside of a section,
which appears also in a binary file.
This message is generated:
- When a variable is moved in a code or constant section
- When a function is moved in a data section or constant section.
Example
ERROR: counter cannot be moved from section .data to section
.text
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY RAM READ WRITE 0x800 TO O0x80F;
MY ROM = READ ONLY 0x810 TO OxAFF;

STK 1 = READ WRITE O0xB0OO TO OxBFF;
END
PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO STK 1;
END

OBJECT_ ALLOCATION
counter IN .text;

END
/* Set reset vector on Startup */

VECTOR ADDRESS OxFFFE Startup
Tips
Move the object in a section with the required attribute or remove the move com-
mand.

<Object Name> (from file <File Name>) cannot be moved from

section <Source Section Name> to section <Destination Sec-

tion Name>
[ERROR]

Smart Linker

303

Messages
Message Kinds

Description
An invalid move operation has been detected from objects defined in a binary file in-
side of a section.
This message is generated:
* When a variable is moved in a code or constant section
* When a function is moved in a data section or constant section.
Example
ERROR: counter (from file fibo.o) cannot be moved from section
.data to section .text
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY RAM READ WRITE 0x800 TO 0x80F;
MY ROM = READ ONLY 0x810 TO OxAFF;

STK 1 = READ WRITE O0xB0OO TO OxBFEF;
END
PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO STK 1;
END

OBJECT ALLOCATION
fibo.o: [DATA] IN .text;

END
/* Set reset vector on _Startup */

VECTOR ADDRESS OxFFFE _Startup
Tips
Move the specified object in a section with the required attribute or remove the move
command.

L1504 <Object Name> (from section <Section Name>) cannot be
moved from section <Source Section Name> to section <Des-

tination Section Name>
[ERROR]

Description
An invalid move operation has been detected from objects defined in a section inside
of another section.
This message is generated:
* When a variable is moved in a code or constant section
* When a function is moved in a data section or constant section.
Example

A

304 Smart Linker

Messages
Message Kinds

L1600

L1601

L1620

ERROR: counter (from section .data) cannot be moved from
section .data to section .text

LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY RAM = READ WRITE 0x800 TO Ox80F;
MY ROM = READ ONLY 0x810 TO OxAFF;
STK 1 = READ WRITE O0xB0OO TO OxBFF;
END
PLACEMENT
.text INTO MY ROM;
.data INTO MY RAM;
.stack INTO STK 1;
END

OBJECT ALLOCATION
.data>[*] IN .text;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup
Tips
Move the specified object in a section with the required attribute or remove the move
command.

main function detected in ROM library

[DISABLE, INFORMATION, WARNING, ERROR]

Description

A main function has been detected in a ROM library. As ROM libraries are not self
executable applications, no main function is required there.

Tips

If the MAIN command is present in the PRM file, remove it.

If the application contains a function ‘main’, rename it.

startup function detected in ROM library

[DISABLE, INFORMATION, WARNING, ERROR]

Description

An application entry point has been detected in a ROM library. As ROM libraries are
not self executable applications, no application entry point is required there.

Tips

If the INIT command is present in the PRM file, remove it.

If the application contains a function ‘_Startup’, rename it.

Bad digit in binary number
[ERROR]

Description
Syntax Error.

Smart Linker

305

Messages
Message Kinds

lllegal character in a binary number.

L1621 Bad digit in octal number
[ERROR]
Description
Syntax Error.
lllegal character in a octal number.

L1622 Bad digit in decimal number
[ERROR]
Description

Syntax Error.
lllegal character in a decimal number.

L1623 Number too big
[ERROR]
Description
Syntax Error.
An identifier in the link parameter file is limited to a length of 31 characters.
Tips
Reduce the length of the identifier.
L1624 Ident too long. Cut after 255 characters
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Syntax Error.
An identifier in the link parameter file is limited to a length of 255 characters. The
identifier string is cut after that length.
Tips
Reduce the length of the identifier or move this message to a warning.
L1625 Comment not closed
[DISABLE, INFORMATION, WARNING, ERROR]
Description
An ANSI-C comment (‘/* *I’) was opened, but not closed.
Tips
Close the comment.
L1626 Unexpected end of file
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The end of file encountered and the scanner was involved in the inner scope of an
expression or structure nesting. This is illegal.
Tips
Check the syntax of the link parameter file.

306 Smart Linker

Messages
Message Kinds

L1627

L1629

L1631

L1632

L1633

L1634

PRESTART command not supported, ignored
[DISABLE, INFORMATION, WARNING, ERROR]

Description

This message is issued by the linker when an ELF application is linked and the used
link parameter file contains a PRESTART directive, which is not supported for ELF.
The PRESTART command is only recognized from the parser to be able to skip it,
but it is not implemented.

Tips

The prestart functionality can be achieved easily by adapting the startup code.

START_DATA command not supported yet
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The START_DATA command is already recognized from the parser, but not imple-
mented yet.

Tips

Contact your vendor for the features of the next release.

HAS_BANKED_DATA not needed for ELF Object File Format
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The HAS_BANKED_ DATA entry in the prm file is needed in the HIWARE file to de-
fine the size of pointers in the zero out and in the copy-down data structures. In the
ELF format, the linker reads the sizes of the pointers from the DWARF2 debug info.
When only DWARF1 is present, only one default pointer size per target is supported.
The HAS_BANKED_DATA is completely ignored in the ELF Format.

Filename too long
[ERROR]

Description

A file name was longer as the limit for this file system.

Tips

As one filename can be longer than 250 characters under Win32 or most UNIX de-
rivatives, the name did probably contain many paths. Try to use relative paths or use
shorter path names.

lllegal Filename
[ERROR]

Description

A filename did contain an illegal character.

Tips

Win32 does not allow /\: * ? “ < > | in filenames as they have a special semantic. Do
use a different name instead.

lllegal Prestart

Smart Linker

307

Messages

Message Kinds

L1650

L1651

L1653

L1654

[DISABLE, INFORMATION, WARNING, ERROR]

Description

The PRESTART link parameter file does not have correct parameters.

Tips

Prestart is not supported in ELF. Initialize your application in the startup code.

The encoding of <Object> in the special section .overlap was

not recognized. The object is not overlapped
[DISABLE, INFORMATION, WARNING, ERROR]

Description

To overlap <Object> it must be known to which function this object belongs. The
name of this function should be encoded into the object name. If the encoding is not
correct, this message appears.

Tips

Do not use the sections .overlap and _OVERLAP for objects which should not be
overlapped.

The compiler knows the section internally, so that these section names should only
appear in the prm file and not in C sources.

The function <Function> of the overlap object <Object> was

not found. The object is not overlapped
[DISABLE, INFORMATION, WARNING, ERROR]

Description

To overlap <Object> it must be known to which function this object belongs. The
name of this function should be encoded into the object name. The encoding was
recognized, but the corresponding function was not found or not linked.

Tips

Do not use the sections .overlap and _OVERLAP for objects which should not be
overlapped.

The compiler knows the section internally, so that these section names should only
appear in the prm file and not in C sources.

The object <Object> was not overlapped allocate

[DISABLE, INFORMATION, WARNING, ERROR]

Description

The specified object is in the section .overlap and it's depending function was recog-
nized. However, no root function did reached the function which corresponds to this
object.

Tips

Add the name of the function to a OVERLAP_GROUP prm file entry.

<Object> was not marked as root for overlapping
[DISABLE, INFORMATION, WARNING, ERROR]

Description

308

Smart Linker

Messages
Message Kinds

L1655

L1656

The <Object>, which may be a object file was not considered as root for the overlap
analysis.

Tips

Add the name of all root functions into one or several OVERLAP_GROUP prm file
entries.

Overlapping <Object> depends on itself
[DISABLE, INFORMATION, WARNING, ERROR]

Description
During the execution, the same function with overlapping objects must not be in-
voked twice. The linker has detect that one function depends on itself.

Example:
As recursion is not allowed with overlapping the following implementation is not only
inefficient, it will even fail with overlapped variables.
int fibonacci (int 1) {
return fibonacci (i-1)+fibonacci (i-2);
}
Tips
If the dynamic behavior of the function guarantees that no recursion takes place, ig-
nore this warning. Otherwise change your code to avoid any recursion.

Overlapping <Object> depends on multiple roots
[DISABLE, INFORMATION, WARNING, ERROR]

Description

During the execution, the same function with overlapping objects must not be in-
voked twice. The linker has detect that one function depends on two root functions.
This message is not issued for root objects.

Example:

In this example, the parameters of Mul are destroyed when Mul is invoked twice. As
this happens only when the higher priority interrupt intercept the lower interrupt func-
tion, this bug is hard to catch with other tests. When both interrupt functions have the
same priority, a OVERLAP_GROUP prm file entry should be used.

long 10,11,12,13,14,15;

long Mul (long a, long b) {
return a*b;

}

void interrupt 1 interruptl (void) {
10=Mul (11,12);

}

void interrupt 2 interrupt2(void) {
13=Mul (14, 15);

}

Tips

Smart Linker

309

Messages

Message Kinds

L1700

L1701

L1702

L1800

Check whether it is possible if the function is called twice at the same time. If so cor-
rect the code. Otherwise ignore this warning.

If the two roots cannot be called at the same time, a OVERLAP_GROUP prm file en-
try may save overlap space.

File <File Name> should contain DWARF information
[ERROR]

Description

The binary file, where the startup structure is defined does not contain any DWARF
information. This is required, because the type of the startup structure is not fixed by
the linker, but depends on the field and field position inside of the user defined struc-
ture.

Tips

Recompile the ANSI C file containing the definition of the startup structure and insert
DWAREF information there.

Start up data structure is empty
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The size of the user defined startup structure is 0 bytes.

Tips

Check if you really do not need any startup structure.

If a startup structure is available, check if the field name in the structure matches the
name of the field expected by the linker.

Startup data structure field <name> is unknown
[DISABLE, INFORMATION, WARNING, ERROR]

Description

In the ELF object file format, the linker reads the debug information to build the star-
tup data structures as the compiler expects them. Therefore no names in the startup
structure should be changed. The linker did not find the information about the men-
tioned field, so no adoption takes place.

Tips

Check if the mentioned field exists in the startup data structure.

Check that all fields have the correct type.

If the startup information is not actually used, then it can be removed from the startup
descriptor.

Read error in <File>

[ERROR]

Description

An error occurred while reading one of the ELF input object files. The object file is
corrupt.

Tips

Recompile your sources. Contact your vendor, if the error appears again.

310

Smart Linker

Messages
Message Kinds

L1803

L1804

L1806

L1808

L1809

Out of memory in <Function Name>
[FATAL]

Description
There is not enough memory to allocate the internal structure required by the linker.

No EIf Section Header Table found in <File Name>
[ERROR]

Description

No section header table detected in the binary file.

Tips

Check if you are using the correct binary file.

Check if your paths are defined correctly. The binary files must be located in one of
the paths enumerated in the environment variable OBJPATH or GENPATH or in the
working directory

Elf file <File Name> appears to be corrupted

[ERROR]

Description

The specified binary file is not a valid ELF binary file.

Tips

Check if you are using the correct binary file.

Check if your paths are defined correctly. The binary files must be located in one of
the paths enumerated in the environment variable OBJPATH or GENPATH or in the
working directory

String overflow in <Function Name>, contact vendor

[ERROR]

Description

The section name detected in a section table is longer than 100 characters. This is
an internal limit in this linker.

Tips

Ensure all the section names are smaller than 100 characters.

Section <Section Name> located in a segment with invalid
qualifier
[ERROR]

Description

The attributes associated with a section, which is used in several binary file are not
compatible. In one file, the section contains variables in the other it contains con-
stants variables or code.

Tips

Check usage of the different sections over all the binary files. A specific section
should always contain the same type of information, all over the project.

Smart Linker

311

Messages

Message Kinds

L1818 Symbol <Symbol Number> - <Symbol Name> duplicated in
<First File Name> and <Second file Name>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The specified global symbol is defined in two different binary files.
Example
/* foo.h */
int i;
/* fool.c */
#include “foo.h”
/* foo2.c */
#include “foo.h”
Tips
Rename the symbol defined in one on the specified files or check if a definition is
present in a header file and included more than once (defined more than once).
L1820 Weak symbol <Symbol Name> duplicated in <First File
Name> and <Second file Name>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The specified weak symbol is defined in two different binary files.
Tips
Rename the symbol defined in one on the specified files.
L1821 Symbol <id1> conflicts with <id2> in file <File> (same code)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
A static symbol is defined twice in the same module.
Tips
Rename one of the symbols in the module.
L1822 Symbol <Symbol Name> in file <File Name> is undefined
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The specified symbol is referenced in the file specified, but is not defined anywhere
in the application.
Tips
Check if there is no object file missing in the NAMES block and if you are using the
correct binary file.
Check if your paths are defined correctly. The binary files must be located in one of
the paths enumerated in the environment variable OBJPATH or GENPATH or in the
working directory
L1823 External object <Symbol Name> in <File Name> created by
312 Smart Linker

Messages
Message Kinds

L1824

L1826

L1827

default
[DISABLE, INFORMATION, WARNING, ERROR]

Description

Unresolved external.

The specified symbol is referenced in the file specified, but is not defined anywhere
in the application, but an external declaration for this object is available in at least
one of the binary file. The object is supposed to be defined in the first binary file
where it is externally defined.

This is only valid for ANSI C applications.

In this case an external definition for a variable var looks like:

extern int var;

The definition of the corresponding variable looks like:

int var;

Tips

Define the specified symbol in one of the files building the application.

Invalid mark type for <ldent>

[ERROR]

Description

Internal error. The object file is corrupt.

Tips

Recompile your sources and contact your vendor if this leads to the same results.

Can't read file. <Filename> is a not an ELF library containing

ELF objects (ELF objects expected)

[ERROR]

Description

The specified file is not a valid library. The linker is only able to link uniform binary
files together (Not ELF and HIWARE mixed).

Tips

Recompile the source file to ELF object file format.

Symbol <ldent> has different size in <Filename> (<Size>
bytes) and <Filename> (<Size> bytes)
[DISABLE, INFORMATION, WARNING, ERROR]

Description

An object was specified with different sizes in different object files.

This message is only issued if both sizes are specified in a object file. If one object
file is contained in a library, L1828 is issued.

Example
a.h : exten char * buf;
extern long intvar;
a.c : char buf[100];
long intvar;

Smart Linker

313

Messages

Message Kinds

L1828

L1829

L1902

L1903

Tips

Check if all declarations and definitions of the named object match.

Recompile the source file to ELF object file format.

In C itis a recommended practise that the defining C file includes its own header file,
even if this is not necessary to compile the C file. The compiler has only a chance to
issue a warning about such cases if both the declarations in the header file and the
definitions in the C file are read in one compilation.

See also
Message .1828

Library: Symbol <ldent> has different size in <Filename>
(<Size> bytes) and <Filename> (<Size> bytes)
[DISABLE, INFORMATION, WARNING, ERROR]

Description

An object was specified with different sizes in different object files.

One of the two object files is contained in a library.

This message is only issued if one object file is contained in a library. If both sizes
are specified in a object file, L1827 is issued.

Tips

Check if all declarations and definitions of the named object match.

Recompile the source file to ELF object file format.

In C itis a recommended practise that the defining C file includes its own header file,
even if this is not necessary to compile the C file. The compiler has only a chance to
issue a warning about such cases if both the declarations in the header file and the
definitions in the C file are read in one compilation.

See also
Message 1.1827

Cannot resolve label 'ldent’

[DISABLE, INFORMATION, WARNING, ERROR]

Description

The value of a label cannot be determined. This message may only be generated by
assembly files.

Tips

Check the definition of the label.

<Cmd> command not supported

[DISABLE, INFORMATION, WARNING, ERROR]

Description

There are some command keywords in the link parameter file scanner, that are not
yet implemented as commands. In this case, this message is issued.

Tips

See in your manual for the implemented commands.

Unexpected Symbol in Linkparameter file

314

Smart Linker

Messages
Message Kinds

L1905

L1906

L1907

L1908

[ERROR]

Description

Syntax error in link parameter file. An illegal character appeared.

Tips

It may accidentally happen that the link process is started with the name of the exe-
cutable as file argument on command line instead of the link parameter file. In this
case type the right file name.

If the file is really a link parameter file. Edit it and replace the invalid character or sym-
bol.

Invalid section attribute for program header
[ERROR]

Description

lllegal object file.

Tips

Do recompile your sources. If this leads to the same results, contact your vendor for
support.

Fixup out of buffer (<Obj> referenced at offset <Address>)
[ERROR]

Description

An illegal relocation of an object is detected in the object file <Object> at address
<Address>. The type of the object is given in <objType>.

Tips

Check the relocation at that address. The offset may be out of range for this reloca-
tion type. If not it may be caused by a corrupt object file.

Recompile your sources and try to link again. If this leads to the same result,
contact your vendor for support

Fixup overflow in <Object>, type <objType> at offset <Ad-
dress>

[DISABLE, INFORMATION, WARNING, ERROR]

Description

An illegal relocation of an object is detected in the object file <Object> at address
<Address>. The type of the object is given in <objType>.

Tips

Check the relocation at that address. The offset may be out of range for this reloca-
tion type. If not it may be caused by a corrupt object file.

Check if all objects are allocated in the correct area. Is the object correctly declared?
This error might occur if the zero paged variables are allocated out of the zero page.

Fixup error in <Object>, type <objType> at offset <Address>
[DISABLE, INFORMATION, WARNING, ERROR]

Description

Smart Linker

315

Messages

Message Kinds

L1910

L1912

L1913

L1914

L1916

An illegal relocation of an object is detected in the object file <Object> at address
<Address>. The type of the object is given in <objType>.

Tips

Check the relocation at that address. The offset may be out of range for this reloca-
tion type. If not it may be caused by a corrupt object file.

Recompile your sources and try to link again. If this leads to the same result, contact
your vendor for support

Invalid section attribute for program header
[ERROR]

Description

A program header needs specific section attributes that have no sense to be
changed.

Tips

The cause of the error is internal and may be caused by a corrupt object file.
Recompile your sources and try to link again. If this leads to the same result,
contact your vendor for support

Object <obj> overlaps with another (last addr: <addr>, object
address: <objadr>

[ERROR]

Description

The object with name <obj> overlaps with another object at address <addr>. The ad-
dress of the object is given in <objadr>.

Tips

Do place one of the objects somewhere else.

Object Filler overlaps with something else

[ERROR]

Description
An object filler overlaps with another object this is not allowed.

Invalid object: <Object>
[ERROR]

Description

An object of unknown type is detected in an object file.

Tips

The cause of the error is internal and may be caused by a corrupt object file or in-
compatibility of the object formats.

Recompile your sources and try to link again. If this leads to the same result, contact
your vendor for support or a new linker release, if the linker you are running is an
older version that does not support the features of later compiler releases.

Section name <Section> is too long. Name is cut to 90 char-

316

Smart Linker

Messages
Message Kinds

L1919

L1921

L1922

L1923

acters length

[DISABLE, INFORMATION, WARNING, ERROR]
Description

The length of a name is limited to 90 characters.
Tips

Rename the section and recompile your sources.

Duplicate definition of <Object> in library file(s) <File1> and/
or <File2> discarded
[DISABLE, INFORMATION, WARNING, ERROR]

Description

A definition of an object is duplicated in a library. (In object file <File1> and <File2>.
Tips

Rename one of the objects and recompile your sources.

Marking: too many nested procedure calls
[ERROR]

Description

The object file <name< is corrupt or your application.

Tips

Recompile your sources and try to link again. If this leads to the same result, contact
your vendor for support.

File <filename> has DWARF data of different version, DWARF

data may not be generated
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The files linked have different versions of the debug info sections (ELF/DWARF).
Tips

Recompile your sources with an unique version of output. See the compiler manual
for the right option settings.

When linking object files of different vendors, this message might occur when the
linker does not recognize the debug info in all object files.

It is also issued if some object files do not have debug info at all.

The generated absolute file may have some correct debug info, but probably not for
all modules.

File <filename> has no DWARF debug info

[DISABLE, INFORMATION, WARNING, ERROR]

Description

The mentioned file contains no recognized debug information. For the named object
file the debugger will probably not show source files and other symbolic information.
Its code can only be debugged on assembly level.

Tips

Smart Linker

317

Messages

Message Kinds

L1930

L1933

L1934

Metrowerks compilers contain an option to avoid the generation of debug informa-
tion.

For other compiler, the generation of debug information must be explicitly specified.
Check the compiler documentation.

The linker itself can also generate ROM libraries without debug information.

Unknown fixup type in <ident>, type <type>, at offset <offset>
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The object file <name< is corrupt or your linker version does not support compiler
instructions.

Tips

Recompile your sources and try to link again. If this leads to the same result, contact
your vendor for support.

ELF: <details>
[DISABLE, INFORMATION, WARNING, ERROR]

Description

Warning while reading an ELF object file. The data in the file are not complete or con-
sistent, but the ELF Linker can continue. <details> specifies the cause of the warn-
ing. Possible values are listed in the message L1934.

ELF: <details>
[ERROR]

Description
Error while reading an ELF object file. <details> specifies the cause of the error. Pos-
sible causes are:
» Cannot open <File> - See message L1309
* Read error in <File>
* Out of memory in <File> - See message L1803
* No EIf Section Header Table found in <File> - See message L1804
» EIf file <File> is corrupted - See message L1806
+ String in '<File>'is too long - See message L1808
+ Section '<File>' located in a segment with invalid qualifier. - See message
L1809
* Programming language incompatible
* Incompatible memory model: <m1> in previous files and <m2> in current file
- See message L1401
» Incompatible processor: <cpu1> in previous files and <cpu2> in current file
- See message L1400
+ String buffer overrun in <File>
» <File>is not a valid ELF file - See message L1303
+ <File> is a HIWARE format object file (ELF object file expected)
- See message L1305
» File <File> not found - See message L1302

318

Smart Linker

Messages
Message Kinds

L1936

L1937

L1951

* Requested section not found

* Program header not found

* Currently no file open

* Request is not valid

» Object <name> has an unknown type
» Fixup error: <cause>

* File is not a valid HIWARE library file
* File is not a valid ELF library file

+ EIf file corrupted

+ DWAREF fixup incorrect: <cause>

* Internal

ELF output: <details>
[ERROR]

Description
Error in ELF. <details> specifies the cause of the error. Possible causes are:
» Cannot open <File> - See message L1309
* Out of memory in <File> - See message L1803
» Wrong file type for <action>
» Write error in <File>
* No EIf Section Header defined in <File>
+ String buffer overrun in <File>
* Wrong section type
* Internal buffer overflow in <Function>
» All local symbols before the first global one
* Currently no file open
* Request is not valid
* Internal

LINK_INFO: <details>

[DISABLE, INFORMATION, WARNING, ERROR]

Description

The compiler does put with the #pragma LINK_INFO some information entries into
the ELF file. This message is used if incompatible information entries exists.

Tips

Check the #pragma LINK_INFO in the compiler source.

This warning could indicate that some incompatible files are linked together.

Function <Function> is allocated inside of <Object> with off-

set <Offset>. Debugging may be affected
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The common code optimization of the linker has optimized one function. It is now al-
located in the specified object. As both the function and the object are allocate at the
same addresses, the debugger can not distinguish them. Be aware that the debug-

Smart Linker

319

Messages

Message Kinds

ger may display information for the wrong object.

Tips

If the two functions are identical per design, for example C++ inline functions, ignore
the warning. If the function is very small, its influence might not be as large either.
Check for large functions why your source does not only contain one instance.

In general be aware why the debugger steps suddenly into a completely different
function.

L1952 Ident <name> too long. Cut after <size> characters
[DISABLE, INFORMATION, WARNING, ERROR]
Description
A very long identifier is truncated to the given length. Different as long identifiers with
the same start until <Offset> may be mapped to the same name.
Tips
The linker supports more than 1000 character long names, so this message only oc-
curs with really long names.
Very long names are generated by the C++ name mangling, as there class names
occur as part of encoded parameter types of functions. If this is the reason, it might
help to use shorter class names or to use less parameters, if possible.

L1970 Modifying code in function <function> at address <address>
for ECALL
[DISABLE, INFORMATION, WARNING, ERROR]
Description
This message informs that the linker has modified the code for an ECALL instruction.
That is that the linker has moved the ECALL instruction after the three following NOP
instructions.

L1971 <Pattern> in function <function> at address <address> may
be ECALL Pattern
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The Linker has found a possible ECALL pattern at the given address. The Linker was
not able to move this pattern.
Tips
The pattern may be produced by a data pattern. In this case check the code/data at
the given address and map this message if this is ok.

L1972 <Pattern> in function <function> at address <address> looks
like illegal ECALL
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The Linker has found a possible ECALL pattern at the given address. The Linker was
not able to move this pattern.

320 Smart Linker

Messages
Message Kinds

L1980

Tips
The pattern may be produced by a data pattern. In this case check the code/data at
the given address and map this message if this is ok.

<Feature> not supported
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The Linker does not support an used feature. This message is only used in rare cir-
cumstances, for example to show that some feature is not supported anymore (or
not yet)

Tips

Check the documentation about this feature. Check why it was removed and if there
are alternatives to use.

Smart Linker

321

Messages
Message Kinds

Messages for Linking HIWARE Object File Format

L2000 Segment <Segmentname> (for variables) should not be allo-

cated in a READ_ONLY-section
[DISABLE, INFORMATION, WARNING, ERROR]

Description

Variables must be allocated in RAM. The section <Segmentname>, containing vari-
ables was mapped in the PLACEMENT definition list of the link parameter file to a
section that was defined as read only in the SECTIONS definition list. This is illegal.

Example (link parameter file)
.LINK bankdemo.abs
NAMES ansib.lib startl2b.o bankdemo.o END

SECTIONS
MY RAM = READ WRITE 0x0800 TO OxOBFEF;
MY ROM = READ ONLY 0xC000 TO OxCFFF;
VPAGE = READ ONLY 0xD000 TO OxFEFF;
MY PAGE = READ ONLY 0x128000 TO Ox12AFFF;
PLACEMENT

_PRESTART, STARTUP,
ROM VAR, STRINGS,

NON_ BANKED INTO MY ROM;
DEFAULT RAM INTO MY RAM;
VPAGE RAM INTO VPAGE;
MyPage, DEFAULT ROM INTO MY PAGE;

END

STACKSIZE 0x50

Example (header file)

#pragma DATA SEG SHORT VPAGE
int x[4]; /* ‘x’ is a variable, and can’t therefore be */
/* allocated in a read only segment */

L2001 In link parameter file: segment <Segmentname> must always

be present
[DISABLE, INFORMATION, WARNING, ERROR]

Description
Some segments are required to be always present (mapped in the PLACEMENT
definition list to an identifier defined in the SECTIONS definition list).

Example

DEFAULT_RAM and DEFAULT_ROM have always to be defined.

Tips

Use a template link parameter file, for your target, where these segments are always
defined. Modify this file for your application. This way you avoid to write the same
default settings for every application again and you will not forget to define the sec-

322 Smart Linker

Messages
Message Kinds

L2002

L2003

L2009

L2008

L2010

L2011

tions that have always to be present.

Library file <Library> (in module <Module>) incorrect:

“cause”
[ERROR]

Description

Object file is corrupt.

Example (Cause)

“object tag incorrect” => The type tag of a linked object (VARIABLE, PROCE-
DURE,..) is incorrect.

Tips

Do compile your sources again. Contact Metrowerks support for help, if the error ap-
pears again.

Object file <Objfile> (<Cause>) incorrect

[ERROR]

Description

Object file is corrupt. (Equivalent message as L2002 for object files)

Tips

Do recompile the affected source file. Contact Metrowerks support for help, if the er-
ror appears again.

Out of allocation space in segment <segmentname> at ad-
dress <address>
[ERROR]

Description
More address space allocated in segment <segmentname> than available. The ad-
dress <address> given specifies the location, where the allocation failed.

Error in link parameter file
[ERROR]

Description
An error occurred while scanning the link parameter file. The message specifying the
error was printed out as last message.

File not found: <Filename>

[DISABLE, INFORMATION, WARNING, ERROR]

Description

An input file (object file or absolute file) was not found.

Tips

Check your “default.env” path settings. Object files and absolute files opened for
read are searched in the current directory or in the list of paths specified with the en-
vironment variables ‘OBJPATH’ and ‘GENPATH'.

File <filename> is not a valid HIWARE object file, absolute file

Smart Linker

323

Messages

Message Kinds

L2014

L2015

L2051

or library
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The file <filename> is expected to be a HIWARE object file, absolute file or library,
because a file before in the NAMES list was a HIWARE format file. The linker started
therefore to link the application in the HIWARE absolute file format .

Tips

You may have wished to link the application as ELF/DWARF executable, but the fist
object file in the NAMES list found was detected to be a file in HIWARE format.

If you really intended to link an application in the HIWARE absolute format, replace
the file <filename> by a valid HIWARE object file, absolute file or library.

User requested stop

Description

[DISABLE, INFORMATION, WARNING, ERROR]

The user has pressed the stop button in the toolbar. The linker stops execution as
soon as possible.

Different type sizes in <ref_obijfile> and <cur_objfile>
[DISABLE, INFORMATION, WARNING, ERROR]

Description

In the HIWARE format, the size of many basic types (short, int, long, float, double,
long double, default data pointer and default function pointer) are encoded into the
object file. This message is issued if the linker detects two object files with different
sizes. This may be caused an explicit setting of the types in some files only. Also for
the assembler, the sizes cannot be modified. The linker is using the type sizes of the
first specified object file. For the remaining, it does only issue this warning, if the size
does not match. The sizes are used for the layout of the startup structure, the zero
out and for the copy down information.

Tips

When the startup code object file is specified first, the startup structure sizes corre-
spond to the startup code. Then differing informations in other object files do not mat-
ter and this warning can be ignored.

When this warning is generated by an assembly file, it can usually be ignored.

For C files, one has to be careful that functions are not getting incompatible when
called from a different type setting than they are defined.

Restriction: library file <Library> (in module <Module>):
<Cause>
[ERROR]

Description
There are some memory restrictions in the linker. This can be happen by the follow-
ing causes:

Examples (Cause)

324

Smart Linker

Messages
Message Kinds

L2052

L2053

L2054

L2055

L2056

L2057

“too many objects” Too many objects allocated.
“too many numeric initializer* Too many initialized variables.
“too many address initializer* Too many address initializer.

RESTRICTION: in object file <Objectfile>: <Cause>
[ERROR]

Description
Equivalent to message L2051, but for object files.

Module <Modulename> imported (needed for module-initial-

ization?), but not present in list of objectfiles

[DISABLE, INFORMATION, WARNING, ERROR]

Description

Only for linking MODULA-2.

The module <modulename> is in the import list of another module but not present in
the list of object files, specified in the NAMES section of the link parameter file.

The symbolfiles of module <Modulename> (used from

<User1> and <User2>) have different keys

[DISABLE, INFORMATION, WARNING, ERROR]

Description

Only for linking MODULA-2.

With the link parameter file command CHECKKEYS ON, all keys of equal named im-
ported modules are compared. CHECKKEYS ON is set by default. To switch of this
check, write CHECKKEYS OFF in the .PRM file.

Function <functionname> (see link parameter file) not found
[DISABLE, INFORMATION, WARNING, ERROR]

Description

An interrupt vector was mapped to the function with name <functionname> in the link
parameter file. But a function with this name was not found in the modules linked.

Vector address <address> must fit wordsize
[DISABLE, INFORMATION, WARNING, ERROR]
Description

An interrupt vector with word size is mapped to an odd address in the link parameter
file.

lllegal file format (Reference to unknown object) in <objfile>
[ERROR]

Description

Older versions of HIWARE Compilers use -1 for unknown object.

This leads to inconsistency with the linker. Later versions of the HIWARE Compilers
do avoid this. The error reported here is not a linker error, but a compiler error.

Tips

Smart Linker

325

Messages

Message Kinds

L2058

L2059

L2060

L2061

L2062

Do recompile your sources.

<objnum> referenced objects in <file>
[ERROR]

Description

Object file is corrupt: Too many referenced objects in file or the number of referenced
objects is negative.

Tips

Do recompile the affected source file. Contact Metrowerks support for help, if the er-
ror appears again.

Error in map of <absfile>
[ERROR]

Description

Absolute file as input for ROM library is corrupt (lts number of modules is invalid).
Tips

Decode the absolute file. If this works and the number of modules contained is cor-
rect, contact Metrowerks support otherwise do rebuild the absolute file. Contact its
distributor support for help, if this is not possible (absolute file from other party).

Too many (<objnum>) objects in library <library>

[ERROR]

Description

Number of objects in library exceeds maximum limit.

The actual value for the maximum depends on the linker version. The 32 Bit linker
version allows more than 500°000'000 objects in one library. Old 16 bit linker ver-
sions did have a limit of 8000 objects.

Tips

Cause can be a corrupt library. Do divide your library in sub-libraries if the count is
correct and this large.

<filename> followed by '-'/'+', but not a library or program

module

[DISABLE, INFORMATION, WARNING, ERROR]

Description

The plus sign after a file name in the NAMES section disables smart linking for the
specified file. A minus sign specified after an absolute file name takes it out from ap-
plication startup.

<object> found twice with different size (in '<module1>'-
><objsize1> and in '<module2>'-><objsize2>)

[DISABLE, INFORMATION, WARNING, ERROR]

Description

Naming conflict or duplicated definition with different attributes in the application.
Two objects where defined with the same name, but with different sizes.

326

Smart Linker

Messages
Message Kinds

L2063

L2064

L2065

L2066

<symbol> twice exported (module <module1> and module

<module2>)
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The object <symbol> has been implemented and exported from two different mod-
ules.

Tips

Review your module structure design. Remove one of the objects, if they refer to the
same context. Rename one of the objects if both of them are used in different con-
texts.

Required system object <objectname> not found
[DISABLE, INFORMATION, WARNING, ERROR]

Description
An object absolutely required by the linker is missing.

Example

‘_Startup’ is such an object.

Tips

The entry point of the application must exist in order to link correctly. It's default name
is _Startup.

This name can be configured by the link parameter file entry INIT.

E.g.

INIT MyEntryPoint

Probably you forgot to specify the startup module as one of the files in the NAMES
section. _Startup is thought to be defined in the startup module. Another reason can
be name mangling with C++: The names of functions are encoded with the types in
the object file, e.g. ‘void Startup(void)’ is encoded as ‘Startup__ FVv’. Either use ‘ex-
tern “C” for such cases or use the mangled name in the linker parameter file.

No module exports with name <objectname>

[DISABLE, INFORMATION, WARNING, ERROR]

Description

An object absolutely required by the linker is not exported.

Example

‘ _Startup’ is such an object.

Tips

Probably you forgot to specify the startup module as one of the files in the NAMES
section. __ Startup is thought to be defined in the startup module.

Variable "_startupData" not found, linker prepares no startup
[DISABLE, INFORMATION, WARNING, ERROR]

Description

Smart Linker

327

Messages

Message Kinds

The ‘_startupData’ is a structure (C-struct) containing all information read out from
the Startup function as:

» Top level procedure of user program

+ Initial value of the stack pointer

* Number of zero out ranges

» Vector of ranges with nofZeroOuts elements

* Rom-address where copydown-data begins

* Number of library startup descriptors

» Vector of pointers to library startup descriptors

* Number of init functions for C++ constructors

» Vector of function pointers to init functions for C++ constructors
Without this structure, no startup can be prepared.
Tips
Probably you forgot to specify the startup module as one of the files in the NAMES
section. __ Startup is thought to be defined in the startup module.
If you do not want that the C startup code does perform any operation, you can safely
disable this message.
Having no startup code is common in assembly programming, but it is an advanced
feature with C programming as all of the above C/C++ features will not automatically
work anymore.

L2067 Variable "_startupData” found, but not exported
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The startup data has been found, but is not exported.
Tips
See L2064.
L2068 <objname> (in ENTRIES link parameter file) not found
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Object name in the ENTRIES section was not found. In ENTRIES all objects are list-
ed that are linked in any case (referenced or not by other objects). <objname> was
not found in any module.
Tips
Check out, if the name in the ENTRIES section was written correctly.
L2069 The segment "COPY" must not cross sections
[ERROR]
Description
The COPY segment must be placed in one section. This is not the case here.
L2070 The segment STRINGS crosses the page boundary
[ERROR]
Description
328 Smart Linker

Messages
Message Kinds

L2071

L2072

L2073

The HC16 does not allow, the STRINGS section to cross page boundary.

Fixup Error: Reference to non linked object (<objname>)
[DISABLE, INFORMATION, WARNING, ERROR]

Description

An object was referenced, but not linked. This error may be caused by a modified
dependency with DEPENDENCY in the prm file or by a wrong compiler/assembler
specified dependency.

Tips

Use DEPENDENCY ADDUSE instead of DEPENDENCY USES. If the compiler/as-
sembler did generate the missing dependencies, try to rebuild the application.

See also
Link Parameter File Command DEPENDENCY

8 bit branch (from address <address>) out of range (-128 <=

<offset> <= 127)
[DISABLE, INFORMATION, WARNING, ERROR]

Description
8 bit branch from address <address> out of range.
Tips
If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.
Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.
When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS

ROM1 = READ ONLY 0x4000 TO Ox4FFF;

ROM2 = READ ONLY 0x8000 TO Ox8FFF;
PLACEMENT

FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or splitup the functions
by hand into different segments, which are assigned to one section only.

11 bit branch out of range (-2048 <= <offset> <= 2047)
[DISABLE, INFORMATION, WARNING, ERROR]

Description

11 bit branch out of range.

Tips

If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.

Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.

Smart Linker

329

Messages

Message Kinds

L2074

L2075

When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS

ROM1 = READ ONLY 0x4000 TO Ox4FFF;

ROM2 = READ ONLY 0x8000 TO Ox8FFF;
PLACEMENT

FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or splitup the functions
by hand into different segments, which are assigned to one section only.

16 bit branch out of range (-32768 <= <offset> <= 32767)
[DISABLE, INFORMATION, WARNING, ERROR]

Description
16 bit branch out of range.
Tips
If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.
Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.
When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS

ROM1 = READ ONLY 0x4000 TO Ox4FFF;

ROM2 = READ ONLY 0x8000 TO Ox8FFF;
PLACEMENT

FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or splitup the functions
by hand into different segments, which are assigned to one section only.

8 bit index out of range (<index> for <objname>)
[DISABLE, INFORMATION, WARNING, ERROR]

Description
Offset to index register is out of range.
Tips
If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.
Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.
When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS
ROM1 = READ ONLY 0x4000 TO Ox4FFF;
ROM2 READ ONLY 0x8000 TO Ox8FFF;

330

Smart Linker

Messages
Message Kinds

L2076

L2077

PLACEMENT

FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or splitup the functions
by hand into different segments, which are assigned to one section only.

Jump crossing page boundary
[ERROR]

Description
A jump is crossing page boundary.
Tips
If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.
Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.
When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS

ROM1 = READ ONLY 0x4000 TO Ox4FFF;

ROM2 = READ ONLY 0x8000 TO Ox8FFF;
PLACEMENT

FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or splitup the functions
by hand into different segments, which are assigned to one section only.

16-bit index out of range (<index> for <objname>)
[DISABLE, INFORMATION, WARNING, ERROR]

Description
16 bit index out of range.
Tips
If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.
Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.
When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS

ROM1 = READ ONLY 0x4000 TO Ox4FFF;

ROM2 = READ ONLY 0x8000 TO Ox8FFF;
PLACEMENT

FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or splitup the functions
by hand into different segments, which are assigned to one section only.

Smart Linker

331

Messages

Message Kinds

L2078

L2079

L2080

5 bit offset out of range (-16 <= <offset> <= 15)
[DISABLE, INFORMATION, WARNING, ERROR]

Description
5 bit offset out of range.
Tips
If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.
Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.
When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS

ROM1 = READ ONLY 0x4000 TO Ox4FFF;

ROM2 = READ ONLY 0x8000 TO Ox8FFF;
PLACEMENT

FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or splitup the functions
by hand into different segments, which are assigned to one section only.

9 bit offset out of range (-256 <= <offset> <= 255) in <object>

with offset <offset> to <object>
[DISABLE, INFORMATION, WARNING, ERROR]

Description
9 bit offset out of range.
Tips
If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.
Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.
When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS

ROM1 = READ ONLY 0x4000 TO Ox4FFF;

ROM2 = READ ONLY 0x8000 TO Ox8FFF;
PLACEMENT

FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or split the functions by
hand into different segments, which are assigned to one section only.

10 bit offset out of range (0 <= <offset> <= 1023)
[DISABLE, INFORMATION, WARNING, ERROR]

Description

332

Smart Linker

Messages
Message Kinds

L2081

L2082

L2083

10 bit offset out of range.
Tips
If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.
Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.
When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS

ROM1 = READ ONLY 0x4000 TO Ox4FFF;

ROM2 = READ ONLY 0x8000 TO Ox8FFF;
PLACEMENT

FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or splitup the functions
by hand into different segments, which are assigned to one section only.

lllegal allocation of BIT segment (‘<objname>':0x<ad-
dress>..0x<endaddress> => 0x20..0x3F, 0x400..0x43F)
[ERROR]

Description
lllegal allocation of BIT segment.

4 bit offset out of range (-7 <= <offset> <= 15)
[DISABLE, INFORMATION, WARNING, ERROR]

Description
4 bit offset out of range.
Tips
If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.
Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.
When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS

ROM1 = READ ONLY 0x4000 TO Ox4FFF;

ROM2 = READ ONLY 0x8000 TO Ox8FFF;
PLACEMENT

FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or splitup the functions
by hand into different segments, which are assigned to one section only.

11 bit offset out of range (-2048 <= <offset> <= 2047)
[DISABLE, INFORMATION, WARNING, ERROR]

Smart Linker

333

Messages

Message Kinds

Description
11 bit offset out of range.
Tips
If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.
Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.
When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS

ROM1 = READ ONLY 0x4000 TO Ox4FFF;

ROM2 = READ ONLY 0x8000 TO Ox8FFF;
PLACEMENT

FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or splitup the functions
by hand into different segments, which are assigned to one section only.

L2084 Can't solve reference to object <name>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
lllegal or incompatible object file format. The reference to object <name> can’t be
solved.
Tips
Recompile the sources. If the result remains the same, contact Metrowerks support
for help.
L2085 Can't solve reference to internal object
[ERROR]
Description
lllegal or incompatible object file format. The reference to object <name> can’t be
solved.
Tips
Recompile the sources. If the result remains the same, contact Metrowerks support
for help.
L2086 Cannot switch to segment <segName>. (Offset to big)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Can’t switch to segment <segname>. The offset is too big.
L2087 Obiject file position error in <objname>
[ERROR]
Description
Obiject file is corrupt.
334 Smart Linker

Messages
Message Kinds

L2088

L2089

L2090

L2091

L2092

Tips
Recompile the sources. If the result remains the same, contact Metrowerks support
for help.

Procedure <funcname> not correctly defined
[ERROR]

Description

The named function was not defined. This error message does occur for example in
the case of an used undefined static function.

Tips

Check if this static function is defined.

Internal: Code size of <objname> incorrect (<data> <objsize>)
[ERROR]

Description

lllegal object file format. The compiler or the assembler have produced a corrupt ob-
ject file or the file has been corrupted after creation.

Tips

Do recompile your sources. If recompiling leads to the same results, contact Metrow-
erks support for help.

Internal: Failed to write procedures for <modulename>
[ERROR]

Description

lllegal object file format. The compiler or the assembler have produced a corrupt ob-
ject file or the file has been corrupted after creation.

Tips

Do recompile your sources. If recompiling leads to the same results, contact Metrow-
erks support for help.

Data allocated in ROM can't exceed 32KByte
[DISABLE, INFORMATION, WARNING, ERROR]
Description

An object allocated in ROM is bigger that 32K. This is not allowed. The object won’t
be allocated.

Allocation of object <objname> failed
[DISABLE, INFORMATION, WARNING, ERROR]

Description

This error does occur when reserved linker segment names were used as identifier
or when functions (code) should be placed into a non READ_ONLY segment.

Tips

Do not use reserved names for objects.

Check that all you code is placed into READ_ONLY segments.

Smart Linker

335

Messages

Message Kinds

L2093

L2094

L2096

L2097

Variable <varname> (objectfile <objfile>) appears in module

<module1> and in module <module2>
[DISABLE, INFORMATION, WARNING, ERROR]

Description
A variable is defined twice (placed at different locations) in different modules.

Object <varname> (objectfile <obijfile>) appears in module

<module1> and in module <module2>
[DISABLE, INFORMATION, WARNING, ERROR]

Description
An object is defined twice (placed at different locations) in different modules.

Overlap variable <Name> not allocated
[DISABLE, INFORMATION, WARNING, ERROR]

Description

Variables in segment _ OVERLAP are only allocated together with the defining func-
tion. This message is issued if all the accesses to some overlap variable are re-
moved, but the variable is defined and should be linked because smart linking is
switched off.

The option -CAllocUnusedOverlap does change the default behavior so that such
variables are allocated.

Note: If any not allocated variable is referenced, the linker does issue L2071.

See also

L2071: Fixup Error: Reference to non linked object (<objname>)
Option -CAllocUnusedOverlap

Overlapping Locals

Additional overlap variable <Name> allocated
[DISABLE, INFORMATION, WARNING, ERROR]

Description

Variables in segment _OVERLAP are only allocated together with the defining func-
tion. If a function does not refer to one of its local variables, but this variable is still
defined in the object file, this message is issued when allocating this variable. Such
an variable is not used, and, even worse, its space is not overlapped with any other
variable.

Additional overlap variables are only allocated when the option -CAllocUnusedOver-
lap is specified.

Tips

- Switch on SMART Linking when using overlapping.

- Modify the source that no such variables exist.

- Add a dependency of the defining function to this variable by using DEPENDENCY
ADDUSE.

See also
Link Parameter File Command DEPENDENCY

336

Smart Linker

Messages
Message Kinds

L2098

L2103

L2104

L2150

L2151

Option -CAllocUnusedOverlap
Overlapping Locals

The label <labelname> cannot be resolved because of a recur-

sion.
[DISABLE, INFORMATION, WARNING, ERROR]

Description

According to the input file depends the label on a recursive definition.

For example label is defined as label b plus some offset and label b is defined as
label a plus some offset.

Tips

- Check the label definition.

- Rebuild the application, an object file might be corrupted.

- Move this error to a warning and check if there are other problems reported too.

Linking succeeded. Executable is written to <absfile>
[DISABLE, INFORMATION, WARNING, ERROR]

Description

Success message of the linker. In <absfile> the destination file of the link process
(absolute file) is printed with full path.

Note that this message is disabled by default. It is only visible if it is explicitly enabled
by a command line option.

See also
Command line option -WmsgSi.

Linking failed
[ERROR]
Description

Fail message of the linker. The specified destination file (absolute file) of the link pro-
cess is deleted.

lllegal fixup offset (low bits) in <object> with offset <offset> to
<object>
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The linker cannot resolve the fixup/relocation for a relative 8bit fixup. For this relative
fixup the offset has to be even, but it is not.

Tips

Contact support with your example. You may move this message to a warning so you
could continue with linking, but code may not execute correctly at the location indi-
cated in the message.

Fixup out of range (<low> <= <offset> <= <high>) in <object>
with offset <offset> to <object>
[DISABLE, INFORMATION, WARNING, ERROR]

Smart Linker

337

Messages

Message Kinds

L2201

L2202

L2203

L2204

L2205

Description

The linker cannot resolve the fixup/relocation because the distance to the object is
too far. A reason could be that you indicated e.g. that an object/segment is placed in
a 8bit address area, but in the linker parameter file the object/segment is placed into
a 16bit address area.

Tips

Check if declaration for the compiler/assembler matches your memory map provided
to the linker (parameter file).

Contact support with your example. You may move this message to a warning so you
could continue with linking, but code may not execute correctly at the location indi-
cated in the message.

Listing file could not be opened
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The listing output file of the link process could not be opened..

File for output %s could not be opened

[DISABLE, INFORMATION, WARNING, ERROR]

Description

The destination file of the link process (absolute file) could not be opened.

Tips

Check, if it is not opened for reading by any other process (Decoder, Debugger, HI-
WAVE) or the if the destination folder or file is not marked as read only.

Listing of link process to <listfile>
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The listing file is printed with full path, if its creation succeeded.

Segment <segment> is not allocated to any section
[ERROR]

Description
A special segment (“_ OVERLAP”) required by the linker is not allocated to any sec-
tion.

Example

At the current linker version no other segment than “_ OVERLAP” causes this mes-
sage.

ROM libraries cannot have a function main (<main>)

[DISABLE, INFORMATION, WARNING, ERROR]

Description

A main function was defined in the absolute file linked to the application as ROM li-
brary. This is not allowed as default setting.

338

Smart Linker

Messages
Message Kinds

L2206

L2207

L2208

L2251

L2252

ROM libraries cannot have an INIT function (<init>)
[DISABLE, INFORMATION, WARNING, ERROR]

Description

An init function was defined in the absolute file linked to the application as ROM li-
brary. This function can cause a conflict when linking ton an application with an init
function with the same name.

<main> not found
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The function main was not found in any of the linked modules.

No copydown created for initialized object "<Name>". Initial-

ization data lost.
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The named object is allocated in RAM and it is defined with some initialization val-
ues. But because no copy down information is allocated, the initialization data is lost.

Example
int i= 19;
int 7j;

When linking the code above with no startup code, then the linker does issue this
warning for i as its initialization value 19 is not used.

Tips

If you do not want this object to be initialized, change the source or ignore the warn-
ing.

If you want this object to be located in a ROM area, check the source. Do you specify
option -CC with the compiler? Is the object constant or not?

If you want this object to be initialized at runtime, you need some startup code. You
can use the one provided with the compiler or take it as example and adapt it to your
needs.

Link parameter file <prmfile> not found
[ERROR]

Description

The link parameter file (extension .PRM), the source file of the linker, was not found.
The specified source file does not exist or the search paths are not correctly set.
Tips

Check your “default.env” path settings. Link parameter files are searched in the cur-
rent directory or in the list of paths specified with the environment variable ‘GEN-
PATH'.

lllegal syntax in link parameter file: <syntaxerror>
[ERROR]

Smart Linker

339

Messages

Message Kinds

Description
A syntax error occurred in the link parameter file. The detailed error cause is printed
in <syntaxerror>.

Examples (of <syntaxerror> messages)

"number too big"

"Comment not closed"

"hexadecimal number expected"

"unexpected end of file"

Tips

The cause of the errors reported here are syntactically and therefore easily detected
are with the given source position info.

L2253 <definition> not present in link parameter file
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The definition of <definition> is not present in the link parameter file, but absolutely
required by the link process.
Example
“‘NAMES definition is not present in the link parameter file”
Tips
Use a template link parameter file, for your target, where all these definitions are al-
ways present. Modify this file for your application. This way you avoid to write the
same default settings for every application again and you will not forget definitions
that have always to be present.
If START is specified as not present in the linker parameter file, then the reason for
that could be that the application entry point of the application is not present, e.g. the
‘main’ routine is defined as ‘static’.

L2254 <definition> is multiply defined in link parameter file
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The definition of <definition> is allowed to be present only once but duplicated in the
link parameter file.
Example
“‘PLACEMENT definition is duplicated in the link parameter file”

L2257 Both stacktop and stacksize defined
[ERROR]
Description
You can only define STACKTOP or STACK size, because a specification of one of
them defines the settings of the other.

L2258 No stack definition allowed in ROM libraries
[DISABLE, INFORMATION, WARNING, ERROR]
Description

340 Smart Linker

Messages
Message Kinds

L2259

L2300

L2301

L2303

L2304

L2305

No stack definition allowed in ROM libraries.

No main function allowed in ROM libraries
[DISABLE, INFORMATION, WARNING, ERROR]

Description
No main function allowed in ROM libraries.

Segment <segmentname> not found in any objectfile
[DISABLE, INFORMATION, WARNING, ERROR]

Description

A segment, declared in the link parameter file, was not found in any object file.
Tips:

Check this name in the linker parameter file and in the sources.

This message is issued to warn about possible spelling differences from a segment
name in the source files and in the link parameter file.

If the link parameter file is shared between different projects and some of them do
not have this segment, you can disable this message.

Segment <segmentname> must always be present

[DISABLE, INFORMATION, WARNING, ERROR]

Description

Some segments are absolutely required by the linker. If they are not present an error
is issued.

Example

“*SSTACK” is such a segment if the linked file becomes an executable and nota ROM
library.

Segment <seg1> has to be allocated into <seg2>
[DISABLE, INFORMATION, WARNING, ERROR]

Description

Segment <seg1> has to be allocated in <seg2>

Example
(For XA only) ROM_VAR has to be allocated in ROM section.

<segmentname> appears twice in the <deflist> definition list
[ERROR]

Description
The name <segmentname> appears twice in the definition list <deflist> of the link pa-
rameter file. <deflist> is either SECTIONS or PLACEMENTS.

Example

“‘MY_RAM appears twice in the SECTIONS definition list.”

In link parameter file: The segment <segment> has the sec-
tion type <type> (illegal)

[DISABLE, INFORMATION, WARNING, ERROR]

Smart Linker

341

Messages

Message Kinds

L2306

L2307

L2308

L2309

L2310

L2311

L2312

Description
The section type of segment <segment> is illegal.
Section <<segistart>,<seg1end>> and Section

<<seg2start>,<seg2end>> overlap
[DISABLE, INFORMATION, WARNING, ERROR]

Description
Segments are not allowed to overlap.

SSTACK cannot be allocated on more than one section
[ERROR]

Description
The stack has to be placed in one section.

Size of Stack (STACKSIZE = Ox<stacksize>) exceeds size of
segment SSTACK (=0x<segmentsize>)
[ERROR]

Description
The STACKSIZE definition defines the size of the stack, that has to be placed in
SSTACK. Therefore STACKSIZE is not allowed to exceed the size of SSTACK.

STACKTOP-command specifies O0x<stacktop> which is not in
SSTACK (Ox<stackstart>..0x<stackend>)
[ERROR]

Description

The STACKTOP definition defines the top address of the stack, that has to be placed
in SSTACK. Therefore STACKTOP is not allowed to be outsize of the SSTACK seg-
ment.

The STACKTOP definition is incompatible with SSTACK be-
ing part of a list of segments
[ERROR]

Description

The STACKTORP definition in the link parameter file conflicts with the definition
of the stack segment SSTACK in the link parameter file.

Tips
Change one of the definitions in the link parameter file.

STACKTOP or STACKSIZE missed

[DISABLE, INFORMATION, WARNING, ERROR]
Description

No STACKTOP or STACKSIZE declared, so no stack defined.

Stack not initialized
[DISABLE, INFORMATION, WARNING, ERROR]

342

Smart Linker

Messages
Message Kinds

L2313

L2314

L2315

L2316

L2317

L2318

Description
If the stack is defined, it has to be initialized.

All <segtype>_ BASED segments must fit in a range of 64
kBytes
[ERROR]

Description
Based segments must be smaller that 64K.

A <segtype>_BASED segment must not have an address less
than <address>

[ERROR]

Description

Only for the HC16.
Based segments must be smaller that 64K.

A <segtype> BASED segment must not have an address big-
ger than <address>

[ERROR]

Description

Only for the HC16.
Based segments must be smaller that 64K.

All SHORT <segtype> BASED segments must fit in a range of
<range> Bytes (<startadr> - <endadr> > 256 Bytes)
[ERROR]

Description
Only for the HC16.
Based short segments must be smaller that 256 Bytes.

All non far segments have to be allocated on one single page
[ERROR]

Description
Only far segments can be allocated on multiple pages. All others have to allocated
on a single page.

Cannot split _OVERLAP
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The linker does not support to split the _OVERLAP segment into several areas in the
HIWARE object file format. In the ELF object file format, this is supported.

Tips

Check if you can use the ELF object file format. Most of the build tools do support it
as well as the HIWARE object file format.

Try to allocate the _ OVERLARP first. Most other types of segments can be split into

Smart Linker

343

Messages

Message Kinds

several areas.

L2400 Memory model mismatch: <model1> (previous files) and
model <model2> in module <objfile>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The memory model of an application to link has to be unique for all modules.
If this error is moved to a warning or less, then the application is generated. However,
depending on the compilation units, the generated application might not work as dif-
ferent memory models do usually have different calling conventions. Also other prob-
lems might occur.
This message should only be moved by experienced users.

L2401 Target CPU mismatch: <cpu1> (previous files) and <cpu2> in
module <obijfile>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The memory model of an application to link has to be unique for all modules.
If this error is moved to a warning or less, then the application is generated. However,
depending on the compilation units, the generated application might not work as dif-
ferent memory models do usually have different calling conventions. Also other prob-
lems might occur.
This message should only be moved by experienced users.

L2402 Incompatible flags or compiler options: <flags>
[ERROR]
Description
The flags set in an object file are incompatible with these of proceeding object files
or with compiler options.

L2403 Incompatible flags or compiler options: <flags>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Same as L2402, but not an error, but a relocatable warning message.

L2404 Unknown processor: <processor> in module <modulename>
[ERROR]
Description
The target processor id is not recognized by the linker. This may be caused by the
support of a target by the compiler that is not yet supported by the linker version
used, or the object file is corrupt. Another cause may be an internal error in the Link-
er.
Tips
If recompiling leads to the same results, contact Metrowerks support for help.

344 Smart Linker

Messages
Message Kinds

L2405

L2406

L2407

L2408

L2409

L2410

L2412

lllegal address range in link parameter file. In the <model>
memory model data must fit into one page

[DISABLE, INFORMATION, WARNING, ERROR]

Description

Some memory models (SMALL, MEDIUM1) require the data segment to be allocat-
ed into one page.

More than one data page is used. Segment <segname> is in
page 0

[DISABLE, INFORMATION, WARNING, ERROR]

Description

Only for the HC16.
In the small memory model the data page must fit into page 0.

More than one data page is used in <memorymodel> memory
model. The data page is defined by the placement of the stack
[DISABLE, INFORMATION, WARNING, ERROR]

Description

Some memory models (SMALL, MEDIUM) require the data page to be defined in the
same placement as the stack.

lllegal address range in link parameter file. In <memorymod-
el> memory model the code page must be page zero
[ERROR]

Description
Some memory models (SMALL) require the code page to be on page 0.

Multiple links are illegal: <object1>(module <module1>) links
to <link1>(module <toModule1>) and to <link2>(module
<toModule2>)

[DISABLE, INFORMATION, WARNING, ERROR]

Description

Inconsistency in the handling of unresolved imports. The importing object <object1>
in the module <module1> found the definition of an external candidate object twice.

(The first exporter is the object <link1> in the module <toModule1> and the second
exporter is the object <link2> in the module <toModule2>.

Unresolved external <object> (imported from <module>)
[DISABLE, INFORMATION, WARNING, ERROR]

Description

An external imported from module <module> could not be found in any object file.

Dependency ‘<object>' description: '<description>’
[DISABLE, INFORMATION, WARNING, ERROR]

Smart Linker

345

Messages

Message Kinds

L2413

L2414

L2415

L2416

L2417

Description

This warning is issued if the linker cannot handle a part of a link parameter file com-
mand “DEPENDENCY”. Usually some of the named objects cannot be found.

The linker does not consider this <object> any more for the dependency information.
Tips

Check the spelling of all names. See in the mapfile how C++ name-mangled objects
are called.

See also
Link parameter file command DEPENDENCY

Align STACKSIZE from <oldSize> to <newSize>

[DISABLE, INFORMATION, WARNING, ERROR]

Description

The stack size is aligned to a new value. The actual alignment needed depends on
the target processor.

Tips
Specify an aligned size in the prm file, if your processor needs an aligned stack.
Stacksize not aligned. Is <oldsize>, expected to be aligned to

<expectedsize>

[DISABLE, INFORMATION, WARNING, ERROR]

Description

The stack size is not aligned to an expected size. The actual alignment needed de-
pends on the target processor.

Tips

Specify an aligned size in the prm file, if your processor needs an aligned stack.

lllegal dependency of '<object>'
[ERROR]

Description
This error is only generated for illegal object files. Check the producing tool.

lllegal file name '<Filename>'
[ERROR]

Description
The specified filename is was not correctly terminated. This error may happen if a
filename is specified with a single double quotes.

Example

LINK “a.abs

Tips

Terminate the file name with a second double quote.

Object <objname> refers to non existing segment number

346

Smart Linker

Messages
Message Kinds

L2418

<segnhumber>
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The specified object refers to a segment number which is not defined in the segment
table of the object file. This error only occurs for illegal, corrupted object files.

Tips

Delete the object file, and rebuild it. If the error occurs again, contact the vendor of
the object file producing tool.

If this error is ignored, the default ROM/RAM segment is assumed.

Object <objname> allocated in segment <segname> is not al-

located according to the segment attribute <attrname>
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The linker has found an object, allocated in a segment with a special segment at-
tribute, which was not allocated according to this attribute.

This warning occurs when the source code attributes do not correspond to the mem-
ory area specified for the segment.

Example
Note: This example generates the warning only for target compilers supporting the
SHORT segment modifier.
C source file (test.c):
#pragma DATA SEG SHORT SHORT SEG
int i;
vold main (void) {
i=1;
}
prm file (test.prm)
LINK test.abs
NAMES test.o END

SECTIONS
MY RAM = NO_INIT 0x180 TO Ox1ff;
MY ROM = READ ONLY 0x1000 TO Ox1fff;
PLACEMENT

DEFAULT ROM INTO MY ROM;
DATA SEG, OVERLAP, DEFAULT RAM INTO MY RAM;
END
INIT main
Tips
Check your sources and your link parameter file if the handle the named object and
segment correctly.

Smart Linker

347

Messages

Message Kinds

Messages Independent of the Object File Format

L1:

L2:

L50:

L51:

L52:

L64:

Unknown message occurred
[FATAL]

Description

The linker tried to emit a message which was not defined.This is a internal error
which should not occur. Please report any occurrences to you distributor.

Tips

Try to find out the and avoid the reason for the unknown message.

Message overflow, skipping <kind> messages
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The linker did show the number of messages of the specific kind as controlled with
the options -WmsgNi, -WmsgNw and -WmsgNe. Further options of this kind are not
displayed.

Tips

Use the options -WmsgNi, -WWmsgNw and -WmsgNe to change the number of mes-
sages

Input file ‘<file>’ not found

[FATAL]

Description

The Application was not able to find a file needed for processing.

Tips

Check if the file really exits. Check if you are using a file name containing spaces (in
this case you have to quote it).

Cannot open statistic log file <file>

[DISABLE, INFORMATION, WARNING, ERROR]

Description

It was not possible to open a statistic output file, therefore no statistics are generated.
Note: Not all tools do support statistic log files. Even if a tool does not support it, the
message does still exist, but is never issued in this case, of course.

Error in command line <cmd>
[FATAL]

Description
In case there is an error while processing the command line, this message is issued.

Line Continuation occurred in <FileName>
[DISABLE, INFORMATION, WARNING, ERROR]

Description
In any environment file, the character '\' at the end of a line is taken as line continu-

348

Smart Linker

Messages
Message Kinds

L65:

L66:

ation. This line and the next one are handles as one line only. Because the path sep-
aration character of MS-DOS is also '\, paths are often incorrectly written ending with
"\'. Instead use a '." after the last \' to not finish a line with '\' unless you really want a
line continuation.

Example:
Current Default.env:

LIBPATH=c:\metrowerks\1lib\
OBJPATH=c: \metrowerks\work

Is taken by the compiler identical as

LIBPATH=c:\metrowerks\1ibOBJPATH=c: \metrowerks\work

Tips

To fix it, append a "' behind the '\'

LIBPATH=c:\metrowerks\1lib\.

OBJPATH=c:\metrowerks\work

Note:

Because this information occurs during the initialization phase of the compiler, the

‘C’ might not occur in the error message. So it might occur as "64: Line Continuation
occurred in <FileName>".

Environment macro expansion message '<description>' for
<variablename>

[DISABLE, INFORMATION, WARNING, ERROR]

Description

During a environment variable macro substitution an problem did occur. Possible
causes are that the named macro did not exist or some length limitation was
reached. Also recursive macros may cause this message.

Example

Current variables:

LIBPATH=S$ {LIBPATH}
Tips
Check the definition of the environment variable.

Search path <Name> does not exist
[DISABLE, INFORMATION, WARNING, ERROR]

Description
The tool did look for a file which was not found. During the failed search for the file,

Smart Linker

349

Messages

Message Kinds

a non existing path was encountered.

Tips

Check the spelling of your paths. Update the paths when moving a project. Use rel-
ative paths.

L4000 Could not open object file (<objFile>) in NAMES list
[ERROR]
Description
The linker could not open any object file in the NAMES list. This message prints out
the name of the last file in the names list found (<objFile>).
Tips
Check your “default.env” path settings. Object files are searched in the current direc-
tory or in the list of paths specified with the environment variables ‘OBJPATH’ and
‘GENPATH'.

L4001 Link parameter file <PRMFile> not found
[ERROR]
Description
The specified source file does not exist or the search paths are not correctly set.
Tips
Check your “default.env” path settings. Link parameter files are searched in the cur-
rent directory or in the list of paths specified with the environment variable ‘GEN-
PATH'.

L4002 NAMES section was not found in link parameter file <PRM-
File>
[ERROR]
Description
The new HIWARE Linker detects the object file format to link by scanning the
NAMES section for the first file that it can open to evaluate the file format. If the
NAMES section was not found in the link parameter file, this message is issued.
Tips
Look if the file passed to the linker is really a link parameter file.

L4003 Linking <PRMFile> as HIWARE format link parameter file
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The new HIWARE Linker detects the object file format to link by scanning the
NAMES section for the first file that it can open to evaluate the file format. If the first
file in the NAMES section, that can be opened by the linker is a HIWARE object file,
this message is issued and the HIWARE object file format linker, a subprocess of the
HIWARE Linker is started.
Note that this message is disabled by default. It is only issued if the message is ex-
plicitly enabled on the command line.

350 Smart Linker

Messages
Message Kinds

L4004

L4005

L4006

L4007

L4008

See also
Command line option -WmsgSi.

Linking <PRMFile> as ELF/DWARF format link parameter file
[DISABLE, INFORMATION, WARNING, ERROR]

Description

The new HIWARE Linker detects the object file format to link by scanning the
NAMES section for the first file that it can open to evaluate the file format. If the first
file in the NAMES section, that can be opened by the linker is a ELF/DWARF object
file, this message is issued and the ELF/DWARF object file format linker, a subpro-
cess of the HIWARE Linker is started.

Note that this message is disabled by default. It is only issued if the message is ex-
plicitly enabled on the command line.

See also
Command line option -WmsgSi.

lllegal file format of object file (<objFile>)
[ERROR]

Description

There is no object file in the NAMES list with a known file format or a object file spec-
ified with option -add has a unknown file format.

Tips

Check your “default.env” path settings. Object files are searched in the current direc-
tory or in the list of paths specified with the environment variables ‘OBJPATH’ and
‘GENPATH'. It may be that you have files of another development environment in
your directories.

Failed to create temporary file

[ERROR]

Description

The linker creates a temporary file for the prescan of the link parameter file in the cur-
rent directory. If this fails, the Linker can’t continue.

Tips

Enable the read access to files for the Linker in the current directory.

Include file nesting to deep in link parameter file

[DISABLE, INFORMATION, WARNING, ERROR]

Description
Only an include file nesting of maximum depth 6 is allowed.

Include file <includefile> not found

[DISABLE, INFORMATION, WARNING, ERROR]

Description
The include file <includefile> was not found.

Smart Linker

351

Messages

Message Kinds

L4009

L4010

L4011

L4012

Command <Command> overwritten by option <Option>
[DISABLE, INFORMATION, WARNING, ERROR]

Description
This message is generated, when a command from the PRM file is overwritten by a
command line option.
<command name>: name of the command, which is overwritten by a linker option
<option name>: linker options, which overwrites the linker command.
In this case the command line option is stronger than the command specified in the
PRM file. The commands, which may be overwritten by a command line option, are:
* LINK, which may be overwritten by the option —O (definition of the output file
name).
* MAPFILE, which may be overwritten by the option —M (enable generation of the
MAP file).
» INIT, which may be overwritten by the option —E (definition of the application en-
try point).
When the LINK command is detected in the PRM file and the option —O is specified
on the command line, following message is generated:
‘Command LINK overwritten by option -0°
Tips
Remove either the command in the PRM file or the option on the command line.

Burner file creation error '<Description>'

[DISABLE, INFORMATION, WARNING, ERROR]

Description

The built-in burner was not able to generate an output file because of the given rea-
son.

Tips

The application (*.abs) is still generated correctly. You might use the external burner
to produce the file.

Failed to generate distribution file because of <reason>
[DISABLE, INFORMATION, WARNING,ERROR]

Description
Failed to generate a distribution file because of the given reason <reason>.

See also

Option -Dist

Section Automatic Distribution of Variables

Failed to generate distribution file because of distribution

segment <segment> not found or not alone in placement
[DISABLE, INFORMATION, WARNING, ERROR]

Description

This message is generated, when the distribution segment <segment> doesn'‘t exist
in the placement of the PRM file or if it doesn‘t stay alone in the placement.

352

Smart Linker

Messages
Message Kinds

L4013

L4014

L4015

Example
If DISTRIBUTE is the distribution segment <segment>, it has to stay ALONE in the
placement.
Then it should look as follows:
PLACEMENT
DISTRIBUTE DISTRIBUTE INTO MY ROMO, MY ROMI;

See also

Option -Dist
Section Automatic Distribution of Variables

Function <function> is not in the distribution segment
[DISABLE, INFORMATION, WARNING, ERROR]

Description

If a function inside of the distribution segment is called from a outside one (the one
mentioned in the message), it has to have a far calling convention. This has a neg-
ative influence of the optimization. This message is generated to have an overview
from which outside functions an incoming call exist.

Tips

If it's possible, insert this functions in the distribution segment.

See also

Option -Dist
Section Automatic Distribution of Variables

The processor <processor> is not supported by the linker op-
timizer

[DISABLE, INFORMATION, WARNING, ERROR]

Description

This message is generated, when the processor is not supported by the linker opti-
mizer.

Tips

If your target CPU has to be supported with this optimization, please check with sup-
port if this could be done with a new release.

Section <section> has no IBCC_NEAR or IBCC_FAR flag
[DISABLE, INFORMATION, WARNING, ERROR]

Description

This message is generated, when a section <section> which is in the distribution
segment doesn‘t have an IBCC_NEAR (inter bank calling convention near) or an
IBCC_FAR (inter bank calling convention far) Flag.

Example
Each section in the PLACEMENT list used for the distribution (DISTRIBUTE_INTO)
has either to have the IBCC_NEAR or the IBCC_FAR flag.
SECTIONS
MY ROMO = READ ONLY IBCC NEAR 0x005000 TO 0x00504F;

Smart Linker

353

Messages

Message Kinds

L4016

L4017

L4018

MY ROM1 = READ ONLY IBCC FAR 0x018000 TO 0x018050;
MY ROM2 = READ ONLY IBCC FAR 0x028000 TO 0x0280F0;
END
PLACEMENT

DISTRIBUTE DISTRIBUTE INTO MY ROMO, MY ROM1, MY ROM2Z;
END

See also

Option -Dist
Section Automatic Distribution of Variables

No section in the segment <segment> has an IBCC_NEAR

flag
[DISABLE, INFORMATION, WARNING, ERROR]

Description

This message is generated, when no section which is in the distribution segment
<segment> has an IBCC_NEAR Flag (inter bank calling convention).

Tips

Check if you really don’t want to have distributed functions in a ‘near’ section. Placing
functions in a ‘near’ section may increase performance and could improve code den-
sity.

See also

Option -Dist

Section Automatic Distribution of Variables

Failed to generate distribution file because there are no func-

tions in the distribution segment <segment>
[ERROR]

Description

This message is generated, when no functions are found in the code segment <Seg-
ment>. <Segment> is the name of the distribution segment, which contains the func-
tions for the optimized distribution. For the Linker optimizer it is necessary to specify
in the source files a command like: #pragma CODE_SEG <Segment>. All functions
which follow this command are automatically distributed into this Segment.

Tips

Check if your compiler supports the “#pragma CODE_SEG”.

Recompile the source files without to include the distribution file.

Check if in the sources the command #pragma CODE_SEG <Segment> really ex-
ists.

See also

Option -Dist
Section Automatic Distribution of Variables

The sections in the distribution segment have not enough
memory for all functions

354

Smart Linker

Messages
Message Kinds

L4019

L4020

[ERROR]

Description

This message is generated, when the functions which were distributed into the spe-
cial distribution segment have not enough space into the sections of it.

Tips

Add more pages to the distribution segment or increase the size of this pages.

If this not help decrease the amount of functions in the distribution segment.

See also

Option -Dist
Section Automatic Distribution of Variables

Function <function name> has a near flag and can not be dis-

tributed

[DISABLE, INFORMATION, WARNING, ERROR]

Description

The linker optimizer doesn‘t support functions which are assigned in the source code
with a near flag.

Example

MyFunction is distributed in the distribution segment “DISTRIBUTE” and has a near
flag:

#p?:agma CODE_SEG DISTRIBUTE

void near MyFunction (void) ({}

Tips

Avoid to use the near Flag (e.g.: void near MyFunction(void) {}) for functions which
have to be distributed in the distribution segment.

See also

Option -Dist
Section Automatic Distribution of Variables

Not enough memory in the non banked sections of the distri-
bution segment <segment>

[ERROR]

Description

While optimizing functions out of the distribution segment, the linker has not found
enough memory in the non banked sections of the distribution segment. Only func-
tions which have a near flag can be placed in a non banked section.

Tips

All near functions must have enough space in the near sections (sections with the
IBCC_NEAR flag) of the distribution segment. If possible increase the size of the non
banked sections of the distribution segment, otherwise remove some near functions
from it.

See also

Option -Dist

Smart Linker

355

Messages

Message Kinds

Section Automatic Distribution of Variables

L4021 Incompatible derivative: <Deriv0> in previous files and
<Deriv1> in current file
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The two mentioned object files were compiled or assembled for different, incompat-
ible derivatives of the same CPU family.
Depending on which features of the two derivatives were used, the generated exe-
cutable might not work for the one or the other derivative (or even for none of them).
Tips
Recompile your sources, and use a common setting for all source files.
Some compilers/assembler do provide a generic mode, which does not use the spe-
cific features not available in all derivatives.

L4022 HexFile not found: <Filename>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The hexfile <Filename> to link with (specified with the HEXFILE command in the link
parameter file) was not found. The specified hex file does not exist or the search
paths are not correctly set.
Tips
Check your “default.env” path settings. Hex files are searched in the current directory
or in the list of paths specified with the environment variable ‘GENPATH’.

L4023 Hexfile error '<Description>' in file '<Filename>'
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The linker did find some problems with the hexfile <Filename>.
Possible problems are a bad checksum, a bad length, a too large length (>256) or
an otherwise corrupted file.
Tips
Check, if the file specified is really a hex file. If yes, create it and try again.
The decoder can be used to check Motorola S Record files.

L4024 No information available for segment ‘<name>'.
[DISABLE, INFORMATION, WARNING, ERROR]
Description
A undefined symbol started with one of the linker defined prefixes
" SEG_START_"," SEG_END_ "or" SEG_SIZE_"
but the name of the following segment was not known. Therefore the linker does not
know to which address this symbol should evaluate. To handle this case, the linker
does issue this message and the linker is using the address 0 as address.
However, the linking does not fail.
Example

356 Smart Linker

Messages
Message Kinds

L4025

extern char SEG START UNKNOWN SEGMENT[];
Tips
Check the spelling. Do explicitly name the segment in the link parameter file.

This limited version allows only <num> <limitKind>
[ERROR]

Description

Depending on your license configuration, the linker may e.g. limited only to allow up
to 4K C++ code. The limitation size you will see from the <num> field and the limita-
tion kine (e.g. C++ code) you can see from the <limitKind> field. The limitations are
also shown in the about box.

Tips

Check if you are using a correct license configuration. Contact your vendor for a un-
limited license or upgrade.

Smart Linker

357

Messages
Message Kinds

358 Smart Linker

Index

Symbols

#pragma CODE_SEG 354
.abs 15, 66
.copy 216, 226, 287

.data 216, 217
hidefaults 39, 40, 55, 63
Jani 22

Janit 217

.map 66, 239

.overlap 139,217

.prm 65

.rodata 216

rodatal 216

.Sl 66

.S2 66

.S3 66

Stack 216, 217
StartData 216, 217, 226
.SX 66

text 216,217

__DEFAULT_SEG_CC__ 154
__INTERSEG_CC__ 153
__INTRAPAGE__ 152
__NON_INTERSEG_CC__ 153
__SEG_END_ 149
__SEG_END_DEF 150
__SEG_END_REF 150
__SEG_SIZE_ 149
__SEG_SIZE_DEF 150
__SEG_SIZE_REF 150
__SEG_START_ 149
__SEG_START_DEF 150
__SEG_START_REF 150
__SEG_START_SSTACK 149
_OVERLAP 139, 221
_PRESTART 221

A

About Box 33

Absolute File 15, 65, 187, 193
ABSPATH 53, 65, 66, 168
-Add 72

-Alloc 73
Application
Startup (also see Startup) 225
-AsROMLib 75
Assembly
Application 160
LINK_INFO 164
Prm File 160
Smart Linking 161
AUTOLOAD 171
Automatic Distribution 151

B
-B 76

C

-CAllocUnusedOverlap 76

CHECKKEYS 176

CHECKSUM 172

Checksum Computation 156

-Ci 77

-Cocc 78

CODE 123

CodeWarrior 89, 168

color 96, 97, 98

Command
AUTOLOAD 171
CHECKKEYS 176
CHECKSUM 172
DATA 176
DEPENDENCY 177
ENTRIES 130, 131, 132, 133, 182, 241
HAS BANKED _DATA 184
HEXFILE 185
INIT 186, 241
LINK 89, 168, 187, 241
MAIN 188, 241
MAPFILE 86, 189
NAMES 133, 134, 168, 192, 242
OVERLAP_GROUP 194
PLACEMENT 124, 168, 196, 217, 221
PRESTART 198
SECTIONS 121, 199
SEGMENTS 115, 168, 202

Smart Linker

359

STACKSIZE 208
STACKTOP 210
START 211
VECTOR 129, 212
Common Code 207
COPY 220, 230, 287
COPYRIGHT 54, 59, 64
-CRam 79
Current Directory 55
CurrentCommandLine 47

D

DATA 176

Default Directory 41
DEFAULT.ENV 39, 40, 55, 63
DEFAULT_RAM 220, 221
DEFAULT_ROM 220, 221
DEFAULTDIR 40, 41, 54
DefaultDir 41
DEPENDENCY 177
Dependency 66

-Dist 79

-DistFile 80

-Distinfo 80

-DistOpti 81
DISTRIBUTE_INTO 155
Distribution Segment 153
-DistSeg 81

E

-E 82

Editor 46

Editor_Exe 44, 46
Editor_Name 43, 46
Editor_Opts 44, 46
EditorCommandLine 49
EditorDDEClientName 49
EditorDDEServiceName 50
EditorDDETopicName 49
EditorType 49

EDOUT 68

ENTRIES 130, 131, 132, 133, 182, 241

-Env 39, 82
ENVIRONMENT 55
Environment Variable 39, 52

ABSPATH 53, 65, 66, 168, 187

COPYRIGHT 54, 59, 64
DEFAULTDIR 40, 41, 54
ENVIRONMENT 55
ENVIRONMENT 39
ERRORFILE 56, 67

GENPATH 58, 60, 65, 168, 193

HIENVIRONMENT 55
INCLUDETIME 54,59, 64
LINKOPTIONS 71
LINKPTIONS 60, 71
OBJPATH 60, 168, 193
RESETVECTOR 61
SRECORD 61, 66
TEXTPATH 62, 66, 168, 187
TMP 63
USERNAME 54, 59, 63
Error File 67
Error Listing 67
ERRORFILE 56, 67
Explorer 40

F

-F 83
File
Absolute 15, 65, 187, 193
Error 67
Library 193
Map 66, 187, 190, 239
Motorola S 66
Object 65, 193
Parameter 65
Parameter (Linker) 165
File Manager 40

G

GENPATH 58, 168, 193
Group 41

H

-H 84
HAS_BANKED_DATA 184
HEXFILE 185
HIENVIRONMENT 55

360

Smart Linker

IBCC_FAR 155, 353
IBCC_NEAR 155, 353, 355
INCLUDETIME 54, 59, 64
INIT 186, 241

L

-L 84

Library File 193

-Lic 85

-Lica 85

LINK 89, 168, 187, 241

Linker
Configuration 22
Input File 65
Menu 29
Menu Bar 21
Message Settings Dialog Box 31
Messages 31
Options 30
Output Files 65
Status Bar 21
Tool Bar 20

LINKOPTIONS 45, 60

M

-M 86
MAIN 188,241
map 187
Map File 66, 187, 190, 239
COPYDOWN 240
DEPENDENCY TREE 240
FILE 239
OBJECT ALLOCATION 239
OBJECT DEPENDENCY 239
SEGMENT ALLOCATION 239
STARTUP 239
STATISTICS 240
TARGET 239
UNUSED OBJECTS 240
MAPFILE 86, 189
MCUTOOLS.INI 24, 40,55
Message
ERROR 257
FATAL 257
WARNING 257

Motorola S File 66

N

-N 86

NAMES 133, 134, 168, 192, 242
NO_INIT 118, 123, 199, 203
-NoBeep 87

-NoEnv 87

O

-0 89

Object File 65, 193
OBJPATH 60, 168, 193
-OCopy 88

Option Settings Dialog 30
Options 41, 49
OVERLAP_GROUP 194
OVERLAYS 135

P

PAGED 118, 123, 135, 200, 203
Parameter

File (Linker) 165
Parameter File 65
Path 41
Path List 51

PLACEMENT 124, 168, 196, 217, 221, 353

PRESTART 198

Prm file controlled Checksum Computation 157

-Prod 46, 89

Program Startup (also see Startup) 225
Project Directory 40

project.ini 46

Q

Qualifier 115,117, 121, 123, 199, 202
CODE 123
NO_INIT 118,123,199, 203
PAGED 118, 123, 200, 203
READ_ONLY 117,123, 199, 203

READ_WRITE 117, 123, 199, 203

R

READ_ONLY 117,123,199, 203
READ_WRITE 117, 123, 199, 203

Smart Linker

361

REALLOC _OBJ 153
RecentCommandLineX 47
RGB 96, 97, 98

ROM Library 241

ROM library 75,187, 189, 193, 226, 231

ROM_LIB 187,241
ROM_VAR 220

S

-S 90
SaveAppearance 42
SaveEditor 42
SaveOnEXxit 42
SaveOptions 42
Section 215, 219
.copy 216, 226
.data 216, 217
Janit 217
.overlap 217
.rodata 216
rodatal 216
Stack 216, 217
StartData 216, 217, 226
text 216,217
Pre-defined 216
Qualifier 121, 123
rodata 216
SECTIONS 121, 199
Segment 215, 219
_OVERLAP 221
_PRESTART 221

Alignment 115, 119, 202, 205

COPY 220, 230
DEAFULT_RAM 220
DEFAULT_RAM 221

DEFAULT_ROM 220, 221

Fill Pattern 115, 120, 206
fill pattern 202
Optimizing Constants 207
Pre-defined 220

Qualifier 115,117, 199, 202

ROM_VAR 220

SSTACK 220, 221

STARTUP 220, 221, 230

STRINGS 220
SEGMENTS 115, 168, 202
-SFixups 91

ShowTipOfDay 43

Smart Linking 16, 130, 131

SSTACK 220, 221

STACK 209

STACKSIZE 208

STACKTOP 210

START 211

STARTUP 220, 221, 230

Startup
Application 225

startup 46

Startup Function 230, 232
User Defined 230, 232

Startup Structure 225, 230
finiBodies 228
flags 226, 231
initBodies 228
liblnits 228, 231
main 227,231
minits 232
nofFiniBodies 228
noflnitBodies 228
nofLiblnits 228
nofZeroOuts 227, 231
pZeroOut 227, 231
stackOffset 227, 231
toCopyDownBeg 227, 231
User Defined 228

Startup. TXT 225

-StatF 91

StatusbarEnabled 47

STRINGS 220

T

TEXTPATH 62, 66, 168
Tip of the Day 17
TipFilePos 42
TipTimeStamp 43
TMP 63
ToolbarEnabled 48

U

UNIX 40
USERNAME 54, 59, 63

362

Smart Linker

Vv
-V 92

VECTOR 129, 212

Vector 16
-View 92

W

-W1 93

-W2 94
-WErrFile 95
WindowFont 48
WindowPos 48
Windows 40
WinEdit 40
-Wmsg8x3 95
-WmsgCE 96
-WmsgCF 97
-WmsgCl 97
-WmsgCU 98
-WmsgCW 98
-WmsgFb 36, 99
-WmsgF 36, 100
-WmsgFob 101
-WmsgFoi 102
-WmsgFonf 104
-WmsgFonp 106
-WmsgNe 107
-WmsgNi 108
-WmsgNu 108
-WmsgNw 109
-WmsgSd 110
-WmsgSe 110
-WmsgSi 111
-WmsgSw 111
-WOutFile 112
-WStdout 112

Smart Linker

363

364 Smart Linker

	Introduction
	Notation
	Structure of this Document
	Purpose of a Linker

	User Interface
	Tip of The Day Dialog
	Main Window
	Window Title
	Content Area
	Tool Bar
	Status Bar
	Linker Menu Bar
	File Menu
	SmartLinker Menu
	View Menu

	Options Settings Dialog Box
	Message Settings Dialog Box
	Changing the Class associated with a Message

	About Box
	Retrieving Information about an Error Message
	Specifying the Input File
	Use the Command Line in the Tool Bar to Link
	Use the Entry File | Link...
	Use Drag and Drop

	Message/Error Feedback
	Example
	Use Information from the SmartLinker Window
	Use a User Defined Editor

	Environment
	The Current Directory
	Global Initialization File (MCUTOOLS.INI) (PC only)
	[Installation] Section
	[Options] Section
	[LINKER] Section
	[Editor] Section
	Example

	Local Configuration File (usually project.ini)
	[Editor] Section
	[[LINKER] Section
	Example

	Paths
	Line Continuation
	Environment Variable Details
	.ABSPATH
	ABSPATH: Absolute Path

	COPYRIGHT
	COPYRIGHT: Copyright Entry in Absolute File

	DEFAULTDIR
	DEFAULTDIR: Default Current Directory

	ENVIRONMENT
	ENVIRONMENT: Environment File Specification

	ERRORFILE
	ERRORFILE: Error File Name Specification

	GENPATH
	GENPATH: Define Paths to search for input Files

	INCLUDETIME
	INCLUDETIME: Creation Time in Object File

	LINKOPTIONS
	LINKOPTIONS: Default SmartLinker Options

	OBJPATH
	OBJPATH: Object File Path

	RESETVECTOR
	RESETVECTOR: Reset Vector Location

	SRECORD
	SRECORD: S Record File Format

	TEXTPATH
	TEXTPATH: Text Path

	TMP
	TMP: Temporary directory

	USERNAME
	USERNAME: User Name in Object File

	Files
	Input Files
	Parameter File
	Object File

	Output Files
	Absolute Files
	Motorola S Files
	Map Files
	Dependency Information

	Error Listing File
	Interactive Mode (SmartLinker window open)
	Batch Mode (SmartLinker window not open)

	SmartLinker Options
	SmartLinker Option Details
	-Add
	-Add: Additional Object/Library File

	-AllocFirst,-AllocNext,-AllocChange
	-Alloc: Allocation over segment boundaries (ELF)

	-AsROMLib
	-AsROMLib: Link as ROM Library

	-B
	-B: Generate S-Record file

	-CAllocUnusedOverlap
	-CAllocUnusedOverlap: Allocate not referenced overlap variables (HIWARE)

	-Ci
	-Ci: Link Case Insensitive

	-Cocc
	-Cocc: Optimize Common Code (ELF)

	-CRam
	-CRam: Allocate non specified const segments in RAM (ELF)

	-Dist
	-Dist: Enable distribution optimization (ELF)

	-DistFile
	-DistFile: Specify distribution file name (ELF)

	-DistInfo
	-DistInfo: Generate distribution information file (ELF)

	-DistOpti
	-DistOpti: Choose optimizing method (ELF)

	-DistSeg
	-DistSeg: Specify distribution segment name (ELF)

	-E
	-E: Define Application Entry Point (ELF)

	-Env
	-Env: Set Environment Variable

	-FA, -FE, -FH -F6
	-FA, -FE, -FH -F6: Object File Format

	-H
	-H: Prints the List of All Available Options

	-L
	-L: Add a path to the search path (ELF)

	-Lic
	-Lic: Print license information

	-LicA
	-LicA: License Information about every Feature in Directory

	-M
	-M: Generate Map File

	-N
	-N: Display Notify Box

	-NoBeep
	-NoBeep: No Beep in Case of an Error

	-NoEnv
	-NoEnv: Do not use Environment

	-OCopy
	-OCopy: Optimize Copy Down (ELF)

	-O
	-O: Define Absolute File Name

	-Prod
	-Prod: specify project file at startup (PC)

	-S
	-S: Do not generate DWARF Information (ELF)

	-SFixups
	-SFixups: Creating Fixups (ELF)

	-StatF
	-StatF: Specify the name of statistic file

	-V
	-V: Prints the SmartLinker Version

	-View
	-View: Application Standard Occurrence (PC)

	-W1
	-W1: No Information Messages

	-W2
	-W2: No Information and Warning Messages

	-WErrFile
	-WErrFile: Create "err.log" Error File

	-Wmsg8x3
	-Wmsg8x3: Cut file names in Microsoft format to 8.3 (PC)

	-WmsgCE
	-WmsgCE: RGB color for error messages

	-WmsgCF
	-WmsgCF: RGB color for fatal messages

	-WmsgCI
	-WmsgCI: RGB color for information messages

	-WmsgCU
	-WmsgCU: RGB color for user messages

	-WmsgCW
	-WmsgCW: RGB color for warning messages

	-WmsgFb (-WmsgFbv, -WmsgFbm)
	-WmsgFb: Set message file format for batch mode

	-WmsgFi (-WmsgFiv, -WmsgFim)
	-WmsgFi: Set message file format for Interactive mode

	-WmsgFob
	-WmsgFob: Message format for Batch Mode

	-WmsgFoi
	-WmsgFoi: Message Format for Interactive Mode

	-WmsgFonf
	-WmsgFonf: Message Format for no File Information

	-WmsgFonp
	-WmsgFonp: Message Format for no Position Information

	-WmsgNe
	-WmsgNe: Number of Error Messages

	-WmsgNi
	-WmsgNi: Number of Information Messages

	-WmsgNu
	-WmsgNu: Disable User Messages

	-WmsgNw
	-WmsgNw: Number of Warning Messages

	-WmsgSd
	-WmsgSd: Setting a Message to Disable

	-WmsgSe
	-WmsgSe: Setting a Message to Error

	-WmsgSi
	-WmsgSi: Setting a Message to Information

	-WmsgSw
	-WmsgSw: Setting a Message to Warning

	-WOutFile
	-WOutFile: Create Error Listing File

	-WStdout
	-WStdout: Write to standard output

	Linking Issues
	Object Allocation
	The SEGMENTS Block (ELF)
	Physical Segments
	Example:
	Virtual Segment
	Example:
	Segment Qualifier
	Segment Alignment
	Segment Fill Pattern

	The SECTIONS Block (HIWARE + ELF)
	Physical Segments
	Example:
	Virtual Segment
	Example:
	Segment Qualifier

	PLACEMENT Block
	Specifying a List of Sections
	Specifying a List of Segments
	Allocating User Defined Sections (ELF)
	Allocating User Defined Sections (HIWARE)

	Initializing Vector Table
	VECTOR Command

	Smart Linking (ELF)
	Mandatory Linking from an Object
	Example:

	Mandatory Linking from all Objects defined in a File
	Example:

	Switching OFF Smart Linking for the Application
	Example:

	Smart Linking (HIWARE + ELF)
	Mandatory Linking from an Object
	Example:

	Mandatory Linking from all Objects defined in a File
	Example:

	Binary Files building an Application (ELF)
	NAMES Block
	Example:

	ENTRIES Block
	Example:

	Binary Files building an Application (HIWARE)
	NAMES Block
	Example:

	Allocating Variables in "OVERLAYS"
	Example:

	Overlapping Locals
	Example:
	Algorithm
	Example

	Name Mangling for Overlapping Locals
	Name Mangling in the ELF Object File Format
	Defining an function with overlapping parameters in Assembler
	Some additional points to consider

	DEPENDENCY TREE in the Map File
	Example:

	Optimizing the overlap size
	Recursion Checks
	Example
	Example (prm file):
	See Also

	Linker Defined Objects
	Automatic Distribution of Paged Functions
	Limitations

	Checksum Computation
	Prm file controlled Checksum Computation
	Automatic Linker controlled Checksum Computation
	Automatic struct detection
	.checksum section:

	Partial Fields
	Runtime support

	Linking an Assembly Application
	Prm File
	Example:

	WARNINGS
	Smart Linking
	Example:

	LINK_INFO(ELF)

	The Parameter File
	The Syntax of the Parameter File
	Mandatory SmartLinker Commands
	The INCLUDE directive

	SmartLinker Commands
	AUTO_LOAD
	AUTO_LOAD: Load Imported Modules (HIWARE, M2)
	Syntax
	Description:
	Example:

	CHECKSUM
	CHECKSUM: Checksum computation (ELF)
	Syntax
	Description:
	Example 1:
	Example 2:

	CHECKKEYS
	CHECKKEYS: Check Module Keys (HIWARE, M2)
	Syntax
	Description:
	Example:

	DATA
	DATA: Specify the RAM Start (HIWARE)
	Syntax
	Description
	Example

	DEPENDENCY
	DEPENDENCY: Dependency Control
	Syntax
	Description

	ROOT
	Example (Overlapped allocation of variables, only for some targets):

	USES
	Example (Overlapped allocation of variables, only for some targets)

	ADDUSE
	Example (Overlapped allocation of variables, only for some targets)
	Example (Smart Linking)

	DELUSE
	Example

	Overlapping of local variables and parameters
	See Also

	ENTRIES
	ENTRIES: List of Objects to Link with the Application
	Syntax (ELF):
	Syntax (HIWARE):
	Description
	ELF Specific issues (ELF):
	Example
	Example

	HAS_BANKED_DATA
	HAS_BANKED_DATA: Application has banked data (HIWARE)
	Syntax
	Description
	Example

	HEXFILE
	HEXFILE: Link a Hex File with the Application
	Syntax
	Arguments
	Description
	Example

	INIT
	INIT: Specify the Application Init Point
	Syntax
	Description
	ELF Specific issues (ELF):
	Example
	ELF Specific Example (ELF):

	LINK
	LINK: Specify Name of Output File
	Syntax
	Description
	Example

	MAIN
	MAIN: Name of the Application Root Function
	Syntax
	Description
	ELF Specific issues (ELF):
	Example
	ELF Specific Example (ELF):

	MAPFILE
	MAPFILE: Configure Map File Content
	Syntax (ELF):
	Syntax (HIWARE):
	Description
	ELF Specific issues (ELF):
	Example
	Example

	NAMES
	NAMES: List the Files building the Application.
	Syntax
	Description
	Example

	OVERLAP_GROUP
	OVERLAP_GROUP: Application uses Overlapping (ELF)
	Syntax
	Description
	Example:
	Example:
	See also

	PLACEMENT
	PLACEMENT: Place Sections into Segments
	Syntax
	Description
	Example
	Example

	PRESTART
	PRESTART: Application Prestart Code (HIWARE)
	Syntax
	Description
	Example

	SECTIONS
	SECTIONS: Define Memory Map
	Syntax
	Description
	Section Qualifier
	Qualifier Handling
	Example

	SEGMENTS
	SEGMENTS: Define Memory Map (ELF)
	Syntax
	Description
	Segment Qualifier
	Qualifier Handling
	Example
	Defining an Alignment Rule
	Example
	Defining a Fill Pattern
	Example
	Example
	Optimizing Constants with Common Code
	Example
	Example

	STACKSIZE
	STACKSIZE: Define Stack Size
	Syntax
	Description
	Example
	Example

	STACKTOP
	STACKTOP: Define Stack Pointer Initial Value
	Syntax
	Description
	Example
	Example

	START
	START: Specify the ROM Start (HIWARE)
	Syntax
	Description
	Example

	VECTOR
	VECTOR: Initialize Vector Table
	Syntax
	Description
	Example
	Example

	Sections (ELF)
	Terms: Segments and Sections
	Definition of Section
	Predefined Sections

	Segments (HIWARE)
	Terms: Segments and Sections (HIWARE)
	Definition of Segment (HIWARE)
	Predefined Segments

	Examples
	Example 1
	Example 2

	Program Startup
	The Startup Descriptor (ELF)
	User Defined Startup Structure: (ELF)
	Example

	User Defined Startup Routines (ELF)
	The Startup Descriptor (HIWARE)
	User Defined Startup Routines (HIWARE)
	Example of Startup Code in ANSI-C

	The Map File
	Map File Contents

	ROM Libraries
	Creating a ROM Library
	ROM Libraries and Overlapping Locals
	See Also

	Using ROM Libraries
	Suppressing Initialization
	Example Application

	How To ...
	How To Initialize the Vector Table
	Initializing the Vector Table in the SmartLinker Prm File
	Example
	Example

	Initializing the Vector Table in the Assembly Source File Using a Relocatable Section
	Example
	Example

	Initializing the Vector Table in the Assembly Source File Using an Absolute Section
	Example
	Example

	Messages
	Message Kinds

