
Smart Linker

 Revised 04/29/2003

Metrowerks, the Metrowerks logo, and CodeWarrior are registered trademarks of Metrowerks Corp. in the US and/or
other countries. All other tradenames and trademarks are the property of their respective owners.

Copyright © Metrowerks Corporation. 2003. ALL RIGHTS RESERVED.

The reproduction and use of this document and related materials are governed by a license agreement media,
it may be printed for non-commercial personal use only, in accordance with the license agreement related to the
product associated with the documentation. Consult that license agreement before use or reproduction of any
portion of this document. If you do not have a copy of the license agreement, contact your Metrowerks repre-
sentative or call 800-377-5416 (if outside the US call +1-512-996-5300). Subject to the foregoing non-commercial
personal use, no portion of this documentation may be reproduced or transmitted in any form or by any means,
electronic or mechanical, without prior written permission from Metrowerks.

Metrowerks reserves the right to make changes to any product described or referred to in this document without further
notice. Metrowerks makes no warranty, representation or guarantee regarding the merchantability or fitness of its prod-
ucts for any particular purpose, nor does Metrowerks assume any liability arising out of the application or use of any
product described herein and specifically disclaims any and all liability. Metrowerks software is not authorized for
and has not been designed, tested, manufactured, or intended for use in developing applications where the fail-
ure, malfunction, or any inaccuracy of the application carries a risk of death, serious bodily injury, or damage
to tangible property, including, but not limited to, use in factory control systems, medical devices or facilities,
nuclear facilities, aircraft navigation or communication, emergency systems, or other applications with a simi-
lar degree of potential hazard.

USE OF ALL SOFTWARE, DOCUMENTATION AND RELATED MATERIALS ARE SUBJECT TO THE
METROWERKS END USER LICENSE AGREEMENT FOR SUCH PRODUCT.

How to Contact Metrowerks

Corporate Headquarters Metrowerks Corporation
7700 West Parmer Lane
Austin, TX 78729
U.S.A.

World Wide Web http://www.metrowerks.com

Sales Voice: 800-377-5416
Fax: 512-996-4910
Email: sales@metrowerks.com

Technical Support Voice: 800-377-5416
Email: support@metrowerks.com

http://www.metrowerks.com

Table of Contents

1 Introduction 15
Notation . 15

Structure of this Document . 15

Purpose of a Linker . 16

2 User Interface 17
Tip of The Day Dialog . 17

Main Window . 18

Window Title . 18

Content Area . 19

Tool Bar . 20

Status Bar . 21

Linker Menu Bar . 21

Options Settings Dialog Box . 30

Message Settings Dialog Box . 31

About Box . 33

Retrieving Information about an Error Message 34

Specifying the Input File . 35

Message/Error Feedback . 36

3 Environment 39
The Current Directory . 40

Global Initialization File (MCUTOOLS.INI) (PC only) 40

[Installation] Section . 41

[Options] Section . 41

[LINKER] Section . 42

[Editor] Section . 43

Example . 44

Local Configuration File (usually project.ini) 45

[Editor] Section . 46

[[LINKER] Section . 47
3Smart Linker

Table of Contents
Example . 50

Paths . 51

Line Continuation . 51

Environment Variable Details . 52

.ABSPATH . 53

ABSPATH: Absolute Path . 53

COPYRIGHT . 54

COPYRIGHT: Copyright Entry in Absolute File 54

DEFAULTDIR . 54

DEFAULTDIR: Default Current Directory 54

ENVIRONMENT . 55

ENVIRONMENT: Environment File Specification. 55

ERRORFILE. 56

ERRORFILE: Error File Name Specification 56

GENPATH. 58

GENPATH: Define Paths to search for input Files 58

INCLUDETIME . 59

INCLUDETIME: Creation Time in Object File 59

LINKOPTIONS . 60

LINKOPTIONS: Default SmartLinker Options 60

OBJPATH . 60

OBJPATH: Object File Path . 60

RESETVECTOR . 61

RESETVECTOR: Reset Vector Location 61

SRECORD . 61

SRECORD: S Record File Format 61

TEXTPATH . 62

TEXTPATH: Text Path. 62

TMP . 63

TMP: Temporary directory . 63

USERNAME. 63

USERNAME: User Name in Object File. 63
4 Smart Linker

Table of Contents
4 Files 65
Input Files . 65

Parameter File . 65

Object File . 65

Output Files . 65

Absolute Files . 65

Motorola S Files . 66

Map Files . 66

Error Listing File . 67

5 SmartLinker Options 71
SmartLinker Option Details . 71

-Add . 72

-Add: Additional Object/Library File 72

-AllocFirst,-AllocNext,-AllocChange 73

-Alloc: Allocation over segment boundaries (ELF) 73

-AsROMLib . 75

-AsROMLib: Link as ROM Library. 75

-B . 76

-B: Generate S-Record file . 76

-CAllocUnusedOverlap. 76

-CAllocUnusedOverlap: Allocate not referenced overlap variables (HIWARE). 76

-Ci . 77

-Ci: Link Case Insensitive . 77

-Cocc. 78

-Cocc: Optimize Common Code (ELF) 78

-CRam . 79

-CRam: Allocate non specified const segments in RAM (ELF) 79

-Dist . 79

-Dist: Enable distribution optimization (ELF) 79

-DistFile . 80

-DistFile: Specify distribution file name (ELF) 80

-DistInfo . 80
5Smart Linker

Table of Contents
-DistInfo: Generate distribution information file (ELF) 80

-DistOpti . 81

-DistOpti: Choose optimizing method (ELF) 81

-DistSeg. 81

-DistSeg: Specify distribution segment name (ELF) 81

-E . 82

-E: Define Application Entry Point (ELF) 82

-Env . 82

-Env: Set Environment Variable 82

-FA, -FE, -FH -F6 . 83

-FA, -FE, -FH -F6: Object File Format 83

-H . 84

-H: Prints the List of All Available Options. 84

-L . 84

-L: Add a path to the search path (ELF) 84

-Lic . 85

-Lic: Print license information . 85

-LicA. 85

-LicA: License Information about every Feature in Directory. 85

-M . 86

-M: Generate Map File. 86

-N . 86

-N: Display Notify Box . 86

-NoBeep . 87

-NoBeep: No Beep in Case of an Error 87

-NoEnv . 87

-NoEnv: Do not use Environment 87

-OCopy . 88

-OCopy: Optimize Copy Down (ELF). 88

-O . 89

-O: Define Absolute File Name 89

-Prod . 89

-Prod: specify project file at startup (PC). 89
6 Smart Linker

Table of Contents
-S . 90

-S: Do not generate DWARF Information (ELF). 90

-SFixups . 91

-SFixups: Creating Fixups (ELF). 91

-StatF. 91

-StatF: Specify the name of statistic file 91

-V . 92

-V: Prints the SmartLinker Version 92

-View. 92

-View: Application Standard Occurrence (PC) 92

-W1 . 93

-W1: No Information Messages 93

-W2 . 94

-W2: No Information and Warning Messages 94

-WErrFile . 95

-WErrFile: Create "err.log" Error File 95

-Wmsg8x3. 95

-Wmsg8x3: Cut file names in Microsoft format to 8.3 (PC) 95

-WmsgCE . 96

-WmsgCE: RGB color for error messages 96

-WmsgCF . 97

-WmsgCF: RGB color for fatal messages 97

-WmsgCI . 97

-WmsgCI: RGB color for information messages. 97

-WmsgCU . 98

-WmsgCU: RGB color for user messages 98

-WmsgCW . 98

-WmsgCW: RGB color for warning messages 98

-WmsgFb (-WmsgFbv, -WmsgFbm) 99

-WmsgFb: Set message file format for batch mode. 99

-WmsgFi (-WmsgFiv, -WmsgFim) 100

-WmsgFi: Set message file format for Interactive mode 100

-WmsgFob. . 101
7Smart Linker

Table of Contents
-WmsgFob: Message format for Batch Mode 101

-WmsgFoi . . 103

-WmsgFoi: Message Format for Interactive Mode 103

-WmsgFonf . 104

-WmsgFonf: Message Format for no File Information 104

-WmsgFonp . 106

-WmsgFonp: Message Format for no Position Information 106

-WmsgNe . 107

-WmsgNe: Number of Error Messages 107

-WmsgNi . 108

-WmsgNi: Number of Information Messages 108

-WmsgNu . . 108

-WmsgNu: Disable User Messages 108

-WmsgNw. . 109

-WmsgNw: Number of Warning Messages 109

-WmsgSd . 110

-WmsgSd: Setting a Message to Disable 110

-WmsgSe . 110

-WmsgSe: Setting a Message to Error 110

-WmsgSi . 111

-WmsgSi: Setting a Message to Information 111

-WmsgSw . . 111

-WmsgSw: Setting a Message to Warning 111

-WOutFile . . 112

-WOutFile: Create Error Listing File 112

-WStdout . 112

-WStdout: Write to standard output 112

6 Linking Issues 115
Object Allocation . . 115

The SEGMENTS Block (ELF) 115

The SECTIONS Block (HIWARE + ELF) 121

PLACEMENT Block . 124
8 Smart Linker

Table of Contents
Initializing Vector Table . 129

VECTOR Command . 129

Smart Linking (ELF) . 130

 Mandatory Linking from an Object 130

 Mandatory Linking from all Objects defined in a File 131

Switching OFF Smart Linking for the Application 131

Smart Linking (HIWARE + ELF). 131

 Mandatory Linking from an Object 132

 Mandatory Linking from all Objects defined in a File 132

Binary Files building an Application (ELF) 133

NAMES Block . . 133

ENTRIES Block . 133

Binary Files building an Application (HIWARE). 134

NAMES Block . . 134

Allocating Variables in "OVERLAYS". 135

Example: . 135

Overlapping Locals . 136

Example: . 136

Algorithm . . 137

Name Mangling for Overlapping Locals 139

Name Mangling in the ELF Object File Format 140

Defining an function with overlapping parameters in Assembler 141

DEPENDENCY TREE in the Map File 146

Optimizing the overlap size . . 147

Recursion Checks. . 147

Linker Defined Objects. . 149

Automatic Distribution of Paged Functions 151

Limitations . 156

Checksum Computation . 156

Prm file controlled Checksum Computation 157

Automatic Linker controlled Checksum Computation 158

Partial Fields. . 160

Runtime support . 160
9Smart Linker

Table of Contents
 Linking an Assembly Application 160

Prm File . 160

 WARNINGS . 161

Smart Linking . 161

LINK_INFO(ELF) . 164

7 The Parameter File 165
The Syntax of the Parameter File 165

Mandatory SmartLinker Commands. 168

The INCLUDE directive . 169

8 SmartLinker Commands 171
AUTO_LOAD . 171

AUTO_LOAD: Load Imported Modules (HIWARE, M2) 171

CHECKSUM . 172

CHECKSUM: Checksum computation (ELF). 172

CHECKKEYS . 176

CHECKKEYS: Check Module Keys (HIWARE, M2) 176

DATA . 176

DATA: Specify the RAM Start (HIWARE) 176

DEPENDENCY . 177

DEPENDENCY: Dependency Control 177

ROOT . 178

USES . 178

ADDUSE . . 179

DELUSE . 180

Overlapping of local variables and parameters 181

ENTRIES . 182

ENTRIES: List of Objects to Link with the Application. 182

HAS_BANKED_DATA . 184

HAS_BANKED_DATA: Application has banked data (HIWARE) 184

HEXFILE . . 185

HEXFILE: Link a Hex File with the Application 185
10 Smart Linker

Table of Contents
INIT . 186

INIT: Specify the Application Init Point 186

LINK. . 187

LINK: Specify Name of Output File 187

MAIN . 188

MAIN: Name of the Application Root Function 188

MAPFILE . . 189

MAPFILE: Configure Map File Content 189

NAMES. . 192

NAMES: List the Files building the Application. 192

OVERLAP_GROUP. . 194

OVERLAP_GROUP: Application uses Overlapping (ELF) 194

PLACEMENT . 196

PLACEMENT: Place Sections into Segments 196

PRESTART . 198

PRESTART: Application Prestart Code (HIWARE) 198

SECTIONS . 199

SECTIONS: Define Memory Map 199

SEGMENTS . . 202

SEGMENTS: Define Memory Map (ELF) 202

STACKSIZE . . 208

STACKSIZE: Define Stack Size 208

STACKTOP . 210

STACKTOP: Define Stack Pointer Initial Value 210

START . 211

START: Specify the ROM Start (HIWARE) 211

VECTOR . 212

VECTOR: Initialize Vector Table 212

9 Sections (ELF) 215
Terms: Segments and Sections . . 215

Definition of Section. . 215

Predefined Sections . 216
11Smart Linker

Table of Contents
10 Segments (HIWARE) 219
Terms: Segments and Sections (HIWARE) 219

Definition of Segment (HIWARE) 219

Predefined Segments . 220

11 Examples 223
Example 1 . . 223

Example 2 . . 223

12 Program Startup 225
The Startup Descriptor (ELF) . 225

User Defined Startup Structure: (ELF) 228

Example . 229

User Defined Startup Routines (ELF) 230

The Startup Descriptor (HIWARE) 230

User Defined Startup Routines (HIWARE) 232

Example of Startup Code in ANSI-C 232

13 The Map File 239
Map File Contents. . 239

14 ROM Libraries 241
Creating a ROM Library . 241

ROM Libraries and Overlapping Locals 242

Using ROM Libraries . 242

Suppressing Initialization. . 242

15 How To ... 249
How To Initialize the Vector Table 249

Initializing the Vector Table in the SmartLinker Prm File 249

Initializing the Vector Table in the Assembly Source File Using a Relocatable
Section . . 251

Initializing the Vector Table in the Assembly Source File Using an Absolute
Section . . 254
12 Smart Linker

Table of Contents
16 Messages 257
Message Kinds . 257
13Smart Linker

Table of Contents
14 Smart Linker

1
Introduction

This section describes the SmartLinker. The linker merges the various object files of
an application into one file, a so-called absolute file (or .ABS file for short; the file is
called absolute file because it contains absolute, not relocatable code) that can be
converted to a Motorola S-Record or an Intel Hex file using the Burner program or
loaded into the target using the Downloader/Debugger.

The Linker is a smart linker, i.e. it will only link those objects that are actually used by
your application.

This linker is able to generate either HIWARE or ELF absolute files.

For compatibility purpose, the HIWARE input syntax is also supported when ELF
absolute files are generated.

Notation
Throughout this document, features or syntax which are only supported when ELF/
Dwarf absolute files are generated will be followed by (ELF) .

Features or syntax which are only supported when HIWARE absolute files are
generated will be followed by (HIWARE) .

Features or syntax which are supported when either HIWARE or ELF absolute files
are generated will be followed by (HIWARE+ELF) .

Structure of this Document
• User interface

• Environment

• SmartLinker Options: detailed description of the full set of Linker options

• SmartLinker Commands: list of all directives supported by the linker

• SmartLinker Messages: description with examples of messages produced by the
SmartLinker
15Smart Linker

Introduction
Purpose of a Linker
• Appendix

• Index

Purpose of a Linker
Linking is the process of assigning memory to all global objects (functions, global
data, strings and initialization data) needed for a given application and combining
these objects into a format suitable for downloading into a target system or an
emulator.

The Linker is a smart linker: it only links those objects that are actually used by the
application. Unused functions and variables won’t occupy any memory in the target
system. Besides this, there are other optimizations leading to low memory
requirements of the linked program: initialization parts of global variables are stored
in compact form and for equal strings, memory is reserved only once.

The most important features supported by the SmartLinker are:

• Complete control over the placement of objects in memory: it is possible to
allocate different groups of functions or variables to different memory areas
(Segmentation, please see section Segments).

• Linking to objects already allocated in a previous link session (ROM libraries).

NOTE User defined startup: The code for application startup is a separate
file written in inline assembly and can be easily adapted to your
particular needs. In this chapter and associated examples, the startup
file is called startup.c / startup.o. However, this is a generic file name
that has to be replaced by the real target startup file name given in the
\LIB\COMPILER directory, in the README.TXT file (usually
start*.c / start*.o where * is the name or a part of the MCU name and
might also contain an abbreviation of the memory model). Please see
also the README.TXT file or the STARTUP.TXT file in the
\LIB\COMPILER directory for more details about memory models
and associated startup codes.

• Mixed language linking: Modula-2, Assembly and C object files can be mixed,
even in the same application.

• Initialization of vectors.
16 Smart Linker

2
User Interface

The SmartLinker runs under Win32.

Run the linker from the Shell, clicking the Linker icon on the shell tool bar.

Tip of The Day Dialog
When you start the SmartLinker, a standard Tip of the Day window is opened
containing the last news about the SmartLinker, as shown in Figure 2.1.

Figure 2.1 Tip of the Day Window

The Next Tip button allows you to see the next tip about the SmartLinker.

If you do not want to open automatically the standard Tip of the Day window when the
SmartLinker is started, just unchecked the check box Show Tips on StartUp. Note that
this configuration entry is stored in the local project file.
17Smart Linker

User Interface
Main Window
If you want to enable automatic display from the standard Tip of the Day window
when the SmartLinker is started, just select the entry Help | Tip of the Day.... The
window will be opened and you can check the box Show Tips on StartUp.

Click Close to close the Tip of the Day window.

Main Window
Figure 2.2 SmartLinker Main Window

This window is only visible on the screen when you do not specify any file name while
starting the SmartLinker.

The SmartLinker window provides a window title, a menu bar, a tool bar, a content
area and a status bar, as shown in Figure 2.2.

Window Title
The window title displays the project name. If currently no project is loaded, “Default
Configuration” is displayed. A “*” after the configuration name indicates if some

Menu Bar

Content
Area

Status Bar

Toolbar

Window

Title
18 Smart Linker

User Interface
Main Window
values have been changed. The “*” appears as soon as an option, the editor
configuration or the window appearance changes.

Content Area
The Content Area is used as a text container where logging information about the link
session is displayed. This logging information consists of:

• the name of the prm file which is being linked.

• the whole name (including full path specification) of the files building the
application.

• the list of the errors, warnings and information messages generated.

When a file name is dropped into the SmartLinker Window content area, the
corresponding file is either loaded as configuration or linked. It is loaded as
configuration if the file has the extension “ini”. If not, the file is linked with the current
option settings (See Specifying the Input File below).

All text in the SmartLinker window content area can have context information. The
context information consists of two items:

• a file name including a position inside of a file

• a message number

File context information is available for all output lines where a file name is displayed.
There are two ways to open the file specified in the file context information in the
editor specified in the editor configuration:

• If a file context is available for a line, double clicking on a line containing file
context information.

• Click with the right mouse at a line and select “Open ..”. This entry is only
available if a file context is available.

If a file can not be opened although a context menu entry is present, the editor
configuration information is not correct (see the section Edit Settings Dialog below).

The message number is available for any message output. Then there are three ways to
open the corresponding entry in the help file.

• Select one line of the message and press F1. If the selected line does not have a
message number, the main help is displayed.

• Press Shift-F1 and then click on the message text. If the point clicked at does not
have a message number, the main help is displayed.

• Click with the right mouse at the message text and select “Help on ...”. This entry
is only available if a message number is available.
19Smart Linker

User Interface
Main Window
Messages are colored according to their kind. Errors are shown red, Fatal Errors dark
red, Warnings blue and Information Messages green.

Tool Bar
Figure 2.3 describes the tool Bar buttons.

Figure 2.3 Tool Bar buttons

The three buttons on the left are linked with the corresponding entries of the File
menu. The New Configuration , the Load Configuration and the Save
Configuration allow to reset, load and save configuration files for the linker.

The Help button and the Context Help button allow to open the Help file or
the Context Help.

When pressing , the mouse cursor changes it’s form and has now a question mark
beside the arrow. The help is called for the next item that is clicked. Specific help on
Menus, toolbar buttons or on the window area can be get using the Context Help.

The command line history contains the list of the last commands executed. Once a
command line has been selected or entered in this combo box, click the Link button

 to execute this command. The Stop Linking button allows to abort the current
link session. If no link session is running, this button is disabled (gray).

The Option Settings button allows to open the Option Settings dialog.

The Message Settings button allows to open the Message Settings dialog.
20 Smart Linker

User Interface
Main Window
The Clear button allows to clear the SmartLinker window content area.

The command line in the toolbar can be activated using the F2 key.

With the right mouse button, a context menu can be shown.

Messages are colored according to their Message Class.

Status Bar
Figure 2.4 shows the Status bar.

Figure 2.4 Status bar

When pointing to a button in the tool bar or a menu entry, the message area will
display the function of the button or menu entry you are pointing to.

Linker Menu Bar
Following menus are available in the menu bar:

File Menu
With the File Menu SmartLinker configuration files can be saved or loaded. A
SmartLinker configuration file contains following information:

File : Contains entries to manage
 SmartLinker configuration files.

SmartLinker : Contains entries to set SmartLinker
 options.

View : Contains entries to customize the
 SmartLinker window output.

Help : A standard Windows Help menu.
21Smart Linker

User Interface
Main Window
• the SmartLinker option settings specified in the SmartLinker dialog boxes

• the Message settings which specify which messages to display and which to treat
as error.

• the list of the last command line executed and the current command line.

• the window position, size and font.

• the Tips of the Day settings, including if enabled at startup and which is the
current entry

• Configuration files are text files, which have standard extension .ini. The user can
define as many configuration files as required for his project, and can switch
between the different configuration files using the File | Load Configuration and
File | Save Configuration menu entry or the corresponding tool bar buttons. Table
2.1 describes the menu items with their description.

Table 2.1 File menu items and their description

Menu Item Description

Link Opens a standard Open File box, displaying the list
of all the .prm files in the project directory. The input
file can be selected using the features from the
standard Open File box. The selected file will be
linked as soon as the open File box is closed using
OK.

New/Default
Configuration

Resets the SmartLinker option settings to the default
value. The SmartLinker options, which are activated
per default, are specified in section Command Line
Options from this document.

Load Configuration Opens a standard Open File box, displaying the list
of all the .INI files in the project directory. The
configuration file can be selected using the features
from the standard Open File box. The configuration
data stored in the selected file is loaded and will be
used by a further link session.

Save Configuration Saves the current settings in the configuration file
specified on the title bar.

Save Configuration as... Opens a standard Save As box, displaying the list of
all the .INI files in the project directory. The name or
location of the configuration file can be specified
using the features from the standard Save As box.
The current settings are saved in the specified file as
soon as the save As box is closed clicking OK
22 Smart Linker

User Interface
Main Window
Edit Settings Dialog
The Editor Settings dialog box, as shown in Figure 2.5 has a main selection entry.
Depending on the main type of editor selected, the content below changes.

There are the following main entries:

• Global Editor (Figure 2.5)

Figure 2.5 Editor Settings - Global Editor

Configuration... Opens the Configuration dialog box to specify the
editor used for error feedback and which parts to
save with a configuration.

1. project.ini
2.

Recent project list. This list can be accessed to open
a recently opened project again.

Exit Closes the SmartLinker.

Table 2.1 File menu items and their description (continued)

Menu Item Description
23Smart Linker

User Interface
Main Window
The global editor is shared among all tools and projects on one computer. It is stored in
the global initialization file "MCUTOOLS.INI" in the "[Editor]" section. Some
Modifiers can be specified in the editor command line.

• Local Editor (Figure 2.6)

Figure 2.6 Editor Settings - Local Editor

The local editor is shared among all tools using the same project file. Some Modifiers
can be specified in the editor command line

The Global and Local Editor configuration can be edited with the linker. However,
when these entries are stored, the behavior of the other tools using the same entry does
also change when they are started the next time.

• Editor started with Command Line (Figure 2.7)
24 Smart Linker

User Interface
Main Window
Figure 2.7 Editor Settings - Editor started with Command Line

When this editor type is selected, a separate editor is associated with the SmartLinker
for error feedback. The editor configured in the Shell is not used for error feedback.

Enter the command, which should be used to start the editor.

The format from the editor command depends on the syntax, which should be used to
start the editor. Some Modifiers can be specified in the editor command line to refer to
a file name of a line number (See section Modifiers below).

The format from the editor command depends on the syntax which should be used to
start the editor.

Example: (also look at the notes below)

For Winedit 32 bit version use (with an adapted path to the winedit.exe file)
C:\WinEdit32\WinEdit.exe %f /#:%l

For Write.exe use (with an adapted path to the write.exe file, note that write does not
support line number).

C:\Winnt\System32\Write.exe %f

• Editor Communication with DDE (Figure 2.8)
25Smart Linker

User Interface
Main Window
Figure 2.8 Editor Settings - Editor Communication with DDE

Enter the service, topic and client name to be used for a DDE connection to the editor.
All entries can have modifiers for file name and line number as explained below in
section Modifiers.

Example:

For Microsoft Developer Studio use the following setting:

Service Name: "msdev"
Topic Name: "system"
ClientCommand: "[open(%f)]"

• Modifiers

The configurations should contain some modifiers to tell the editor which file to open
and at which line.

• The %f modifier refers to the name of the file (including path) where the error has
been detected.

• The %l modifier refers to the line number where the message has been detected

NOTE Be careful, the %l modifier can only be used with an editor which can
be started with a line number as parameter. This is not the case for
26 Smart Linker

User Interface
Main Window
WinEdit version 3.1 or lower or for the Notepad. When you work
with such an editor, you can start it with the file name as parameter
and then select the menu entry ‘Go to’ to jump on the line where the
message has been detected. In that case the editor command looks
like: C:\WINAPPS\WINEDIT\Winedit.EXE %f
Please check your editor manual to define the command line which
should be used to start the editor.

Save Configuration Dialog
On the second index of the configuration dialog (Figure 2.9), all options considering
the save operation are contained.

Figure 2.9 Save Configuration

In the Save Configuration index, four checkboxes allow to choose which items to
save into a project file while the configuration is saved.

This dialog has the following configurations:

• Options: This item is related to the option and message settings. If this checkbox
is set, the current option and message settings are stored in the project file when
27Smart Linker

User Interface
Main Window
the configuration is saved. By disabling this checkbox, changes done to the
option and message settings are not saved, the previous settings remain valid.

• Editor Configuration: This item is related to the editor settings. If this checkbox is
set, the current editor settings are stored in the project file when the configuration
is saved. By disabling this checkbox, the previous settings remain valid.

• Appearance: This item is related to many parts like the window position (only
loaded at startup time) and the command line content and history. If this
checkbox is set, these settings are stored in the project file when the current
configuration is saved. By disabling this checkbox, the previous settings remain
valid.

NOTE By disabling selective options, only some parts of a configuration file
can be written. For example when the suitable editor has been
configured, the save Editor mark can be removed. Then future save
commands will not modify the options any more.

• Save on Exit: If this option is set, the linker writes the configuration on exit. No
question will appear to confirm this operation. If this option is not set, the linker
does not write the configuration at exit, even if options or another part of the
configuration has changed. No confirmation will appear in any case when closing
the linker.

NOTE Almost all settings are stored in the project configuration file only.
The only exceptions are:
- The recently used configuration list.
- All settings in this dialog.

NOTE The configurations of the linker can, and in fact are intended to,
coexist in the same file as the project configuration of the shell.
When the shell configures an editor, the linker can read this content
out of the project file, if present. The project configuration file of the
shell is named project.ini. This file name is therefore also suggested
(but not mandatory) to the linker
28 Smart Linker

User Interface
Main Window
SmartLinker Menu
The SmartLinker menu allows you to customize the SmartLinker. You can graphically
set or reset SmartLinker options or define the optimization level you want to reach.
Table 2.2 describes the SmartLinker menu items with their description.

View Menu
The View menu allows you to customize the linker window. You can define if the
status bar or the tool bar must be displayed or hidden. You can also define the font
used in the window or clear the window. Table 2.3 describes the View menu items
with their description.

Table 2.2 SmartLinker menu items and their description

Menu Item Description

Options... allows you to define the options which must be activated when
linking an input file (See Option Settings Dialog Box below)

Messages opens a dialog box, where the different error, warning or
information messages can be mapped to another message
class (See Message Setting Dialog Box below).

Stop Linking stops the currently running linking process. This entry is only
enabled (black) when a link process currently takes place.
Otherwise, it is gray.

Table 2.3 View menu items and their description

Menu Item Description

Tool Bar switches display from the tool bar in the SmartLinker window.

Status Bar switches display from the status bar in the SmartLinker
window.

Log... allows you to customize the output in the SmartLinker window
content area. Following entries are available when Log... is
selected:

Change Font opens a standard font selection box. The options selected in
the font dialog box are applied to the SmartLinker window
content area.

Clear Log allows you to clear the SmartLinker window content
area.
29Smart Linker

User Interface
Main Window
Options Settings Dialog Box
The Options Settings dialog box (Figure 2.10) allows you to set/reset SmartLinker
options.

Figure 2.10 Option Settings dialog box

The options available are arranged into different groups, and a sheet is available for
each of these groups. The content of the list box depends on the selected sheet. Table
2.4 describes the groups and their description.

Table 2.4 Option Settings group and their description

Group Description

Output lists options related to the output files generation (what kind of
files are to be generated).

Input lists options related to the input files.

Messages lists options controlling the generation of error messages.

Host lists host specific options.
30 Smart Linker

User Interface
Main Window
A SmartLinker option is set when its check box in front of it is checked. To obtain
more detailed explanation about a specific option, select the option and the press the
key F1 or the help button. To select an option, click once on the option text. The option
text is then displayed inverted.

When the dialog is opened, then no option is yet selected. Pressing the key F1 or the
help button then shows the help to this dialog.

Message Settings Dialog Box
The Message Settings (Figure 2.11) dialog box allows you to map messages to a
different message class.

Figure 2.11 Message Settings dialog box

A sheet is available for each error message class and the content of the list box
depends on the selected sheet. Table 2.5 describes the message classes available in the
Message Settings dialog box.
31Smart Linker

User Interface
Main Window
Table 2.5 Message Class description

Depending on the message class, messages are shown in a different color in the main
output area.

Each message has its own character (‘L’ for SmartLinker message) followed by a 4-5
digit number. This number allows an easy search for the message both in the manual
or on-line help.

Changing the Class associated with a Message
You can configure your own mapping of messages in the different classes. In that
purpose, you can use one of the buttons located on the right hand of the dialog box.
Each button refers to a message class. To change the class associated with a message,
you have to select the message in the list box and then click the button associated with
the class where you want to move the message.

Message
Class

Description Color

Disabled lists all messages disabled. That means
messages displayed in the list box will not
be displayed by the SmartLinker.

none.

Information lists all information messages. Informa-
tion messages informs about action taken
by the SmartLinker.

green

Warning lists all warning messages. When such a
message is generated, linking of the input
file continues and an absolute file is gen-
erated.

blue

Error lists all error messages. When such a mes-
sage is generated, linking of the input file
continues but no absolute file is gener-
ated.

red

Fatal lists all fatal error messages. When such a
message is generated, linking of the input
file stops immediately. Fatal messages
can not be changed. There are only listed
to call context help.

dark red
32 Smart Linker

User Interface
Main Window
Example:

To define the message ‘L1201: No stack defined' (warning message) as an error
message:

• Click the Warning sheet, to display the list of all warning messages in the list
box.

• Click on the string ‘L1201: No stack defined’ in the list box to select the message.

• Click Error to define this message as an error message.

NOTE Messages cannot be moved from or to the fatal error class.

NOTE The ‘move to’ buttons are only active when all selected messages can
be moved. When one message is marked which cannot be moved to a
specific group, the corresponding ‘move to’ button is disabled
(grayed).

If you want to validate the modification you have performed in the error message
mapping, close the 'Message settings' dialog box with the 'OK' button. If you close it
using the 'Cancel' button, the previous message mapping remains valid.

To reset some messages to their default, select them and click on the ‘Default’ button.
To reset all messages to the default, click on the ‘Reset All’ button.

About Box
The About box (Figure 2.12) can be opened with the Help->About command.
33Smart Linker

User Interface
Main Window
Figure 2.12 The About box

The about box contains many information. Among others, the current directory and
the versions of subparts of the linker are shown. The main linker version is displayed
separately on top of the dialog.

In addition, the about box contains all information needed to create a permanent
license. The content of the about box can be used by copy and paste. Select the
information, press the right mouse button and select “Copy”.

Click on OK to close this dialog.

During a linking session, the subversions of the linker parts can not be requested. They
are only displayed if the linker currently is not processing.

Retrieving Information about an Error
Message
You can access information about each message displayed in the list box. Select the
message in the list box and then click Help or the F1 key. An information box is
opened, which contains a more detailed description of the error message as well as a
small example of code producing it. If several messages are selected, the help of the
34 Smart Linker

User Interface
Main Window
first is shown. When no message is selected, pressing the key F1 or the help button
shows the help for this dialog.

Specifying the Input File
There are different ways to specify the input file, which must be linked. During linking
of a source file, the options are set according to the configuration performed by the
user in the different dialog boxes and according to the options specified on the
command line

Before starting to link a file make sure, you have associated a working directory with
your linker.

Use the Command Line in the Tool Bar to Link

Linking a New File
A new file name and additional SmartLinker options can be entered in the command
line. The specified file will be linked as soon as the button Link in the tool bar is
selected or the enter key is pressed.

Linking a File which has already been linked
The command executed previously can be displayed using the arrow on the right side
of the command line. A command is selected by clicking on it. It appears in the
command line. The specified file will be linked as soon as the button Link in the tool
bar is selected.

Use the Entry File | Link...
When the menu entry File | Link... is selected a standard file open file box is opened,
displaying the list of all the prm file in the project directory. The user can browse to
get the name of the file he wants to link. Select the desired file. Click Open in the
Open File box to link the selected file.

Use Drag and Drop
A file name can be dragged from an external software (for example the File Manager/
Explorer) and dropped into the SmartLinker window. The dropped file will be linked
as soon as the mouse button is released in the SmartLinker window. If a file being
dragged has the extension “ini”, it is considered a configuration and it is immediately
35Smart Linker

User Interface
Main Window
loaded and not linked. To link a prm file with the extension “ini” use one of the other
methods to link it.

Message/Error Feedback
After linking there are several ways to check where different errors or warnings have
been detected. Per default, the format of the error message looks as follows:

>> <FileName>, line <line number>, col <column number>, pos <absolute
position in file>
<Portion of code generating the problem>
<message class><message number>: <Message string>

Example

>> in "placemen\tstpla8.prm", line 23, col 0, pos 668
 fpm_data_sec INTO MY_RAM2;

END

^
ERROR L1110: MY_RAM2 appears twice in PLACEMENT block

See also SmartLinker options -WMsgFi, -WMsgFb, -WMsgFob, -WMsgFoi, -
WMsgFonF and -WMsgFonP for different message formats.

Use Information from the SmartLinker Window
Once a file has been linked, the SmartLinker window content area displays the list of
all the errors or warnings detected.

The user can use his usual editor, to open the source file and correct the errors.

Use a User Defined Editor
The editor for Error Feedback must first be configured in the Configuration dialog
box. The way error feedback is performed differently, depending if the editor can be
started with a line number or not.
36 Smart Linker

User Interface
Main Window
Line Number Can be Specified on the Command Line
Editor like WinEdit V95 or Higher or Codewright can be started with a line number in
the command line. When these editors have been correctly configured, they can be
activated automatically by double clicking on an error message. The configured editor
will be started, the file where the error occurs is automatically opened and the cursor is
placed on the line where the error was detected.

Line Number Cannot be Specified on The Command Line
Editor like WinEdit V31 or lower, Notepad, Wordpad cannot be started with a line
number in the command line. When these editors have been correctly configured, they
can be activated automatically by double clicking on an error message. The configured
editor will be started, the file where the error occurs is automatically opened. To scroll
to the position where the error was detected, you have to:

• Activate the assembler again

• Click the line on which the message was generated. This line is highlighted on the
screen.

• Copy the line in the clipboard pressing CTRL + C

• Activate the editor again.

• Select Search |Find, the standard Find dialog box is opened.

• Copy the content of the clipboard in the Edit box pressing CTRL + V

• Click Forward to jump to the position where the error was detected.
37Smart Linker

User Interface
Main Window
38 Smart Linker

3
Environment

This part of the document describes the environment variables used by the
SmartLinker. Some of those environment variables are also used by other tools (for
example, Macro Assembler, Compiler, ...), so consult also their respective manual.

Various parameters of the SmartLinker may be set in an environment using so-called
environment variables. The syntax is always the same:

Parameter = KeyName "=" ParamDef.

NOTE No blanks are allowed in the definition of an environment variable

Example:

GENPATH=C:\INSTALL\LIB;D:\PROJECTS\TESTS;/usr/local/lib;/
home/me/my_project

These parameters may be defined in several ways:

• Using system environment variables supported by your operating system.

• Putting the definitions in a file called DEFAULT.ENV (.hidefaults for UNIX) in
the project directory.

• Putting the definitions in a file given by the value of the system environment
variable ENVIRONMENT

NOTE The project directory mentioned above can be set via the system
environment variable DEFAULTDIR

When looking for an environment variable, all programs first search the system
environment, then the DEFAULT.ENV (.hidefaults for UNIX) file and finally the
global environment file given by ENVIRONMENT. If no definition can be found, a
default value is assumed.

NOTE The environment may also be changed using the -Env SmartLinker
option.
39Smart Linker

Environment
The Current Directory
The Current Directory
The most important environment for all tools is the current directory. The current
directory is the base search directory where the tool starts to search for files (for
example, for the DEFAULT.ENV / .hidefaults)

Normally, the current directory of a tool started is determined by the operation system
or by the program who launches another one (for example, WinEdit).

For the UNIX operating system, the directory in which, an executable is started is also
the current directory from where the binary file has been started.

For MS Windows based operating systems, the current directory definition is quite
complex:

• If the tool is launched using a File Manager/Explorer, the current directory is the
location of the executable launched.

• If the tool is launched using an Icon on the Desktop, the current directory is the
working directory specified and associated with the Icon.

• If the tool is launched by dragging a file on the icon of the executable under
Windows 95 or Windows NT 4.0, the desktop is the current directory.

• If the tool is launched by another launching tool with its own working directory
specification (e.g. an editor as WinEdit), the current directory is the one specified
by the launching tool (e.g. working directory definition in WinEdit).

• Changing the current project file does also change the current directory if the
other project file is in a different directory. Note that browsing for a prm file does
not change the current directory.

To overwrite this behavior, the environment variable DEFAULTDIR may be used.

The current directory is displayed among other information with the linker option “-v”
and in the about box.

Global Initialization File (MCUTOOLS.INI)
(PC only)

All tools may store some global data into the MCUTOOLS.INI. The tool first searches
for this file in the directory of the tool itself (path of the executable). If there is no
MCUTOOLS.INI file in this directory, the tool looks for a MCUTOOLS.INI file
located in the MS Windows installation directory (for example, C:\WINDOWS).

Example:
40 Smart Linker

Environment
Global Initialization File (MCUTOOLS.INI) (PC only)
C:\WINDOWS\MCUTOOLS.INI

D:\INSTALL\PROG\MCUTOOLS.INI

If a tool is started in the D:\INSTALL\PROG\DIRECTOY, the current file in the same
directory than the tool is used (D:\INSTALL\PROG\MCUTOOLS.INI).

However, if the tool is started outside the D:\INSTALL\PROG directory, the current
file in the Windows directory is used (C:\WINDOWS\MCUTOOLS.INI).

[Installation] Section

[Options] Section

Entry: Path

Arguments: Last installation path.

Description: Whenever a tool is installed, the installation script stores the
installation destination directory into this variable.

Example: Path=c:\install

Entry: Group

Arguments: Last installation program group.

Description: Whenever a tool is installed, the installation script stores the
installation program group created into this variable.

Example: Group=ANSI-C Compiler

Entry: DefaultDir

Arguments: Default Directory to be used.

Description: Specifies the current directory for all tools on a global level (see
also environment variable DEFAULTDIR).

Example: DefaultDir=c:\install\project
41Smart Linker

Environment
Global Initialization File (MCUTOOLS.INI) (PC only)
[LINKER] Section

Entry: SaveOnExit

Arguments: 1/0

Description: 1 if the configuration should be stored when the linker is closed,
0 if it should not be stored. The linker does not ask to store a
configuration in either cases.

Entry: SaveAppearance

Arguments: 1/0

Description: 1 if the visible topics should be stored when writing a project
file, 0 if not. The command line, its history, the windows position
and other topics belong to this entry.

Entry: SaveEditor

Arguments: 1/0

Description: 1 if the visible topics should be stored when writing a project
file, 0 if not. The editor settings contain all information of the
editor configuration dialog.

Entry: SaveOptions

Arguments: 1/0

Description: 1 if the options should be contained when writing a project file, 0
if not. The options do also contain the message settings.

Entry: RecentProject0, RecentProject1, ...

Arguments: names of the last and prior project files

Description: This list is updated when a project is loaded or saved. Its current
content is shown in the file menu.

Entry: TipFilePos

Arguments: any integer, e.g. 236

Description: Index which tip is actually shown, used to display different tips
every time.
42 Smart Linker

Environment
Global Initialization File (MCUTOOLS.INI) (PC only)
[Editor] Section

Entry: ShowTipOfDay

Arguments: 0/1

Description: Should the Tip of the Day dialog be shown at startup.

1: it should be shown

0: no, only when opened in the help menu

Entry: TipTimeStamp

Arguments: date

Description: This entry is used to remark when a new tips are available.
Whenever the date specified here does not match the date of
the tips, the first tip is displayed.

Example: [LINKER]

TipFilePos=357

TipTimeStamp=Jan 25 2000 12:37:41

ShowTipOfDay=0

SaveOnExit=1

SaveAppearance=1

SaveEditor=1

SaveOptions=0

RecentProject0=C:\myprj\project.ini

RecentProject1=C:\otherprj\project.ini

Entry: Editor_Name

Arguments: The name of the global editor

Description: Specifies the name, which is displayed for the global editor. This
entry has only a description effect. Its content is not used to start
the editor.

Saved: Only with Editor Configuration set in the File->Configuration
Save Configuration dialog.
43Smart Linker

Environment
Global Initialization File (MCUTOOLS.INI) (PC only)
Example
The following example shows a typical layout of the MCUTOOLS.INI:

[Installation]
Path=c:\metrowerks
Group=ANSI-C Compiler

[Editor]
editor_name=WinEdit
editor_exe=C:\Winedit\WinEdit.exe
editor_opts=%f

[Options]
DefaultDir=c:\myprj

Entry: Editor_Exe

Arguments: The name of the executable file of the global editor

Description: Specifies file name (including path), which is called for showing
a text file, when the global editor setting is active. In the editor
configuration dialog, the global editor selection is only active
when this entry is present and not empty.

Saved: Only with Editor Configuration set in the File->Configuration
Save Configuration dialog.

Entry: Editor_Opts

Arguments: The options to use the global editor

Description: Specifies options, which should be used for the global editor. If
this entry is not present or empty, “%f” is used. The command
line to launch the editor is build by taking the Editor_Exe
content, then appending a space followed by this entry.

Saved: Only with Editor Configuration set in the File->Configuration
Save Configuration dialog.

Example: [Editor]

editor_name=WinEdit

editor_exe=C:\Winedit\WinEdit.exe

editor_opts=%f
44 Smart Linker

Environment
Local Configuration File (usually project.ini)
[Linker]
SaveOnExit=1
SaveAppearance=1
SaveEditor=1
SaveOptions=1
RecentProject0=c:\myprj\project.ini
RecentProject1=c:\otherprj\project.ini

Local Configuration File (usually
project.ini)

The SmartLinker does not change the default.env in any way. Its content is only read.
All the configuration properties are instead stored in the configuration file. The same
configuration file can and is intended to be used by different applications.

The shell uses the configuration file with the name “project.ini” in the current
directory only, that is why this name is also suggested to be used with the linker. Only
when the shell uses the same file as the linker, the linker can use the editor
configuration written and maintained by the shell. Apart from this, the linker can use
any file name for the project file. The configuration file does have the same format as
windows ini files. The linker stores its own entries with the same section name as in
the global mcutools.ini file. Different versions of the linker are using the same entries.
This mainly plays a role when options only available in one version should be stored
in the configuration file. In such situations, two files must be maintained for the
different linker versions. If no incompatible options are enabled when the file is last
saved, the same file may can be used for both linker version.

The current directory is always the directory, where the configuration is in. If a
configuration file in a different directory is loaded, then the current directory also
changes. When the current directory changes, also the whole default.env file is
reloaded. Always when a configuration file is loaded or stored, the options in the
environment variable LINKOPTIONS are reloaded and added to the project options.
This behavior has to be noticed when in different directories different default.env exist
which do contain incompatible options in the LINKOPTIONS. When a project is
loaded using the first default.env, its LINKOPTIONS are added to the configuration
file. If then this configuration is stored in a different directory, where a default.env
exists with the incompatible options, the linker adds options and remarks the
inconsistency. Then a message box appears to inform the user that the default.env
options were not added. In such a situation, the user can either remove the option from
the configuration file with the advanced option dialog or he can remove the option
45Smart Linker

Environment
Local Configuration File (usually project.ini)
from the default.env with the shell or a text editor depending which options should be
used in the future.

At startup there are two ways to load a configuration:

• use the command line option -Prod

• the file project.ini the current directory

If the option -Prod is used, then the current directory is the directory the project file is
in. If the option -prog is used with a directory, the file project.ini in this directory is
loaded.

[Editor] Section

Entry: Editor_Name

Arguments: The name of the local editor

Description: Specifies the name, which is displayed for the local editor. This
entry has only a description effect. Its content is not used to start
the editor.

Saved: Only with Editor Configuration set in the File->Configuration
Save Configuration dialog.
This entry has the same format as for the global editor
configuration in the mcutools.ini file.

Entry: Editor_Exe

Arguments: The name of the executable file of the local editor (including
path).

Description: Specifies file name with is called for showing a text file, when
the local editor setting is active. In the editor configuration
dialog, the local editor selection is only active when this entry is
present and not empty.

Saved: Only with Editor Configuration set in the File->Configuration
Save Configuration dialog.
This entry has the same format as for the global editor
configuration in the mcutools.ini file.

Entry: Editor_Opts

Arguments: The options to use the local editor
46 Smart Linker

Environment
Local Configuration File (usually project.ini)
[[LINKER] Section

Description: Specifies options, which should be used for the local editor. If
this entry is not present or empty, “%f” is used. The command
line to launch the editor is build by taking the Editor_Exe
content, then appending a space followed by this entry.

Saved: Only with Editor Configuration set in the File->Configuration
Save Configuration dialog.
This entry has the same format as for the global editor
configuration in the mcutools.ini file.

Example: [Editor]
editor_name=WinEdit
editor_exe=C:\Winedit\WinEdit.exe
editor_opts=%f

Entry: RecentCommandLineX, X= Integer

Arguments: String with a command line history entry, for example, fibo.prm

Description: This list of entries contains the content of command line
history.

Saved: Only with Appearance set in the File > Configuration Save
Configuration dialog.

Entry: CurrentCommandLine

Arguments: String with the command line, for example, fibo.prm -w1

Description: The currently visible command line content.

Saved: Only with Appearance set in the File->Configuration Save
Configuration dialog.

Entry: StatusbarEnabled

Arguments: 1/0

Special: This entry is only considered at startup. Later load operations
do not use it any more.

Description: Is currently the status bar enabled.

1: the status bar is visible
47Smart Linker

Environment
Local Configuration File (usually project.ini)
0: the status bar is hidden

Saved: Only with Appearance set in the File > Configuration Save
Configuration dialog.

Entry: ToolbarEnabled

Arguments: 1/0

Special: This entry is only considered at startup. Later load operations
do not use it any more.

Description: Is currently the tool bar enabled.

1: the tool bar is visible

0: the tool bar is hidden

Saved: Only with Appearance set in the File > Configuration Save
Configuration dialog.

Entry: WindowPos

Arguments: 10 integers, e.g. “0,1,-1,-1,-1,-1,390,107,1103,643”

Special: This entry is only considered at startup. Later load operations
do not use it any more.
Changes of this entry do not show the “*” in the title.

Description: This numbers contain the position and the state of the window
(maximized,..) and other flags.

Saved: Only with Appearance set in the File > Configuration Save
Configuration dialog.

Entry: WindowFont

Arguments: size: == 0 -> generic size, < 0 -> font character height, > 0 font
cell height

weight: 400 = normal, 700 = bold (valid values are 0..1000)

italic: 0 == no, 1 == yes

font name: max 32 characters.

Description: Font attributes.

Saved: Only with Appearance set in the File > Configuration Save
Configuration dialog.

Example: WindowFont=-16,500,0,Courier
48 Smart Linker

Environment
Local Configuration File (usually project.ini)
Entry: Options

Arguments: -W2

Description: The currently active option string. Because also the messages
are be contained here, this entry can be very long.

Saved: Only with Options set in the File > Configuration Save
Configuration dialog.

Entry: EditorType

Arguments: 0/1/2/3

Description: 0: global editor configuration (in the file mcutools.ini)
1: local editor configuration (the one in this file)
2: command line editor configuration, entry
 EditorCommandLine
3: DDE editor configuration, entries beginning with EditorDDE
For details see also Editor Configuration.

Saved: Only with Editor Configuration set in the File > Configuration
Save Configuration dialog.

Entry: EditorCommandLine

Arguments: command line, for WinEdit: “C:\Winapps\WinEdit.exe %f /#:%l”

Description: Command line content to open a file. For details see also Editor
Configuration.

Saved: Only with Editor Configuration set in the File > Configuration
Save Configuration dialog.

Entry: EditorDDEClientName

Arguments: client commend, for example, “[open(%f)]”

Description: Name of the client for DDE editor configuration.
For details see also Editor Configuration.

Saved: Only with Editor Configuration set in the File > Configuration
Save Configuration dialog.

Entry: EditorDDETopicName

Arguments: topic name, for example, “system”
49Smart Linker

Environment
Local Configuration File (usually project.ini)
Example
The following example shows a typical layout of the configuration file (usually
project.ini):

[Editor]
Editor_Name=WinEdit
Editor_Exe=C:\WinEdit\WinEdit.exe %f /#:%l
Editor_Opts=%f

[Linker]
StatusbarEnabled=1
ToolbarEnabled=1
WindowPos=0,1,-1,-1,-1,-1,390,107,1103,643
WindowFont=-16,500,0,Courier
Options=-w1
EditorType=3
RecentCommandLine0=fibo.prm -w2
RecentCommandLine1=fibo.prm
CurrentCommandLine=calc.prm -w2
EditorDDEClientName=[open(%f)]
EditorDDETopicName=system
EditorDDEServiceName=msdev
EditorCommandLine=C:\WinEdit\WinEdit.exe %f /#:%l

Description: Name of the topic for DDE editor configuration.
For details see also Editor Configuration.

Saved: Only with Editor Configuration set in the File > Configuration
Save Configuration dialog.

Entry: EditorDDEServiceName

Arguments: service name, for example, “system”

Description: Name of the service for DDE editor configuration.
For details see also Editor Configuration.

Saved: Only with Editor Configuration set in the File > Configuration
Save Configuration dialog.
50 Smart Linker

Environment
Paths
Paths
Most environment variables contain path lists telling where to look for files. A path list
is a list of directory names separated by semicolons following the syntax below:

PathList = DirSpec {";" DirSpec}.

DirSpec = ["*"] DirectoryName.

Example:

GENPATH=C:\INSTALL\LIB;D:\PROJECT\TEST;\usr\loc\metrowerks\lib
;\home\me

If a directory name is preceded by an asterisk ("*"), the programs recursively search
that whole directory tree for a file, not just the given directory itself. The directories
are searched in the order they appear in the path list.

Example:

LIBPATH=*C:\INSTALL\LIB

NOTE Some DOS/UNIX environment variables (like GENPATH,
LIBPATH, etc.) are used. For further details refer to “Environment.”

Line Continuation
It is possible to specify an environment variable in a environment file (default.env/
.hidefautls) over different lines using the line continuation character ‘\’:

Example:

COMPOPTIONS=\
-W2 \
-Wpd

This is the same as

COMPOPTIONS=-W2 -Wpd

However, this feature may be dangerous using it together with paths, for example,

GENPATH=.\
TEXTFILE=.\txt
51Smart Linker

Environment
Environment Variable Details
will result in

GENPATH=.TEXTFILE=.\txt

To avoid such problems, we recommend to use a semicolon’;’ at the end of a path if
there is a ‘\’ at the end:

GENPATH=.\;
TEXTFILE=.\txt

Environment Variable Details
The remainder of this section is devoted to describing each of the environment
variables available for the SmartLinker. Table 3.1 contains options in alphabetical
order and each is divided into several sections.
52 Smart Linker

Environment
.ABSPATH
.ABSPATH

ABSPATH: Absolute Path

Table 3.1 Environment variables and their description

Topic Description

Tools Lists tools which are using this variable

Synonym For some environment variables, a synonym also exists.
Those synonyms may be used for older releases of the
SmartLinker and will be removed in the future. A synonym has
lower precedence than the environment variable.

Syntax Specifies the syntax of the option in a EBNF format.

Arguments Describes and lists optional and required arguments for the
variable.

Default Shows the default setting for the variable or none.

Description Provides a detailed description of the option and how to use it.

Example Gives an example of usage, and effects of the variable where
possible. The example shows an entry in the default.env for
PC or in the .hidefaults for UNIX.

See also Names related sections.

Tools: SmartLinker, Debugger

Synonym: None

Syntax: "ABSPATH=" {<path>}.

Arguments: <path>: Paths separated by semicolons, without spaces.

Description: When this environment variable is defined, the SmartLinker
will store the absolute files it produces in the first directory
specified there. If ABSPATH is not set, the generated absolute
files will be stored in the directory the parameter file was
found.

Example: ABSPATH=\sources\bin;..\..\headers;\usr\local\bin

See also: none
53Smart Linker

Environment
COPYRIGHT
COPYRIGHT

COPYRIGHT: Copyright Entry in Absolute
File

DEFAULTDIR

DEFAULTDIR: Default Current Directory

Tools: Compiler, Assembler, SmartLinker, Librarian

Synonym: none.

Syntax: "COPYRIGHT=" <copyright>.

Arguments: <copyright>: copyright entry.

Default: none.

Description: Each absolute file contains an entry for a copyright string. This
information may be retrieved from the absolute files using the
decoder.

Example: COPYRIGHT=Copyright by PowerUser

See also: Environment variable USERNAME
Environment variable INCLUDETIME

Tools: Compiler, Assembler, SmartLinker, Decoder, Debugger,
Librarian, Maker, Burner

Synonym: none.

Syntax: "DEFAULTDIR=" <directory>.

Arguments: <directory>: Directory to be the default current directory.

Default: none.

Description: With this environment variable the default directory for all tools
may be specified. All the tools indicated above will take the
directory specified as their current directory instead the one
defined by the operating system or launching tool (e.g. editor).
54 Smart Linker

Environment
ENVIRONMENT
NOTE This is an environment variable on system level (global environment
variable) It cannot be specified in a default environment file
(DEFAULT.ENV/.hidefaults)

ENVIRONMENT

ENVIRONMENT: Environment File
Specification

NOTE This is an environment variable on system level (global environment
variable) It cannot be specified in a default environment file
(DEFAULT.ENV/.hidefaults)

Example: DEFAULTDIR=C:\INSTALL\PROJECT

See also: Section The Current Directory
Section MCUTOOLS.INI File’

Tools: Compiler, SmartLinker, Decoder, Debugger, Librarian, Maker

Synonym: HIENVIRONMENT

Syntax: "ENVIRONMENT=" <file>.

Arguments: <file>: file name with path specification, without spaces

Default: none.

Description: This variable has to be specified on system level. Normally the
SmartLinker looks in the current directory for a environment file
named default.env (.hidefaults on UNIX). Using
ENVIRONMENT (e.g. set in the autoexec.bat (DOS) or .cshrc
(UNIX)), a different file name may be specified.

Example: ENVIRONMENT=\METROWERKS\prog\global.env

See also: none.
55Smart Linker

Environment
ERRORFILE
ERRORFILE

ERRORFILE: Error File Name Specification

Tools: Compiler, SmartLinker, Assembler

Synonym: none.

Syntax: "ERRORFILE=" <filename>.

Arguments: <filename>: File name with possible format
specifiers.

Description: The environment variable ERRORFILE
specifies the name for the error file (used by
the SmartLinker).
Possible format specifiers are:
'%n': Substitute with the file name, without the
path.
'%p': Substitute with the path of the source
file.
'%f': Substitute with the full file name, i.e. with
the path and name (the same as '%p%n').

In case of an illegal error file name, a
notification box is shown.
56 Smart Linker

Environment
ERRORFILE
Example: ERRORFILE=MyErrors.err
lists all errors into the file MyErrors.err in the
project directory.

ERRORFILE=\tmp\errors

lists all errors into the file errors in the
directory \tmp.

ERRORFILE=%f.err

lists all errors into a file with the same name
as the source file, but with extension .err, into
the same directory as the source file, for
example, if we link a file \sources\test.prm, an
error list file \sources\test.err will be
generated.

ERRORFILE=\dir1\%n.err

For example, for a source file test.prm, an
error list file \dir1\test.err will be generated.

ERRORFILE=%p\errors.txt

For example, for a source file
\dir1\dir2\test.prm, an error list file
\dir1\dir2\errors.txt will be generated.

If the environment variable ERRORFILE is not
set, the errors are written to the file EDOUT in
the project directory.

If the environment variable ERRORFILE is not
set, errors are written to the default error file.

The default error file name depends on the
way the linker is started.

If a file name is provided on the linker
command line, the errors are written to the file
EDOUT in the project directory.

If no file name is provided on the linker
command line, the errors are written to the file
ERR.TXT in the project directory.

See also: none.
57Smart Linker

Environment
GENPATH
GENPATH

GENPATH: Define Paths to search for input
Files

NOTE If a directory specification in this environment variables starts with
an asterisk (“*”), the whole directory tree is searched recursively
depth first, i.e. all subdirectories and their subdirectories and so on
are searched, too. Within one level in the tree, search order of the
subdirectories is indeterminate.

Tools: Compiler, Assembler, SmartLinker, Decoder, Debugger

Synonym: HIPATH

Syntax: "GENPATH=" {<path>}.

Arguments: <path>: Paths separated by semicolons, without spaces.

Description: The SmartLinker will look for the prm first in the project
directory, then in the directories listed in the environment
variable GENPATH. The object and library files specified in the
linker prm file are searched in the project directory, then in the
directories listed in the environment variable OBJPATH and
finally in those specified in GENPATH

Example: GENPATH=\obj;..\..\lib;

See also: none
58 Smart Linker

Environment
INCLUDETIME
INCLUDETIME

INCLUDETIME: Creation Time in Object File
Tools: Compiler, Assembler, SmartLinker, Librarian

Synonym: none.

Syntax: "INCLUDETIME=" ("ON" | "OFF").

Arguments: "ON": Include time information into object file.

"OFF": Do not include time information into object file.

Default: "ON"

Description: Normally each absolute file created contains a time stamp
indicating the creation time and data as strings. So whenever a
new file is created by one of the tools, the new file gets a new
time stamp entry.

This behavior may be undesired if for SQA reasons a binary
file compare has to be performed. Even if the information in
two absolute files is the same, the files do not match exactly
because the time stamps are different. To avoid such
problems this variable may be set to OFF. In this case the time
stamp strings in the absolute file for date and time are “none”
in the object file.

The time stamp may be retrieved from the object files using
the decoder.

Example: INCLUDETIME=OFF

See also: Environment variable COPYRIGHT

Environment variable USERNAME
59Smart Linker

Environment
LINKOPTIONS
LINKOPTIONS

LINKOPTIONS: Default SmartLinker
Options

OBJPATH

OBJPATH: Object File Path

Tools: SmartLinker

Synonym: None

Syntax: "LINKOPTIONS=" {<option>}.

Arguments: <option>: SmartLinker command line option

Default: none.

Description: If this environment variable is set, the SmartLinker appends its
contents to its command line each time a file is linked. It can be
used to globally specify certain options that should always be
set, so you do not have to specify them each time a file is linked.

Example: LINKOPTIONS=-W2

See also: SmartLinker options

Tools: Compiler, Assembler, SmartLinker, Decoder, Debugger

Synonym: None

Syntax: "OBJPATH=" {<path>}.

Arguments: <path>: Paths separated by semicolons, without spaces.

Description: When this environment variable is defined, the linker search
for the object and library files specified in the linker prm file in
the project directory, then in the directories listed in the
environment variable OBJPATH and finally in those specified
in GENPATH.
60 Smart Linker

Environment
RESETVECTOR
RESETVECTOR

RESETVECTOR: Reset Vector Location

SRECORD

SRECORD: S Record File Format

Example: OBJPATH=\sources\bin;..\..\headers;\usr\local\bin

See also: Option -L

Tools: Compiler, Assembler, SmartLinker, Simulator for HC05 and St7
only

Synonym: None

Syntax: "RESETVECTOR=" <Address>.

Arguments: <Address>: Address of reset vector. The default is 0xFFFE.
Description: For the HC05 and the St7 architecture, the reset vector location

depends on the actual derivative. For the VECTOR directive,
the linker has to know where the VECTOR 0 has to be placed.

Example: RESETVECTOR=0xFFFE

See also: none

Tools: Assembler, SmartLinker, Burner

Synonym: None

Syntax: "SRECORD=" <RecordType>.

Arguments: <Record Type>: Force the type for the Motorola S record which
must be generated. This parameter may take the value ‘S1’,
‘S2’ or ‘S3’.

Description: This environment variable is only relevant when absolute files
are directly generated by the macro assembler instead of object
files. When this environment variable is defined, the Assembler
will generate a Motorola S file containing records from the
specified type (S1 records when S1 is specified, S2 records
when S2 is specified and S3 records when S3 is specified).
61Smart Linker

Environment
TEXTPATH
NOTE If the environment variable SRECORD is set, it is the user
responsibility to specify the appropriate S record type. If you
specifies S1 while your code is loaded above 0xFFFF, the Motorola S
file generated will not be correct, because the addresses will all be
truncated to 2 bytes values.

TEXTPATH

TEXTPATH: Text Path

When this variable is not set, the type of S record generated will
depend on the size of the address loaded there. If the address
can be coded on 2 bytes, a S1 record is generated. If the
address is coded on 3 bytes, a S2 record is generated.
Otherwise a S3 record is generated.

Example: SRECORD=S2

See also: none

Tools: Compiler, Assembler, SmartLinker, Decoder

Synonym: None

Syntax: “TEXTPATH=” {<path>}.

Arguments: <path>: Paths separated by semicolons, without spaces.

Description: When this environment variable is defined, the SmartLinker will
store the map file it produces in the first directory specified
there. If TEXTPATH is not set, the generated map file will be
stored in the directory the prm file was found.

Example: TEXTPATH=\sources..\..\headers;\usr\local\txt

See also: None
62 Smart Linker

Environment
TMP
TMP

TMP: Temporary directory

NOTE This is an environment variable on system level (global environment
variable) It CANNOT be specified in a default environment file
(DEFAULT.ENV/.hidefaults).

USERNAME

USERNAME: User Name in Object File

Tools: Compiler, Assembler, SmartLinker, Debugger, Librarian

Synonym: none.

Syntax: "TMP=" <directory>.

Arguments: <directory>: Directory to be used for temporary files.

Default: none.

Description: If a temporary file has to be created, normally the ANSI
function tmpnam() is used. This library function stores the
temporary files created in the directory specified by this
environment variable. If the variable is empty or does not
exist, the current directory is used. Check this variable if you
get an error message “Cannot create temporary file”.

Example: TMP=C:\TEMP

See also: Section ‘The Current Directory’

Tools: Compiler, Assembler, SmartLinker, Librarian

Synonym: None

Syntax: "USERNAME=" <user>.

Arguments: <user>: Name of user.
63Smart Linker

Environment
USERNAME
Default: None

Description: Each absolute file contains an entry identifying the user who
created the file. This information may be retrieved from the
absolute files using the decoder.

Example: USERNAME=PowerUser

See also: Environment variable COPYRIGHT

Environment variable INCLUDETIME
64 Smart Linker

4
Files

Input FilesOutput Files

Input Files

Parameter File
The linker takes any file as input, it does not require the file name to have a special
extension. However, we suggest that all your parameter file names have extension
.prm.. Parameter file will be searched first in the project directory and then in the
directories enumerated in GENPATH. The parameter file must be a strict ASCII text
file.

Object File
The list of files to be linked is specified in the link parameter file entry NAMES.
Additional object files can be specified with the option -Add.

The linker looks for the object files first in the project directory, then in the directories
enumerated in OBJPATH and finally in the directories enumerated in GENPATH. The
binary files must be valid HIWARE, ELF\DWARF 1.1 or 2.0 objects, absolute or
library files.

Output Files

Absolute Files
After successful linking session, the SmartLinker generates an absolute file containing
the target code as well as some debugging information. This file is written to the
directory given in the environment variable ABSPATH. If that variable contains more
than one path, the absolute file is written in the first directory given; if this variable is
65Smart Linker

Files
Output Files
not set at all, the absolute file is written in the directory the parameter file was found.
Absolute files always get the extension .abs.

Motorola S Files
After successful linking session and if the option -B is present, the SmartLinker
generates a Motorola S record file, which can be burnt into an EPROM. This file
contains information stored in all the READ_ONLY sections in the application. The
extension for the generated Motorola S record file depends on the setting from the
variable SRECORD.

• If SRECORD = S1, the Motorola S record file gets the extension .s1.

• If SRECORD = S2, the Motorola S record file gets the extension .s2.

• If SRECORD = S3, the Motorola S record file gets the extension .s3.

• If SRECORD is not set, the Motorola S record file gets the extension .sx.

This file is written to the directory given in the environment variable ABSPATH. If
that variable contains more than one path, the S record file is written in the first
directory given; if this variable is not set at all, the S record file is written in the
directory the parameter file was found.

Map Files
After successful linking session, the SmartLinker generates a map file containing
information about the link process. This file is written to the directory given in the
environment variable TEXTPATH. If that variable contains more than one path, the
map file is written in the first directory given; if this variable is not set at all, the map
file is written in the directory the parameter file was found. map files always get the
extension .map.

Dependency Information
The linker provides useful dependency information in the map file generated.
Basically the dependency information shows which object are used by an object
(function, variable, ...).

The dependency information in the linker map file is based on fixups/relocations. That
is if an object references another object by a relocation, this object is added to the
dependency list.

Example:
66 Smart Linker

Files
Output Files
int bar;
void foo(void) {
 bar = 0;
}

In the above example, in foo the compiler has generated a fixup/relocation to the
object bar, so the linker knows that foo uses bar. For the next example, foo will
reference foo itself, because in foo there is a fixup to foo as well:

void foo(void) {
 foo();
}

Now it could be that the compiler will do a common code optimization, that is if the
compiler tries to collect some common code in a function so that the code size can be
reduced. Note that you can switch off this compiler common code optimization.

Example:

void foo(void) {
 if (bar == 3) bar = 0;
 ...
 if (bar == 3) bar = 0;
}

In the above example, the compiler could optimize this to

int foo(void) {
 bsr foo:Label:
 ...
 foo_Label:
 if (bar == 3) bar = 0;
 return;
}

Here the compiler will generate a local branch inside foo to a local subroutine. This
produces a relocation/fixup into foo, that is for the linker foo references itself.

Error Listing File
If the SmartLinker detects any errors, it does not create an absolute file but an error
listing file. This file is generated in the directory the source file was found (also see
Environment, Environment Variable ERRORFILE).
67Smart Linker

Files
Output Files
If the Linker window is open, it displays the full path of all binary files read. In case of
error, the position and file name where the error occurs is displayed in the linker
window.

If the SmartLinker is started from WinEdit (with '%f' given on the command line) or
Codewright (with '%b%e' given on the command line), this error file is not produced.
Instead it writes the error messages in a special format in a file called EDOUT using
the Microsoft format by default. Use WinEdit’s ‘Next Error’ or Codewright’s ‘Find
Next Error’ command to see both error positions and the error messages.

Interactive Mode (SmartLinker window open)
If ERRORFILE is set, the SmartLinker creates a message file named as specified in
this environment variable.

If ERRORFILE is not set, a default file named ERR.TXT is generated in the current
directory.

Batch Mode (SmartLinker window not open)
If ERRORFILE is set, the SmartLinker creates a message file named as specified in
this environment variable.

If ERRORFILE is not set, a default file named EDOUT is generated in the current
directory.
68 Smart Linker

Files
Output Files
SmartLinker
 ERRORFILE

ERR.TXT.abs

.prm

o
.map

“.o”

.sx

1. current dir
2. OBJPATH
3. GENPATH

1. current dir
2. GENPATH

1. ABSPATH
2. Source file path 1. TEXTPATH

2. Source file path

“.lib”
“.abs”

EDOUT
69Smart Linker

Files
Output Files
70 Smart Linker

5
SmartLinker Options

The SmartLinker offers a number of options that you can use to control the
SmartLinker’s operation. Options are composed of a minus/dash (‘-’) followed by one
or more letters or digits. Anything not starting with a dash/minus is supposed to be the
name of a parameter file to be linked. SmartLinker options may be specified on the
command line or in the LINKOPTIONS variable. Typically, each linker option is
specified only once per linking session.

Command line options are not case sensitive, for example, "–W1" is the same as "–
w1".

LINKOPTIONS

If this environment variable is set, the linker appends its contents to its command line
each time a new file is linked. It can be used to globally specify certain options that
should always be set, so you do not have to specify them each time a file is linked.

SmartLinker Option Details
The remainder of this section is devoted to describing each of the SmartLinker options
available for the SmartLinker. Table 5.1 lists the options in alphabetical order and
each of the options is divided into several sections.
71Smart Linker

SmartLinker Options
-Add
-Add

-Add: Additional Object/Library File

Table 5.1 SmartLinker Option Details

Topic Description

Group Specifies what sort of influence this option has.

Syntax Specifies the syntax of the option in a EBNF format.

Arguments Describes and lists optional and required arguments for the
option.

Default Shows the default setting for the option.

Description Provides a detailed description of the option and how to use
it.

Example Gives an example of usage, and effects of the option where
possible. SmartLinker settings, source code and/or
SmartLinker prm files are displayed where applicable. The
examples shows an entry in the default.env for PC or in the
.hidefaults for UNIX.

See also Names related options.

Group: INPUT

Syntax: "-Add" <FileList>.

Arguments: <FileList>: Names of an additional object files or libraries.

Default: none.

Description: With the option -Add, additional files can be added to a project
without modifying the link parameter file.
If all binary files should be specified by the command line
option -add, then an empty NAMES block (just NAMES END)
must be present in the link parameter file.
Object files added with this option are linked before the object
files specified in the NAMES block.

To specify more than one file either use several options -Add:

linker.exe demo.prm -addFileA.o -addFileB.o

or use braces to bind the list to the option -add:

linker.exe demo.prm -add(FileA.o FileB.o)
72 Smart Linker

SmartLinker Options
-AllocFirst,-AllocNext,-AllocChange
NOTE To switch off smart linking for the additional object file, use a + sign
immediately behind the filename.

-AllocFirst,-AllocNext,-AllocChange

-Alloc: Allocation over segment boundaries
(ELF)

To add a file which name contain spaces, use braces together
with double quotes:

linker.exe demo.prm -add(“File A.o” “File B.o”)

Example: linker.exe fibo.prm -addfibo1.o -addfibo2.o
In this example, the additional object files fibo1.o and fibo2.o
are linked with the fibo application.

See also: command NAMES.

Group: OPTIMIZATION

Syntax: "-Alloc" ("First" | "Next" | "Change")

Arguments: “First”: use first free location

“Next”: always use next segment

“Change”: check when segment changes only

Default: -AllocNext.

Description: The linker supports to allocate objects from
one ELF section into different segments. The
allocation strategy controls where space for
the next object is allocated as soon as the first
segment is full.

In the AllocNext strategy, the linker does
always take the next segment as soon as the
current segment is full. Holes generated
during this process are not used later. With
this strategy, the allocation order corresponds
to the definition order in the object files.
Objects defined first in a source file are
allocated before later defined objects.
73Smart Linker

SmartLinker Options
-AllocFirst,-AllocNext,-AllocChange
NOTE This option has no effect in the HIWARE format. In the HIWARE
format, the linker does always use the “-AllocNext” strategy.
However, the linker does not maintain the allocation order for small
variables.

NOTE This option has no effect if sections are not split into several
segments. Then all strategies behave identically.

NOTE Some compilers do optimization in the assumption that the definition
order is maintained in the memory. But for such code, no splitting up
into several segment is allowed anyway, so this optimization does not
cause new problems.

In the AllocFirst strategy, the linker checks for
every object, if there is a previously only
partially used segment, into which the current
object does fit. This strategy does not
maintain the definition order.

In the AllocChange strategy, the linker checks
as soon as a object does no longer fit into the
current segment, if there is a previously only
partially used segment, into which the current
object does fit. This strategy does not
maintain the definition order, but it does
however use fewer different ranges than the
AllocFirst case.
74 Smart Linker

SmartLinker Options
-AsROMLib
-AsROMLib

-AsROMLib: Link as ROM Library

Example: Objects: AAAA BB CCC D EEE FFFFF
Segments: "---" "-------" "------------"
AllocNext: "---" "AAAABB-" "CCCDEEEFFFFF"
AllocChange:"CCC" "AAAABBD" "EEEFFFFF----"
AllocFirst: "BBD" "AAAACCC" "EEEFFFFF----"

In this example, the objects A (size 4), B (size 2), ... F (size 5)
should be allocated into 3 segments of size 3, 7 and 12 bytes.
Because the object A does not fit into the first segment, the
AllocNext strategy does not use this space at all. The two other
strategies are filling this space later. The order of the objects is
only maintained by the AllocNext case.

See also: None.

Group: OUTPUT

Syntax: "-AsROMLib".

Arguments: <FileList>: Names of an additional object files or libraries.

Default: none.

Description: With the option -AsROMLib set, the application is linked as a
ROM library. This option has the same effect as specifying AS
ROM_LIB in the linker parameter file.

Example: linker.exe myROMlib.prm -AsROMLib

See also: AS ROM_LIB.
75Smart Linker

SmartLinker Options
-B
-B

-B: Generate S-Record file

-CAllocUnusedOverlap

-CAllocUnusedOverlap: Allocate not
referenced overlap variables (HIWARE)

Group: OUTPUT

Syntax: "-B".

Arguments: none.

Default: Disabled.

Description: This option specifies that in addition to an absolute file, also a
srecord file should be generated.
The name of the srecord file is the same as the name of the
abs file, except that the extension “SX” is used. The
default.env variable “SRECORD” may specify an alternative
extension.

Example: LINKOPTIONS=-B

See also: none.

Group: OPTIMIZATION

Syntax: "-CAllocUnusedOverlap”.

Arguments: none.

Default: none.
76 Smart Linker

SmartLinker Options
-Ci
-Ci

-Ci: Link Case Insensitive

Description: When Smart Linking is switched off, not referenced, but
defined overlap variables are still not allocated by default.
Such variables do not belong to a specific function. Therefore
they cannot be allocated overlapped with other variables.

Note that this option does only change the behavior of
variables in the special _OVERLAP segment. This segment is
only used for the purpose of allocating parameters and local
variables for processors, which do not have a stack. Not
allocating a non referenced overlap variable therefore is
similar to not allocating a variable on the stack for other
processors. If you use this stack analogy, then allocating such
variables this way corresponds to allocate not referenced
stack variables in global memory.

This option is provided to make it possible to allocate all
defined objects. It is not recommended to use this option.

Example: LINKOPTIONS=-CAllocUnusedOverlap

See also: Ovelapping Locals

segment _OVERLAP

Group: INPUT

Syntax: "-Ci".

Arguments: none.

Default: none.

Description: With this option, the linker compares all object names case
insensitive.
The main purpose for this option is to support case insensitive
linking of assembly modules. But because all identifiers are
linked case insensitive, this also affects C or C++ modules.
This option might cause sever problems with the name
mangling of C++, therefore it should not be used with C++.
This option does only affect the comparison of names of linked
objects. Section names or the parsing of the link parameter file
are not affected. They remain case sensitive.
77Smart Linker

SmartLinker Options
-Cocc
-Cocc

-Cocc: Optimize Common Code (ELF)

Example: void Fun(void);
void main(void) {
 fun(); /* with -ci this call is resolved to Fun */
}
The linker will match the fun and Fun identifiers at link time.
However, for the compiler these are still two separate objects
and therefore the code above issues a “implicit parameter
declaration” warning.

See also: none.

Group: OPTIMIZATION

Syntax: "-Cocc"[“=”[“D”] [“C”]].

Arguments: “D”: optimize Data (constants and strings).
“C”: optimize Code

Default: none.

Description: This option defines the default if constants and code should be
optimized. The commands DO_OVERLAP_CONSTS and
DO_NOT_OVERLAP_CONSTS take precedence over the
option.

Example: printf(“Hello World\n“); printf(“\n”);
With -Cocc, the string “\n” is allocated inside of the string
“Hello World\n”.

See also: Command DO_OVERLAP_CONSTS
78 Smart Linker

SmartLinker Options
-CRam
-CRam

-CRam: Allocate non specified const
segments in RAM (ELF)

-Dist

-Dist: Enable distribution optimization (ELF)

Group: OPTIMIZATION

Syntax: "-CRam".

Arguments: none.

Default: none.

Description: With this option, constant data segments not explicitly allocated
in a READ_ONLY segment are allocated in the default
READ_WRITE segment.

This was the default for old versions of the linker, so this option
provides a compatible behavior with old linker versions.

Example: When C source files are compiled with -CC, the constants are
put into the ROM_VAR segment. If the ROM_VAR segment is
not mentioned in the prm file, then without this option, these
constants are allocated in DEFAULT_ROM. With this option
they are allocated in DEFAULT_RAM.

See also: none.

Group: OPTIMIZATIONS

Syntax: "-Dist".

Arguments: none.

Default: none .

Description: With this option the linker optimizer is enabled. Instead of link
the linker generates a distribution file which contains a
optimized distribution.

See also: Automatic Distribution of Paged Functions
79Smart Linker

SmartLinker Options
-DistFile
-DistFile

-DistFile: Specify distribution file name (ELF)

-DistInfo

-DistInfo: Generate distribution information
file (ELF)

Group: OPTIMIZATIONS

Syntax: "-DistFile"<file name>.

Arguments: <file name>: Name of the distribution file.

Default: distr.inc .

Description: When this option is enabled, it‘s possible to specify the name of
the distribution file. There are listed all distributed functions and
how the compiler has to reallocate them.

Example: LINKOPTIONS=-DistFileMyFile

See also: Automatic Distribution of Paged Functions

Group: OPTIMIZATIONS

Syntax: "-DistInfo"<file name>.

Arguments: <file name>: Name of the information file.

Default: distr.txt .

Description: When this option is enabled, the optimizer generates a
distribution information file with a list of all sections and their
functions. To the functions are several informations available
like: old size, optimized size and new calling convention.

Example: LINKOPTIONS=-DistInfoMyInfoFile

See also: Automatic Distribution of Paged Functions
80 Smart Linker

SmartLinker Options
-DistOpti
-DistOpti

-DistOpti: Choose optimizing method (ELF)

-DistSeg

-DistSeg: Specify distribution segment
name (ELF)

Group: OPTIMIZATIONS

Syntax: "-DistOpti" ("FillBanks" | "CodeSize")

Arguments: “FillBanks”: Priority is to fill the banks

“CodeSize”: Priority is to minimize the code size

Default: -DistOptiFillBanks.

Description: When this option is enabled, it‘s possible to choose the
optimizing method. With the argument “FillBanks” the priority
for the linker is the minimization of the free space in every
bank. This method has the disadvantage that less functions
have a near calling convention. If the code size has to be
minimized and the free space which remains in the banks is
no problem so it is recommendable to use the argument
“CodeSize”.

Example: LINKOPTIONS=-DistOptiFillBanks

See also: Automatic Distribution of Paged Functions

Group: OPTIMIZATIONS

Syntax: "-DistSeg"<segment name>.

Arguments: <segment name>: Name of the distribution segment.

Default: DISTRIBUTE .

Description: When this option is enabled, it‘s possible to specify the name
of the distribution segment.

Example: LINKOPTIONS=-DistSegMyDistributionSegment

See also: Automatic Distribution of Paged Functions
81Smart Linker

SmartLinker Options
-E
-E

-E: Define Application Entry Point (ELF)

-Env

-Env: Set Environment Variable

Group: INPUT

Syntax: "-E=" <FunctionName>.

Arguments: <FunctionName>: Name of the function which is considered
to be the entry point in the application.

Default: none.

Description: This option specifies the name of the application entry point.

The symbol specified must be a externally visible (not defined
as static in an ANSI C source file or XREFed in an assembly
source file).

Example: LINKOPTIONS=-E=entry
This is the same as using the command:

NIT entry
in the prm file

See also: Command INIT

Group: HOST

Syntax: "-Env" <Environment Variable> "=" <Variable Setting>.

Arguments: <Environment Variable>: Environment variable to be set
<Variable Setting>: Setting of the environment variable

Default: none.

Description: This option sets an environment variable.

Example: “-EnvOBJPATH=\sources\obj”
82 Smart Linker

SmartLinker Options
-FA, -FE, -FH -F6
-FA, -FE, -FH -F6

-FA, -FE, -FH -F6: Object File Format

NOTE It is not possible to build an application consisting of some HIWARE
and some ELF files. Either all files are in the ELF format or all files
are in the HIWARE format.
The format of the generated absolute file is the same as the format of
the object files. ELF objects files generate a ELF absolute file and
HIWARE object files generate a HIWARE absolute file.

This is the same as:
OBJPATH=\sources\obj

in the default.env

See also: none.

Group: INPUT.

Syntax: "-F" (“A” | “E” | “H” | “6”).

Arguments: none.

Default: “-FA”

Description: The linker is able to link different object file formats.

This option defines which object file format should be used.

With “-FA”, the linker determines the object file format
automatically. With “-F2”, this automatism can be overridden
and only ELF files are correctly recognized. With “-FH” only
HIWARE files are known. With “-F6” set, the linker produces a
V2.6 HIWARE absolute file.

See also: none.
83Smart Linker

SmartLinker Options
-H
-H

-H: Prints the List of All Available Options

-L

-L: Add a path to the search path (ELF)

Group: OUTPUT.

Syntax: "-H".

Arguments: none.

Default: none.

Description: Prints the list of all options of the SmartLinker.

The options are sorted by the Group. Options in the same
group, are sorted alphabetically.

See also: none.

Group: INPUT

Syntax: "-L" <Directory>.

Arguments: <Directory>: Name of an additional search directory for object
files.

Default: none.

Description: With this option, the ELF part of this linker searches object
files first in all paths given with this option. Then the usual
environment variables are considered.

Example: LINKOPTIONS=-Lc:\metrowerks\obj

See also: Environment Variable OBJPATH
84 Smart Linker

SmartLinker Options
-Lic
-Lic

-Lic: Print license information

-LicA

-LicA: License Information about every
Feature in Directory

Group: Various.

Syntax: "-Lic"

Arguments: none.

Default: none.

Description: This options shows the current state of the license information.

When no full license is available, the SmartLinker runs in demo
mode.

In demo mode, the size of the applications which can be linked
is limited

Example: none.

See also: Option -Lica

Group: Various

Syntax: "-LicA".

Arguments: none.

Default: none.

Defines: none.

Description: The -LicA option prints the license information of every tool or
dll in the directory were the executable is (e.g. if tool or feature
is a demo version or a full version). Because the option has to
analyze every single file in the directory, this takes a long time.
85Smart Linker

SmartLinker Options
-M
-M

-M: Generate Map File

-N

-N: Display Notify Box

Example: none.

See also: Option -Lic

Group: OUTPUT

Syntax: "-M"

Arguments: None.

Default: none.

Description: This option force the generation of a map file after a successful
linking session.

Example: LINKOPTIONS=-M

This is the same as using the command:

MAPFILE ALL

in the prm file

See also: Command MAPFILE

Group: MESSAGE

Syntax: "-N".

Arguments: none.

Default: none.

Description: Makes the SmartLinker display an alert box if there was an
error during linking. This is useful when running a makefile
since the linker waits for the user to acknowledge the message,
thus suspending makefile processing. (The 'N' stands for
“Notify”.)
86 Smart Linker

SmartLinker Options
-NoBeep
-NoBeep

-NoBeep: No Beep in Case of an Error

-NoEnv

-NoEnv: Do not use Environment

This feature is useful for halting and aborting a build using the
Make Utility.

Example: LINKOPTIONS=-N

If during linking an error occurs, an error dialog box will be
opened.

See also: none.

Group: MESSAGE

Syntax: "-NoBeep".

Arguments: none.

Default: none.

Description: Normally there is a ‘beep’ notification at the end of processing
if there was an error. To have a silent error behavior, this
‘beep’ may be switched of using this option.

Example: none.

See also: none.

Group: Startup. (This option can not be specified interactively)

Syntax: "-NoEnv".

Arguments: none.

Default: none.
87Smart Linker

SmartLinker Options
-OCopy
-OCopy

-OCopy: Optimize Copy Down (ELF)

Description: This option can only be specified at the command line while
starting the application. It can not be specified in any other
circumstances, including the default.env file, the command
line or whatever.

When this option is given, the application does not use any
environment (default.env, project.ini or tips file).

Example: linker.exe -NoEnv

See also: Section Environment

Group: OPTIMIZATION

Syntax: "-OCopy" (“On” | “Off”).

Arguments: On: Do the optimization.

Off: Optimization disabled

Default: -OCopyOn.

Description: This optimization changes the copy down structure to use as
few space as possible.

The optimization does assume that the application does
perform both the zero out and the copy down step of the global
initialization. If a value is set to zero by the zero out, then zero
values are removed from the copy down information. The
resulting initialization is not changed by this optimization if the
default startup code is used.

This switch does only have an effect in the ELF Format. The
optimizations done in the HIWARE format cannot be switched
off.

Example: LINKOPTIONS=-OCopyOn

See also: Program Startup
88 Smart Linker

SmartLinker Options
-O
-O

-O: Define Absolute File Name

-Prod

-Prod: specify project file at startup (PC)

Group: OUTPUT

Syntax: "-O" <FileName>.

Arguments: <fileName>: Name of the absolute file which must be
generated by the linking session.

Default: none.

Description: This option defines the name of the ABS file which must be
generated. If you are using the Linker with CodeWarrior, then
this option is automatically added to the command line passed
to the linker. You can see this if you enable ‘Display generated
command lines in message window’ in the Linker preference
panel in CodeWarrior.
No extension is added automatically. For the option “-otest”, a
file named “test” is generated. To get the usual file extension
“abs”, use “-otest.abs”.

Example: LINKOPTIONS=-Otest.abs
This is the same as using the command:

LINK test.abs
in the prm file.

See also: Command LINK

Group: none. (this option can not be specified interactively)

Syntax: "-Prod=”<file>.

Arguments: <file>: name of a project or project directory

Default: none.
89Smart Linker

SmartLinker Options
-S
-S

-S: Do not generate DWARF Information
(ELF)

NOTE If the absolute file does not contain any DWARF information, you
will not be able to debug it any more symbolically.

Description: This option can only be specified at the command line while
starting the linker. It can not be specified in any other
circumstances, including the default.env file, the command line
or whatever.

When this option is given, the linker opens the file as
configuration file. When the file name does only contain a
directory, the default name project.ini is appended. When the
loading fails, a message box appears.

Example: linker.exe -prod=project.ini

See also: none.

Group: OUTPUT

Syntax: "-S"

Arguments: None.

Default: none.

Description: This option disables the generation of DWARF sections in the
absolute file. This allow you to save some memory on your
PC.

Example: LINKOPTIONS=-S

See also: None
90 Smart Linker

SmartLinker Options
-SFixups
-SFixups

-SFixups: Creating Fixups (ELF)

-StatF

-StatF: Specify the name of statistic file

Group: OUTPUT

Syntax: "-SFixups".

Arguments: none.

Default: none.

Description: Usually, absolute files do not contain any fixups because all
fixups are evaluated at link time. But with fixups, the decoder
might symbolically decode the content in absolute files, which is
not possible without fixups. Some debuggers do not load
absolute files which contain fixups because they assume that
these fixups are not yet evaluated. But the fixups inserted with
this option are actually already handled by this linker.

This option is contained mainly because of compatibility with
previous versions of the linker.

Example: LINKOPTIONS=-SFixups

See also: none.

Group: OUTPUT

Syntax: "-StatF="<fileName>.

Arguments: <fileName>: name for the file to be written

Default: none.

Description: With this option set, the linker generates a statistic file. In this
file, each allocated object is reported with it’s attributes. Every
attribute is separated by a TAB character, so it can be easily
imported into a spreadsheet/database program for further
processing
91Smart Linker

SmartLinker Options
-V
-V

-V: Prints the SmartLinker Version

-View

-View: Application Standard Occurrence

(PC)

Example: LINKOPTIONS=-StatF

See also: none.

Syntax: "-V".

Arguments: none.

Default: none.

Description: Prints the SmartLinker version and the project directory

This option is useful to determine the project directory of the
SmartLinker.

Example: -V produces the following list:

Directory: \software\sources\asm

SmartLinker, V5.0.4, Date Apr 20 1997

See also: none.

Group: HOST

Syntax: "-View" <kind>.

Arguments: <kind> is one of:

“Window”: Application window has default window size

“Min”: Application window is minimized

“Max”: Application window is maximized

“Hidden”: Application window is not visible (only if arguments)
92 Smart Linker

SmartLinker Options
-W1
-W1

-W1: No Information Messages

Default: Application started with arguments: Minimized.

Application started without arguments: Window.

Description: Normally the application (e.g. linker, compiler, ...) is started as
normal window if no arguments are given. If the application is
started with arguments (e.g. from the maker to compile/link a
file) then the application is running minimized to allow batch
processing. However, with this option the behavior may be
specified. Using -ViewWindow the application is visible with
its normal window. Using -ViewMin the application is visible
iconified (in the task bar). Using -ViewMax the application is
visible maximized (filling the whole screen). Using -
ViewHidden the application processes arguments (e.g. files to
be compiled/linked) completely invisible in the back ground
(no window/icon in the taskbar visible). However e.g. if you
are using the option -N a dialog box is still possible.

Example: -ViewHidden fibo.prm

See also: none.

Group: MESSAGE

Syntax: "-W1".

Arguments: none.

Default: none.

Description: Inhibits the Linker to print INFORMATION messages, only
WARNING and ERROR messages are emitted.

Example: LINKOPTIONS=-W1

See also: None
93Smart Linker

SmartLinker Options
-W2
-W2

-W2: No Information and Warning
Messages

Group: MESSAGE

Syntax: "-W2".

Arguments: none.

Default: none.

Description: Suppresses all messages of type INFORMATION and
WARNING, only ERRORs are printed.

Example: LINKOPTIONS=-W2

See also: None
94 Smart Linker

SmartLinker Options
-WErrFile
-WErrFile

-WErrFile: Create "err.log" Error File

-Wmsg8x3

-Wmsg8x3: Cut file names in Microsoft
format to 8.3 (PC)

Group: MESSAGE

Syntax: "-WErrFile" ("On" | "Off").

Arguments: none.

Default: err.log is created/deleted.

Description: The error feedback from the compiler to called
tools is now done with a return code. In 16 bit
windows environments, this was not possible,
so in the error case a file “err.log” with the
numbers of errors written into was used to
signal an error. To state no error, the file
“err.log” was deleted. Using UNIX or WIN32,
there is now a return code available, so this
file is no longer needed when only UNIX /
WIN32 applications are involved. To use a 16
bit maker with this tool, the error file must be
created in order to signal any error.

Example: -WErrFileOn

err.log is created/deleted when the application
is finished.

-WErrFileOff

existing err.log is not modified.

See also: Option -WStdout

Option -WOutFile

Group: MESSAGE

Syntax: "-Wmsg8x3".
95Smart Linker

SmartLinker Options
-WmsgCE
-WmsgCE

-WmsgCE: RGB color for error messages

Arguments: none.

Default: none.

Description: Some editors (e.g. early versions of WinEdit) are expecting the
file name in the Microsoft message format in a strict 8.3 format,
that means the file name can have at most 8 characters with
not more than a 3 characters extension. Using Win95 or
WinNT longer file names are possible. With this option the file
name in the Microsoft message is truncated to the 8.3 format.

Example: x:\mysourcefile.prm(3): INFORMATION C2901: Unrolling loop

With the option -Wmsg8x3 set, the above message will be

x:\mysource.c(3): INFORMATION C2901: Unrolling loop

See also: Option -WmsgFi

Option -WmsgFb

Option -WmsgFoi

Option -WMsgFob

Option -WmsgFonP

Group: MESSAGE

Scope: Function

Syntax: "-WmsgCE" <RGB>.

Arguments: <RGB>: 24bit RGB (red green blue) value.

Default: -WmsgCE16711680 (rFF g00 b00, red)

Defines: none.

Description: With this options it is possible to change the error message
color. The value to be specified has to be a RGB (Red-Green-
Blue) value, and has to be specified in decimal.

Example: -WmsgCE255 changes the error messages to blue.

See also: none.
96 Smart Linker

SmartLinker Options
-WmsgCF
-WmsgCF

-WmsgCF: RGB color for fatal messages

-WmsgCI

-WmsgCI: RGB color for information
messages

Group: MESSAGE

Scope: Function

Syntax: "-WmsgCF" <RGB>.

Arguments: <RGB>: 24bit RGB (red green blue) value.

Default: -WmsgCF8388608 (r80 g00 b00, dark red)

Defines: none.

Description: With this options it is possible to change the fatal message
color. The value to be specified has to be a RGB (Red-Green-
Blue) value, and has to be specified in decimal.

Example: -WmsgCF255 changes the fatal messages to blue.

See also: none.

Group: MESSAGE

Scope: Function

Syntax: "-WmsgCI" <RGB>.

Arguments: <RGB>: 24bit RGB (red green blue) value.

Default: -WmsgCI32768 (r00 g80 b00, green)

Defines: none.

Description: With this options it is possible to change the information
message color. The value to be specified has to be a RGB
(Red-Green-Blue) value, and has to be specified in decimal.

Example: -WmsgCI255 changes the information messages to blue.

See also: none.
97Smart Linker

SmartLinker Options
-WmsgCU
-WmsgCU

-WmsgCU: RGB color for user messages

-WmsgCW

-WmsgCW: RGB color for warning
messages

Group: MESSAGE

Scope: Function

Syntax: "-WmsgCU" <RGB>.

Arguments: <RGB>: 24bit RGB (red green blue) value.

Default: -WmsgCU0 (r00 g00 b00, black)

Defines: none.

Description: With this options it is possible to change the user message
color. The value to be specified has to be a RGB (Red-Green-
Blue) value, and has to be specified in decimal.

Example: -WmsgCU255 changes the user messages to blue.

See also: none.

Group: MESSAGE

Scope: Function

Syntax: "-WmsgCW" <RGB>.

Arguments: <RGB>: 24bit RGB (red green blue) value.

Default: -WmsgCW255 (r00 g00 bFF, blue)

Defines: none.

Description: With this options it is possible to change the warning message
color. The value to be specified has to be a RGB (Red-Green-
Blue) value, and has to be specified in decimal.

Example: -WmsgCW0 changes the warning messages to black.

See also: none.
98 Smart Linker

SmartLinker Options
-WmsgFb (-WmsgFbv, -WmsgFbm)
-WmsgFb (-WmsgFbv, -WmsgFbm)

-WmsgFb: Set message file format for
batch mode

Group: MESSAGE

Syntax: "-WmsgFb" ["v" | "m"].

Arguments: "v": Verbose format.

"m": Microsoft format.

Default: -WmsgFbm

Description: The SmartLinker can be started with additional arguments (for
example, files to be linked together with SmartLinker options).
If the SmartLinker has been started with arguments (for
example, from the Make Tool or with the ‘%f’ argument from
WinEdit), the SmartLinker links the files in a batch mode, that
is no SmartLinker window is visible and the SmartLinker
terminates after job completion.

If the linker is in batch mode the linker messages are written
to a file instead to the screen. This file only contains the linker
messages (see examples below).

By default, the SmartLinker uses a Microsoft message format
to write the SmartLinker messages (errors, warnings,
information messages) if the linker is in batch mode.

With this option, the default format may be changed from the
Microsoft format (only line information) to a more verbose
error format with line, column and source information

Example: LINK fibo2.abs

NAMES fibo.o start12s.o ansis.lib END

PLACEMENT

 .text INTO READ_ONLY 0x810 TO 0xAFF;

 .data INTO READ_WRITE 0x800 TO 0x80F

 END

 By default, the SmartLinker generates following error output in
the SmartLinker window if it is running in batch mode:

X:\fibo2.prm(7): ERROR L1004: ; expected
99Smart Linker

SmartLinker Options
-WmsgFi (-WmsgFiv, -WmsgFim)
-WmsgFi (-WmsgFiv, -WmsgFim)

-WmsgFi: Set message file format for
Interactive mode

Setting the format to verbose, more information is stored in
the file:

LINKOPTIONS=-WmsgFbv

>> in "X:\fibo2.prm", line 7, col 0, pos 159

 .data INTO READ_WRITE 0x800 TO 0x80F

END

^

 ERROR L1004: ; expected

See also: Option -WmsgFi

Group: MESSAGE

Syntax: "-WmsgFi" ["v" | "m"].

Arguments: "v": Verbose format.

"m": Microsoft format.

Default: -WmsgFiv

Description: If the SmartLinker is started without additional arguments
(e.g. files to be linked together with SmartLinker options), the
SmartLinker is in the interactive mode (that is, a window is
visible).

By default, the SmartLinker uses the verbose error file format
to write the SmartLinker messages (errors, warnings,
information messages).

With this option, the default format may be changed from the
verbose format (with source, line and column information) to
the Microsoft format (only line information).

With this option, the default format may be changed from the
Microsoft format (only line information) to a more verbose
error format with line, column and source information
100 Smart Linker

SmartLinker Options
-WmsgFob
NOTE Using the Microsoft format may speed up the compilation, because
the SmartLinker has to write less information to the screen.

-WmsgFob

-WmsgFob: Message format for Batch
Mode

Example: LINK fibo2.abs

NAMES fibo.o start12s.o ansis.lib END

PLACEMENT

 .text INTO READ_ONLY 0x810 TO 0xAFF;

 .data INTO READ_WRITE 0x800 TO 0x80F

END

By default, the SmartLinker following error output in the
SmartLinker window if it is running in interactive mode

>> in "X:\fibo2.prm", line 7, col 0, pos 159

 .data INTO READ_WRITE 0x800 TO 0x80F

END

^

ERROR L1004: ; expected

Setting the format to Microsoft, less information is displayed:

LINKOPTIONS=-WmsgFim

X:\fibo2.prm(7): ERROR L1004: ; expected

See also: Option -WmsgFb

Group: MESSAGE

Syntax: "-WmsgFob"<string>.

Arguments: <string>: format string (see below).
101Smart Linker

SmartLinker Options
-WmsgFob
Default: -WmsgFob"%”%f%e%”(%l): %K %d: %m\n"

Description: With this option it is possible modify the default message
format in batch mode. Following formats are supported
(supposed that the source file is
x:\metrowerks\sourcefile.prmx)

Form
at

Description Example

%s Source Extract

%p Path x:\metrowerks\

%f Path and name x:\metrowerks\sourcefile

%n File name sourcefile

%e Extension .prmx

%N File (8 chars) sourcefi

%E Extension (3 chars) .prm

%l Line 3

%c Column 47

%o Pos 1000

%K Uppercase kind ERROR

%k Lowercase kind error

%d Number L1051

%m Message text

%” ” if full name ”

contains a space

%’ ’ if full name

contains a space

%% Percent %

\n New line

Example: LINKOPTIONS=-WmsgFob”%’%f%e%’(%l): %k %d: %m\n”

produces a message in following format:

x:\metrowerks\sourcefile.prmx(3): error L1000: LINK not found
102 Smart Linker

SmartLinker Options
-WmsgFoi
-WmsgFoi

-WmsgFoi: Message Format for Interactive
Mode

See also: Environment variable ERRORFILE

Option -WmsgFb

Option -WmsgFi

Option -WmsgFonp

Option -WmsgFonf

Option -WmsgFoi

Group: MESSAGE

Syntax: "-WmsgFoi"<string>.

Arguments: <string>: format string (see below).

Default: -WmsgFoi"\n>> in \"%”%f%e%”\", line %l, col %c, pos
%o\n%s\n%K %d: %m\n"

Description: With this option it is possible modify the default message
format in interactive mode. Following formats are supported
(supposed that the source file is
x:\metrowerks\sourcefile.prmx):

Form
at

Description Example

%s Source Extract

%p Path x:\metrowerks\

%f Path and name x:\metrowerks\sourcefile

%n File name sourcefile

%e Extension .prmx

%N File (8 chars) sourcefi

%E Extension (3 chars) .prm
103Smart Linker

SmartLinker Options
-WmsgFonf
-WmsgFonf

-WmsgFonf: Message Format for no File
Information

%l Line 3

%c Column 47

%o Pos 1234

%K Uppercase kind ERROR

%k Lowercase kind error

%d Number L1000

%m Message text

%” ” if full name ”

contains a space

%’ ’ if full name

contains a space

%% Percent %

\n New line

Example: LINKOPTIONS=-WmsgFoi”%f%e(%l): %k %d: %m\n”

produces a message in following format:

x:\metrowerks\sourcefile.prmx(3): error L1000: LINK not found

See also: Environment variable ERRORFILE

Option -WmsgFb

Option -WmsgFi

Option -WmsgFonp

Option -WmsgFonf

Option -WmsgFob

Group: MESSAGE

Syntax: "-WmsgFonf"<string>.
104 Smart Linker

SmartLinker Options
-WmsgFonf
Arguments: <string>: format string (see below).

Default: -WmsgFonf"%K %d: %m\n"

Description: Sometimes there is no file information available for a message
(for example, if a message not related to a specific file). Then
this message format string is used. Following formats are
supported:

Form
at

Description Example

-

%K Uppercase kind ERROR

%k Lowercase kind error

%d Number L10324

%m Message text

%% Percent %

\n New line

Example: LINKOPTIONS=-WmsgFonf”%k %d: %m\n”

produces a message in following format:

information L10324: Linking successful

See also: Environment variable ERRORFILE

Option -WmsgFb

Option -WmsgFi

Option -WmsgFonp

Option -WmsgFoi

Option -WmsgFob
105Smart Linker

SmartLinker Options
-WmsgFonp
-WmsgFonp

-WmsgFonp: Message Format for no
Position Information

Group: MESSAGE

Syntax: "-WmsgFonp"<string>.

Arguments: <string>: format string (see below).

Default: -WmsgFonp"%”%f%e%”: %K %d: %m\n"

Description: Sometimes there is no position information available for a
message (e.g. if a message not related to a certain position).
Then this message format string is used. Following formats
are supported (supposed that the source file is
x:\metrowerks\sourcefile.prmx)

Form
at

Description Example

-

%p Path x:\metrowerks\

%f Path and name x:\metrowerks\sourcefile

%n File name sourcefile

%e Extension .prmx

%N File (8 chars) sourcefi

%E Extension (3 chars) .prm

%K Uppercase kind ERROR

%k Lowercase kind error

%d Number L10324

%m Message text

%” ” if full name ”

contains a space

%’ ’ if full name

contains a space
106 Smart Linker

SmartLinker Options
-WmsgNe
-WmsgNe

-WmsgNe: Number of Error Messages

%% Percent %

\n New line

Example: LINKOPTIONS=-WmsgFonf”%k %d: %m\n”

produces a message in following format:

information L10324: Linking successful

See also: Environment variable ERRORFILE

Option -WmsgFb

Option -WmsgFi

Option -WmsgFonf

Option -WmsgFoi

Option -WmsgFonfob

Group: MESSAGE

Syntax: "-WmsgNe" <number>.

Arguments: <number>: Maximum number of error messages.

Default: 50

Description: With this option the amount of error messages can be set until
the SmartLinker stops the current linking session. Note that
subsequent error messages which depends on a previous one
may be confusing.

Example: LINKOPTIONS=-WmsgNe2

The SmartLinker stops compilation after two error messages.

See also: Option -WmsgNi

Option -WmsgNw
107Smart Linker

SmartLinker Options
-WmsgNi
-WmsgNi

-WmsgNi: Number of Information Messages

-WmsgNu

-WmsgNu: Disable User Messages

Group: MESSAGE

Syntax: "-WmsgNi" <number>.

Arguments: <number>: Maximum number of information messages.

Default: 50

Description: With this option the amount of information messages can be
set.

Example: LINKOPTIONS=-WmsgNi10

Only ten information messages are logged.

See also: Option -WmsgNe

Option -WmsgNw

Group: MESSAGE

Syntax: "-WmsgNu" ["=" {"a" | "b" | "c" | "d"}].

Arguments: “a”: Disable messages about include files

“b”: Disable messages about reading files

“c”: Disable messages about generated files

“d”: Disable messages about processing statistics

“e”: Disable informal messages

Default: none.

Description: The application produces some messages which are not in
the normal message categories (WARNING,
INFORMATION, WRROR, FATAL). With this option such
messages can be disabled. The idea of this option is to
reduce the amount of messages and to simplify the error
parsing of other tools.
108 Smart Linker

SmartLinker Options
-WmsgNw
-WmsgNw

-WmsgNw: Number of Warning Messages

“a”: The application informs about all included files. With
this suboption this can be disabled.

“b”: With this suboption messages about reading files e.g.
the files used as input can be disabled.

“c”: Disables messages informing about generated files.

“d”: At the end the application may inform about statistics,
e.g. code size, RAM/ROM usage and so on. With this
suboption this can be disabled.

“e”: With this option informal messages (e.g. memory
model, floating point format, ...) can be disabled.

Note: Depending on the application, not all suboptions may make
sense. In this case they are just ignored for compatibility.

Example: -WmsgNu=c

See also: none.

Group: MESSAGE

Syntax: "-WmsgNw" <number>.

Arguments: <number>: Maximum number of warning messages.

Default: 50

Description: With this option the amount of warning messages can be set.

Example: LINKOPTIONS=-WmsgNw15

Only 15 warning messages are logged.

See also: Option -WmsgNe

Option -WmsgNi
109Smart Linker

SmartLinker Options
-WmsgSd
-WmsgSd

-WmsgSd: Setting a Message to Disable

-WmsgSe

-WmsgSe: Setting a Message to Error

Group: MESSAGE

Syntax: "-WmsgSd" <number>.

Arguments: <number>: Message number to be disabled, for example, 1201

Default: none.

Description: With this option a message can be disabled, so it does not
appear in the error output.

Example: LINKOPTIONS=-WmsgSd1201

disables the message for no stack declaration.

See also: Option -WmsgSi

Option -WmsgSw

Option -WmsgSe

Group: MESSAGE

Syntax: "-WmsgSe" <number>.

Arguments: <number>: Message number to be an error, for example, 1201

Default: none.

Description: Allows changing a message to an error message.

Example: LINKOTIONS=-WmsgSe1201

See also: Option -WmsgSd

Option -WmsgSi

Option -WmsgSw
110 Smart Linker

SmartLinker Options
-WmsgSi
-WmsgSi

-WmsgSi: Setting a Message to Information

-WmsgSw

-WmsgSw: Setting a Message to Warning

Group: MESSAGE

Syntax: "-WmsgSi" <number>.

Arguments: <number>: Message number to be an information, e.g. 1201

Default: none.

Description: With this option a message can be set to an information
message

Example: LINKOPTIONS=-WmsgSi1201

See also: Option -WmsgSd

Option -WmsgSw

Option -WmsgSe

Group: MESSAGE

Syntax: "-WmsgSw" <number>.

Arguments: <number>: Error number to be a warning, for example, 1201

Default: none.

Description: With this option a message can be set to a warning message.

Example: LINKOPTIONS=-WmsgSw1201

See also: Option -WmsgSd

Option -WmsgSi

Option -WmsgSe
111Smart Linker

SmartLinker Options
-WOutFile
-WOutFile

-WOutFile: Create Error Listing File

-WStdout

-WStdout: Write to standard output

Group: MESSAGE

Syntax: "-WOutFile" ("On" | "Off").

Arguments: none.

Default: Error listing file is created.

Description: This option controls if a error listing file should be created at all.
The error listing file contains a list of all messages and errors
which are created during a compilation. Since the text error
feedback can now also be handled with pipes to the calling
application, it is possible to obtain this feedback without an
explicit file. The name of the listing file is controlled by the
environment variable ERRORFILE.

Example: -WOutFileOn

The error file is created as specified with ERRORFILE.

-WOutFileOff

No error file is created.

See also: Option -WErrFile

Option -WStdout

Group: MESSAGE

Syntax: "-WStdout" ("On" | "Off").

Arguments: none.

Default: Output is written to stdout.
112 Smart Linker

SmartLinker Options
-WStdout
Description: With Windows applications, the usual standard streams are
available. But text written into them does not appear anywhere
unless explicitly requested by the calling application. With this
option is can be controlled if the text to error file should also be
written into the stdout.

Example: -WStdoutOn

All messages are written to stdout.

-WErrFileOff

Nothing is written to stdout.

See also: Option -WErrFile

Option -WOutFile
113Smart Linker

SmartLinker Options
-WStdout
114 Smart Linker

6
Linking Issues

Object Allocation
The whole object allocation is performed trough the SEGMENTS(ELF) (or
SECTIONS(HIWARE)) and PLACEMENT blocks.

The SEGMENTS Block (ELF)

The SEGMENTS Block is optional, it only increases the readability of the linker input
file. It allows to assign meaningful names to contiguous memory areas on the target
board. Memory within such an area share common attribute:

• qualifier

• alignment rules

• filling character

 Two types of segments can be defined:

• physical segments

• virtual segments

Physical Segments
Physical segments are closely related to hardware memory areas.

For example, there may be one READ_ONLY segment for each bank of the target
board ROM area and another one covering the whole target board RAM area.

 Example:
For simple memory model you can define a segment for the RAM area and another
one for the ROM area.
115Smart Linker

Linking Issues
Object Allocation
 LINK test.abs
 NAMES test.o startup.o END
 SEGMENTS
 RAM_AREA = READ_WRITE 0x00000 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 END
 PLACEMENT
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
 END
 STACKSIZE 0x50

For banked memory model you can define a segment for the RAM area, another for
the non-banked ROM area and one for each target processor bank.

 LINK test.abs
 NAMES test.o startup.o END
 SEGMENTS
 RAM_AREA = READ_WRITE 0x00000 TO 0x07FFF;
 NON_BANKED_AREA = READ_ONLY 0x0C000 TO 0x0FFFF;
 BANK0_AREA = READ_ONLY 0x08000 TO 0x0BFFF;
 BANK1_AREA = READ_ONLY 0x18000 TO 0x1BFFF;
 BANK2_AREA = READ_ONLY 0x28000 TO 0x2BFFF;
 END
 PLACEMENT
 DEFAULT_RAM INTO RAM_AREA;
 _PRESTART, STARTUP,
 ROM_VAR,
 NON_BANKED, COPY INTO NON_BANKED_AREA;
 DEFAULT_ROM INTO BANK0_AREA, BANK1_AREA,
 BANK2_AREA;
 END
 STACKSIZE 0x50

Virtual Segment
A physical segment may be split into several virtual segments, allowing a better
structuring of object allocation and also allowing to take advantage of some processor
specific property.
116 Smart Linker

Linking Issues
Object Allocation
 Example:
For HC12 is small memory model you can define a segment for the direct page area,
another for the rest of the RAM area and another one for the ROM area.

 LINK test.abs
 NAMES test.o startup.o END

 SEGMENTS
 DIRECT_RAM = READ_WRITE 0x00000 TO 0x000FF;
 RAM_AREA = READ_WRITE 0x00100 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 END
 PLACEMENT
 myRegister INTO DIRECT_RAM;
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
 END
 STACKSIZE 0x50

Segment Qualifier
 Different qualifiers are available for segments. Table 6.1 describes the available
qualifiers:

Table 6.1 Qualifiers and their description

Qualifier Description

READ_ONLY Qualifies a segment, where read only access is allowed.
Objects within such a segment are initialized at
application loading time.

READ_WRITE Qualifies a segment, where read and write accesses are
allowed. Objects within such a segment are initialized at
application startup.
117Smart Linker

Linking Issues
Object Allocation
NOTE For debugging purposes one sometimes wants to load code into
RAM areas. Because this code should be loaded at load time, such
areas should be qualified as READ_ONLY.
READ_ONLY means for the linker that such objects are initialized at
program load time. The linker does not know (and does not care) if at
runtime the target code does write to a READ_ONLY area.

NOTE Anything located in a READ_WRITE segment is initialized at
application startup time. So especially the application code, which
does this initialization and the data used for this initialization (init,
zero out, copy down) cannot be located in a READ_WRITE section,
but only in a READ_ONLY section.
The program loader can however at program loading time write the
content of READ_ONLY sections into a RAM area.

NOTE If a application does not use any startup code to initialize
READ_WRITE sections, then no such sections should be present in
the prm file. Instead use NO_INIT sections.

NO_INIT Qualifies a segment, where read and write accesses are
allowed. Objects within such a segment remain
unchanged during application startup. This qualifier may
be used for segments referring to a battery backed RAM.
Sections placed in a NO_INIT segment should not contain
any initialized variable (variable defined as ‘int c = 8’).

PAGED Qualifies a segment, where read and write accesses are
allowed. Objects within such a segment remain
unchanged during application startup. Additionally,
objects located in two PAGED segments may overlap.
This qualifier is used for memory areas, where some user
defined page-switching mechanism is required. Sections
placed in a NO_INIT segment should not contain any
initialized variable (variable defined as ‘int c = 8’).

Qualifier Description
118 Smart Linker

Linking Issues
Object Allocation
Segment Alignment
The default alignment rule depends on the processor and memory model used. The
HC12 processor do not require any alignment for code or data objects. One can choose
to define his own alignment rule for a segment. The alignment rule defined for a
segment block overrides the default alignment rules associated with the processor and
memory model.

 The alignment rule has the following format:

 [defaultAlignment] {“[“ObjSizeRange”:”alignment”]”}

 where:

Example:

 LINK test.abs
 NAMES test.o startup.o END

 SEGMENTS
 DIRECT_RAM = READ_WRITE 0x00000 TO 0x000FF
 ALIGN 2 [< 2: 1];
 RAM_AREA = READ_WRITE 0x00100 TO 0x07FFF
 ALIGN [1:1] [2..3:2] [>=4:4];
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 END
 PLACEMENT

defaultAlignment is the alignment value for all objects which do not match
the conditions of any range defined afterward.

ObjSizeRange defines a certain condition. The condition is from the form:
 size: the rule applies to objects, which size is equal to
‘size’.
 < size: the rule applies to objects, which size is smaller
than ‘size’.
 > size: the rule applies to objects, which size is bigger
than ‘size’
 <= size: the rule applies to objects, which size is smaller
or equal to ‘size’
 >= size: the rule applies to objects, which size is bigger or
equal to ‘size’
 from size1 to size2: the rule applies to objects, which size
is bigger or equal to ‘size1’and smaller or equal to ‘size2’.

alignment defines the alignment value for objects matching the
condition defined in the current alignment block (enclosed
in square bracket).
119Smart Linker

Linking Issues
Object Allocation
 myRegister INTO DIRECT_RAM;
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
 END
 STACKSIZE 0x50

 In previous example:

• In segment DIRECT_RAM, objects which size is 1 byte are aligned on byte
boundary, all other objects are aligned on 2-bytes boundary.

• In segment RAM_AREA, objects which size is 1 byte are aligned on byte
boundary, objects which size is equal to 2 or 3 bytes are aligned on 2-bytes
boundary, all other objects are aligned on 4-bytes boundary.

• Default alignment rule applies in the segment ROM_AREA.

Segment Fill Pattern
The default fill pattern for code and data segment is the null character. One can choose
to define his own fill pattern for a segment The fill pattern definition in the segment
block overrides the default fill pattern. Note that the fill pattern is used too to fill up a
segment to the segment end boundary.

 Example:

 LINK test.abs
 NAMES test.o startup.o END

 SEGMENTS
 DIRECT_RAM = READ_WRITE 0x00000 TO 0x000FF
 FILL 0xAA;
 RAM_AREA = READ_WRITE 0x00100 TO 0x07FFF
 FILL 0x22;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 END
 PLACEMENT
 myRegister INTO DIRECT_RAM;
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
 END
 STACKSIZE 0x50

 In previous example:
120 Smart Linker

Linking Issues
Object Allocation
• In segment DIRECT_RAM, alignment bytes between objects are initialized with
0xAA.

• In segment RAM_AREA, alignment bytes between objects are initialized with
0x22.

• In segment ROM_AREA, alignment bytes between objects are initialized with
0x00.

The SECTIONS Block (HIWARE + ELF)

The segments block is optional, it only increases the readability of the linker input file.
It allows to assign meaningful names to contiguous memory areas on the target board.
Memory within such an area share common attribute:

• qualifier,

 Two types of segments can be defined:

• physical segments

• virtual segments.

Physical Segments
Physical segments are closely related to hardware memory areas.

For example, there may be one READ_ONLY segment for each bank of the target
board ROM area and another one covering the whole target board RAM area.

 Example:
For simple memory model you can define a segment for the RAM area and another
one for the ROM area.

 LINK test.abs
 NAMES test.o startup.o END
 SECTIONS
 RAM_AREA = READ_WRITE 0x00000 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 PLACEMENT
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
 END
 STACKSIZE 0x50
121Smart Linker

Linking Issues
Object Allocation
For banked memory model you can define a segment for the RAM area, another for
the non-banked ROM area and one for each target processor bank.

 LINK test.abs
 NAMES test.o startup.o END
 SECTIONS
 RAM_AREA = READ_WRITE 0x00000 TO 0x07FFF;
 NON_BANKED_AREA = READ_ONLY 0x0C000 TO 0x0FFFF;
 BANK0_AREA = READ_ONLY 0x08000 TO 0x0BFFF;
 BANK1_AREA = READ_ONLY 0x18000 TO 0x1BFFF;
 BANK2_AREA = READ_ONLY 0x28000 TO 0x2BFFF;
 PLACEMENT
 DEFAULT_RAM INTO RAM_AREA;
 _PRESTART, STARTUP,
 ROM_VAR,
 NON_BANKED, COPY INTO NON_BANKED_AREA;
 DEFAULT_ROM INTO BANK0_AREA, BANK1_AREA,
 BANK2_AREA;
 END
 STACKSIZE 0x50

Virtual Segment
A physical segment may be split into several virtual segments, allowing a better
structuring of object allocation and also allowing to take advantage of some processor
specific property.

 Example:
For HC12 is small memory model you can define a segment for the direct page area,
another for the rest of the RAM area and another one for the ROM area.

 LINK test.abs
 NAMES test.o startup.o END

 SECTIONS
 DIRECT_RAM = READ_WRITE 0x00000 TO 0x000FF;
 RAM_AREA = READ_WRITE 0x00100 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 PLACEMENT
 myRegister INTO DIRECT_RAM;
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
122 Smart Linker

Linking Issues
Object Allocation
 END
 STACKSIZE 0x50

Segment Qualifier
Different qualifiers are available for segments. Table 6.2 describes the available
qualifiers:

Table 6.2 Qualifiers and their description

Qualifier Meaning

READ_ONLY Qualifies a segment, where read only access is allowed.
Objects within such a segment are initialized at
application loading time.

CODE (ELF) Qualifies a code segment in a harvard architecture in the
ELF object file format. For cores with Von Neumann
Architecture (combined code and data address space) or
for the HIWARE object file format use READ_ONLY
instead.

READ_WRITE Qualifies a segment, where read and write accesses are
allowed. Objects within such a segment are initialized at
application startup.

NO_INIT Qualifies a segment, where read and write accesses are
allowed. Objects within such a segment remain
unchanged during application startup. This qualifier may
be used for segments referring to a battery backed RAM.
Sections placed in a NO_INIT segment should not
contain any initialized variable (variable defined as ‘int c
= 8’).

PAGED Qualifies a segment, where read and write accesses are
allowed. Objects within such a segment remain
unchanged during application startup. Additionally,
objects located in two PAGED segments may overlap.
This qualifier is used for memory areas, where some
user defined page-switching mechanism is required.
Sections placed in a NO_INIT segment should not
contain any initialized variable (variable defined as ‘int c
= 8’).
123Smart Linker

Linking Issues
Object Allocation
NOTE For debugging purposes one sometimes wants to load code into
RAM areas. Because this code should be loaded at load time, such
areas should be qualified as READ_ONLY.
READ_ONLY means for the linker that such objects are initialized at
program load time. The linker does not know (and does not care) if at
runtime the target code does write to a READ_ONLY area.

NOTE Anything located in a READ_WRITE segment is initialized at
application startup time. So especially the application code, which
does this initialization and the data used for this initialization (init,
zero out, copy down) cannot be located in a READ_WRITE section,
but only in a READ_ONLY section.
The program loader can however at program loading time write the
content of READ_ONLY sections into a RAM area.

NOTE If a application does not use any startup code to initialize
READ_WRITE sections, then no such sections should be present in
the prm file. Instead use NO_INIT sections.

PLACEMENT Block
The placement block allows to physically place each section from the application in a
specific memory area (segment). The sections specified in a PLACEMENT block may
be linker-predefined sections or user sections specified in one of the source file
building the application.

 A programmer may decide to organize his data into sections:

• to increase structuring of the application

• to ensure that common purpose data are grouped together

• to take advantage of target processor specific addressing mode.

Specifying a List of Sections
When several sections are specified on a PLACEMENT statement, the sections are
allocated in the sequence they are enumerated.

Example:
124 Smart Linker

Linking Issues
Object Allocation
 LINK test.abs
 NAMES test.o startup.o END

 SECTIONS
 RAM_AREA = READ_WRITE 0x00100 TO 0x002FF;
 STK_AREA = READ_WRITE 0x00300 TO 0x003FF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 PLACEMENT
 DEFAULT_RAM, dataSec1,
 dataSec2 INTO RAM_AREA;
 DEAFULT_ROM, myCode INTO ROM_AREA;
 SSTACK INTO STK_AREA;
 END

 In previous example:

• Inside of segment RAM_AREA, the objects defined in the section .data are
allocated first, then the objects defined in section dataSec1 then objects defined in
section dataSec2.

• Inside of segment ROM_AREA, the objects defined in section .text are allocated
first, then the objects defined in section myCode

NOTE As the linker is case sensitive, the name of the sections specified in
the PLACEMENT block must be valid predefined or user defined
section. For the linker the sections DataSec1 and dataSec1 are two
different sections

Specifying a List of Segments
When several segments are specified on a PLACEMENT statement, the segments are
used in the sequence they are enumerated. Allocation is performed in the first segment
in the list, until this segment is full. Then allocation continues on the next segment in
the list, an so on until all objects are allocated.

Example:

LINK test.abs
 NAMES test.o startup.o END
 SECTIONS
 RAM_AREA = READ_WRITE 0x00100 TO 0x002FF;
 STK_AREA = READ_WRITE 0x00300 TO 0x003FF;
 NON_BANKED_AREA = READ_ONLY 0x0C000 TO 0x0FFFF;
125Smart Linker

Linking Issues
Object Allocation
 BANK0_AREA = READ_ONLY 0x08000 TO 0x0BFFF;
 BANK1_AREA = READ_ONLY 0x18000 TO 0x1BFFF;
 BANK2_AREA = READ_ONLY 0x28000 TO 0x2BFFF;
 PLACEMENT
 DEFAULT_RAM INTO RAM_AREA;
 SSTACK INTO STK_AREA;
 _PRESTART, STARTUP,
 ROM_VAR,
 NON_BANKED, COPY INTO NON_BANKED_AREA;
 DEFAULT_ROM INTO BANK0_AREA, BANK1_AREA,
 BANK2_AREA;
 END

In previous example:

• Functions implemented in section .text are allocated first in segment
BANK0_AREA. When there is not enough memory available in this segment,
allocation continues in segment BANK_1_AREA, then in BANK2_AREA

NOTE As the linker is case sensitive, the name of the segments specified in
the PLACEMENT block must be valid segment names defined in the
SEGMENTS block. For the linker the segments Ram_Area and
RAM_AREA are two different segments.

Allocating User Defined Sections (ELF)

All sections do not need to be enumerated in the placement block. The segments where
sections, which do not appear in the PLACEMENT block, are allocated depends on
the type of the section.

• Sections containing data are allocated next to the section.data.

• Sections containing code, constant variables or string constants are allocated next
to the section .text.

Allocation in the segment where .data is placed is performed as follows:

• Objects from section .data are allocated

• Objects from section .bss are allocated (if .bss is not specified in the
PLACEMENT block).

• Objects from the first user defined data section, which is not specified in the
PLACEMENT block, are allocated.
126 Smart Linker

Linking Issues
Object Allocation
• Objects from the next user defined data section, which is not specified in the
PLACEMENT block, are allocated.

• and so on until all user defined data sections are allocated.

• If the section .stack is not specified in the PLACEMENT block and is defined
with a STACKSIZE command, the stack is allocated then.

Allocation in the segment where .text is placed is performed as follows:

• Objects from section .init are allocated (if .init is not specified in the
PLACEMENT block).

• Objects from section .startData are allocated (if .startData is not specified in the
PLACEMENT block).

• Objects from section .text are allocated

• Objects from section .rodata are allocated (if .rodata is not specified in the
PLACEMENT block).

• Objects from section .rodata1 are allocated (if .rodata1 is not specified in the
PLACEMENT block).

• Objects from the first user defined code section, which is not specified in the
PLACEMENT block, are allocated.

• Objects from the next user defined code section, which is not specified in the
PLACEMENT block, are allocated.

• and so on until all user defined code sections are allocated.

• Objects from section .copy are allocated (if .copy is not specified in the
PLACEMENT block).

Allocating User Defined Sections (HIWARE)

All sections do not need to be enumerated in the placement block. The segments where
sections, which do not appear in the PLACEMENT block, are allocated depends on
the type and attributes of the section.

.data .bss .stackUser Data n...User Data 1

 .init .startData .text .rodata .rodata1 User Code1 ... User Code n .copy
127Smart Linker

Linking Issues
Object Allocation

OPY
• Sections containing code are allocated next to the section DEFAULT_ROM.

• Sections containing constants only are allocated next to the section
DEFAULT_ROM. This behavior can be changed with option -CRam.

• Sections containing string constants are allocated next to the section
DEFAULT_ROM.

• Sections containing data are allocated next to the section DEFAULT_RAM.

Allocation in the segment where DEFAULT_RAM is placed is performed as follows:

• Objects from section DEFAULT_RAM are allocated

• If the option -CRam is specified, Objects from section ROM_VAR are allocated,
if ROM_VAR is not mentioned in the PLACEMENT block.

• Objects from user defined data sections, which are not specified in the
PLACEMENT block, are allocated. If option -CRam is specified, constant
sections are allocated together with non constant data sections.

• If the section SSTACK is not specified in the PLACEMENT block and is defined
with a STACKSIZE command, the stack is allocated then.

Allocation in the segment where DEFAULT_ROM is placed is performed as follows:

• Objects from section _PRESTART are allocated (if _PRESTART is not specified
in the PLACEMENT block).

• Objects from section STARTUP are allocated (if STARTUP is not specified in
the PLACEMENT block).

• Objects from section ROM_VAR are allocated (if ROM_VAR is not specified in
the PLACEMENT block). If option -CRam is specified, ROM_VAR is allocated
in the RAM.

• Objects from section SSTRING (string constants) are allocated (if SSTRING is
not specified in the PLACEMENT block).

• Objects from section DEFAULT_ROM are allocated

• Objects from all user defined code sections and constant data sections, which are
not specified in the PLACEMENT block, are allocated.

• Objects from section COPY are allocated (if .copy is not specified in the
PLACEMENT block).

DEFAULT_RAM User Data 1 ... User Data n SSTACK

_PRESTART STARTUP ROM_VAR SSTRING DEFAULT_ROM User Code 1 ... User Code n C
128 Smart Linker

Linking Issues
Initializing Vector Table
Initializing Vector Table
Vector table initialization is performed using the VECTOR command.

VECTOR Command
This command is specially defined to initialize the vector table.

The syntax “VECTOR <Number>” can be used. In this case the Linker allocates the
vector depending on the target CPU. The vector number zero is usually the reset
vector, but depends on the target. The Linker knows about the default start location of
the vector table for each target supported.

The Syntax VECTOR ADDRESS can be used as well. The size of the entries in the
vector table depends on the target processor.

Different syntax are available for the VECTOR command. Table 6.3 describes the
VECTOR command syntax.

The last syntax may be very useful, when working with a common interrupt service
routine.

Table 6.3 VECTOR command syntax and their description

Command Description

VECTOR ADDRESS 0xFFFE 0x1000 indicates that the value 0x1000 must
be stored at address 0xFFFE

VECTOR ADDRESS 0xFFFE FName indicates that the address of the
function FName must be stored at
address 0xFFFE.

VECTOR ADDRESS 0xFFFE FName
OFFSET 2

indicates that the address of the
function FName incremented by 2
must be stored at address 0xFFFE
129Smart Linker

Linking Issues
Smart Linking (ELF)
Smart Linking (ELF)

Because of smart linking, only the objects referenced are linked with the application.
The application entry points are:

• The application init function

• The main function

• The function specified in a VECTOR command.

All the previously enumerated entry points and the objects they referenced are
automatically linked with the application.

The customer can specify additional entry points using the command ENTRIES in the
prm file.

 Mandatory Linking from an Object
One can choose to link some non-referenced objects in his application. This may be
useful to ensure that a software version number is linked with the application and
stored in the final product EPROM.

This may also be useful to ensure that a vector table, which has been defined as a
constant table of function pointers is linked with the application.

 Example:

 ENTRIES
 myVar1 myVar2 myProc1 myProc2
 END

 In previous example:

• The variables myVar1 and myVar2 as well as the function myProc1 and myProc2
are specified to be additional entry points in the application

NOTE As the linker is case sensitive, the name of the objects specified in the
ENTRIES block must be objects defined somewhere in the
application. For the linker the variable MyVar1 and myVar1 are two
different objects.
130 Smart Linker

Linking Issues
Smart Linking (HIWARE + ELF)
 Mandatory Linking from all Objects defined
in a File
One can choose to link all objects defined in a specified object file in his application.

 Example:

 ENTRIES
 myFile1.o:* myFile2.o:*
 END

 In previous example:

• All the objects (functions, variables, constant variables or string constants)
defined in file myFile1.o and myFile2.o are specified to be additional entry points
in the application.

Switching OFF Smart Linking for the
Application
One can choose to switch OFF smart linking. All objects are linked in the application.

 Example:

 ENTRIES
 *
 END

 In previous example:

• Smart linking is switched OFF for the whole application. That means that all
objects defined in one of the binary file building the application are linked with
the application.

Smart Linking (HIWARE + ELF)

Because of smart linking, only the objects referenced are linked with the application.
The application entry points are:

• The application init function
131Smart Linker

Linking Issues
Smart Linking (HIWARE + ELF)
• The main function

• The function specified in a VECTOR command.

All the previously enumerated entry points and the objects they referenced are
automatically linked with the application.

The customer can specify additional entry points using the command ENTRIES in the
prm file.

 Mandatory Linking from an Object
One can choose to link some non-referenced objects in his application. This may be
useful to ensure that a software version number is linked with the application and
stored in the final product EPROM.

This may also be useful to ensure that a vector table, which has been defined as a
constant table of function pointers is linked with the application.

 Example:

 ENTRIES
 myVar1 myVar2 myProc1 myProc2
 END

 In previous example:

• The variables myVar1 and myVar2 as well as the function myProc1 and myProc2
are specified to be additional entry points in the application

NOTE As the linker is case sensitive, the name of the objects specified in the
ENTRIES block must be objects defined somewhere in the
application. For the linker the variable MyVar1 and myVar1 are two
different objects.

 Mandatory Linking from all Objects defined
in a File
One can choose to link all objects defined in a specified object file in his application.
In that purpose, you only need to specify a ‘+’ after the name of the module in the
NAMES block.
132 Smart Linker

Linking Issues
Binary Files building an Application (ELF)
 Example:

 NAMES
 myFile1.o+ myFile2.o+ start.o ansi.lib
 END

 In previous example:

• All the objects (functions, variables, constant variables or string constants)
defined in file myFile1.o and myFile2.o are specified to be additional entry points
in the application.

Binary Files building an Application (ELF)

The names of the binary files building an application may be specified in the NAMES
block or in the ENTRIES block. Usually a NAMES block is sufficient.

NAMES Block
The list of all the binary files building the application are usually listed in the NAMES
block. Additional binary files may be specified by the option -add. If all binary files
should be specified by the command line option -add, then an empty NAMES block
(just NAMES END) must be specified.

Example:

 NAMES
 myFile1.o myFile2.o
 END

In previous example:

• The binary files myFile1.o and myFile2.o build the application.

ENTRIES Block
If a file name is specified in the ENTRIES block, the corresponding file is considered
to be part of the application, even if it does not appear in the NAMES block. The file
specified in the ENTRIES block may also be present in the NAMES block. Name
from absolute, ROM library or library files are not allowed in the ENTRIES block.
133Smart Linker

Linking Issues
Binary Files building an Application (HIWARE)
Example:

 LINK test.abs
 NAMES test.o startup.o END

 SEGMENTS
 DIRECT_RAM = READ_WRITE 0x00000 TO 0x000FF;
 STK_AREA = READ_WRITE 0x00200 TO 0x002FF;
 RAM_AREA = READ_WRITE 0x00300 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 END
 PLACEMENT
 myRegister INTO DIRECT_RAM;
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
 SSTACK INTO STK_AREA;
 END
 ENTRIES
 test1.o:* test.o:*
 END

 In previous example:

• The file test.o, test1.o and startup.o build the application. All objects defined in
the module test1.o and test.o will be linked with the application.

Binary Files building an Application
(HIWARE)

The names of the binary files building an application may be specified in the NAMES
block or in the ENTRIES block. Usually a NAMES block is sufficient.

NAMES Block
The list of all the binary files building the application are usually listed in the NAMES
block. Additional binary files may be specified by the option -add. If all binary files
should be specified by the command line option -add, then an empty NAMES block
(just NAMES END) must be specified.
134 Smart Linker

Linking Issues
Allocating Variables in "OVERLAYS"
Example:

 NAMES
 myFile1.o myFile2.o
 END

In previous example:

• The binary files myFile1.o and myFile2.o build the application.

Allocating Variables in "OVERLAYS"
When your application consist in two distinct parts (or execution unit), which are
never activated at the same time, you can ask the linker to overlap the global variables
of both parts. For this purpose you should pay attention to the following points in your
application source files:

• The global variable from the different parts must be defined in separate data
segments. Do not use the same segment for both execution units.

• The global variables in both execution units must not be defined with initializer,
but should be initialized using assignments in the application source code.

In the prm file, you can then define two distinct memory areas with attribute PAGED.
Memory areas with attributes PAGED are not initialized during startup. For this
reason they cannot contain any variable defined with initializer. The linker will not
perform any overlap check on PAGED memory areas.

Example:
In your source code support you have two execution unit: APPL_1 and APPL_2.

• All global variables from APPL_1 are defined in segment APPL1_DATA_SEG

• All global variables from APPL_2 are defined in segment DEFAULT_RAM and
APPL2_DATA_SEG

The prm file will look as follows:

LINK test.abs

NAMES test.o appl1.o appl2.o startup.o END

SECTIONS
 MY_ROM = READ_ONLY 0x800 TO 0x9FF;
135Smart Linker

Linking Issues
Overlapping Locals
 MY_RAM_1 = PAGED 0xA00 TO 0xAff;
 MY_RAM_2 = PAGED 0xA00 TO 0xAff;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;

PLACEMENT
 DEFAULT_ROM INTO MY_ROM;
 DEFAULT_RAM,
 APPL2_DATA_SEG INTO MY_RAM_2;
 APPL1_DATA_SEG INTO MY_RAM_1;
 SSTACK INTO MY_STK; /* Stack cannot be allocated in a
PAGED
memory area. */
END

Overlapping Locals
This section is only for targets which do allocated local variables like global variables
at fixed addresses.

Some small targets do not have a stack for local variables. So the compiler uses
pseudo-statically objects for local variables. In contrast to other targets which allocate
such variables on the stack, these variables must then be allocated by the linker. On the
stack multiple local variables are automatically allocated at the same address at a
different time. A similar overlapping scheme is implemented by the linker to save
memory for local variables.

Example:
void f(void) { long fa;; }
void g(void) { long ga;; }
void main(void) { long lm; f(); g(); }

In the example above, the functions f and g are never active at the same time.
Therefore the local variable fa and ga can be allocated at the same address.

NOTE When local variables are allocated at fixed addresses, the resulting
code is not reentrant. One function must be called only once at a
time. Special care has to be taken about interrupt functions. They
must not call any function which might be active at the interrupt time.
136 Smart Linker

Linking Issues
Overlapping Locals
To be on the save side, usually interrupt functions are using a
different set of functions than non interrupt functions.

NOTE For the view of the linker, parameter and spill objects do not differ
from local variables. All these objects are allocated together.

The linker analyses the call graph of one root function at a time and allocates all local
variables used by all depending functions at this time. Variables depending on
different root functions are allocated non-overlapping except in the special case of an
OVERLAP_GROUP(ELF).

Algorithm
Algorithm for the overlap allocation is quite simple:

1. If current object depends on other objects first allocate the dependents

2. Calculate the maximum address used by any dependent object. If none exist, use
the base reserved for the current root.

3. Allocate all locals starting at the maximum.

This algorithm is called for all roots. The base of the root is first calculated as the
maximum used so far.

Example

void g(long g_par) { }
void h(long l_par) { }
void main(void) {
 char ch;
 g(1);
 h(2);
}
void interrupt 1 inter(void) {
 long inter_loc;
}

The function main is a root because it is the application main function and inter is a
root because it is called by a interrupt.

...
137Smart Linker

Linking Issues
Overlapping Locals
SECTIONS
...
 OVERLAP_RAM = NO_INIT 0x0060 TO 0x0068;
...
PLACEMENT
...
 _OVERLAP INTO OVERLAP_RAM;
...
END

NOTE In the ELF object file format the name “_OVERLAP” is a synonym
for the “.overlap” segment.

The algorithm is started with main. As h and g depend on main, their parameters g_par
and l_par are allocated starting at address 0x60 in the _OVERLAP segment. Next the
local ch is allocated at 0x64 because all lower addresses were already used by
dependents. After main was finished, the base for the second root is calculated as
0x65, where inter_loc is also allocated.

The following items are considered as root points for the overlapping allocation in the
ELF object file format:

• objects specified in a DEPENDENCY ROOT block

• objects specified in a OVERLAP_GROUP block

• application main function (specified with prm file entry MAIN) and
 application entry point (specified with prm file entry INIT)

• objects specified in a ENTRIES block

• absolute objects

• interrupt vectors

• All objects in non Smart Linked object files.

0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68

g_par ch inter_loc

l_par
138 Smart Linker

Linking Issues
Overlapping Locals
NOTE The main function (main) and the application entry point (_Startup)
are implicitly defined as one OVERLAP_GROUP. In the startup
code delivered with the compiler, this saves about 8 bytes because
the locals of Init, Copy and main are overlapped. When _Startup
itself is changed and now also needs locals which must be alive over
the call to main, define the _Startup function as single entry in an
OVERLAP_GROUP:
OVERLAP_GROUP _Startup END

The overlap section _OVERLAP (in ELF also named .overlap) must be allocated in a
NO_INIT area. The section _OVERLAP cannot be split into several areas.

Name Mangling for Overlapping Locals
When parameters are passed on the stack, then the matching of the callers and the
callee arguments works by their position on the stack. For overlapped locals (which do
include parameters not passed in registers as well), the matching is done by the linker
using the parameter name.

Consider the following example:

void callee(long i);
void caller(void) {
 callee(1);
}
void callee(long k) {
}

The name i of the declaration of callee does not match the name used in the definition.
Actually, the declaration might not specify a name at all. As the link between the caller
and callees argument is done by the name, they both have to use the same name.
Because of this, the compiler does generate an artificial name for the callee’s
parameter _calleep0. This name is built starting with an underscore ("_"), then
appending the function name, a "p" and finally the number of the argument.

NOTE In ELF, there is a second name mangling needed to encode the name
of the defining function into its name. For details, see below.

Compiler users do not need to know about the name mangling at all. The compiler
does it for them automatically.
139Smart Linker

Linking Issues
Overlapping Locals
However, if you want to write functions with overlapping locals in assembler, then
you have to do the name mangling yourself. This is especially important if you are
calling C functions from assembler code or assembler functions from C code.

Name Mangling in the ELF Object File
Format
In the ELF Object File Format, there is no predefined way to specify to which function
an actual parameter does belong. So the compiler does some special name mangling
which adds the name of the function into the link time name.

In ELF, the name is build the following way:

If the object is a function parameter, use a "p" followed by the number of the argument
instead of the object name given in the source file.

1. prefix "__OVL_"

2. If the function name contains a underscore ("_"), the number of characters of the
function name followed by a underscore ("_"). Nothing if the function name does
not contain an underscore.

3. The function name.

4. An underscore ("_").

5. If the object name contains a underscore ("_"), the number of characters of the
object followed by one underscore ("_"). Nothing if the object name does not
contain an underscore.

6. The object name.

Example (ELF):

 void f(long p) {
 char a;
 char b_c;
 }

Does generate the following mangled names

 p: "__OVL_f_p0" (HIWARE format: "_fp0")
 a: "__OVL_f_a" (HIWARE format: "a")
b_c: "__OVL_f_3_b_c" (HIWARE format: "b_c")
140 Smart Linker

Linking Issues
Overlapping Locals
Defining an function with overlapping
parameters in Assembler
This section covers advanced topics which are only important if you plan to write
assembler functions using a C calling convention with overlapping parameters.

As example, we want to define the function callee:

void callee(long k) {
 k= 0;
}

In assembler, first the parameter must be defined with its mangled name. The
parameter must be in the section _OVERLAP:

_OVERLAP: SECTION
callee_p1: DS 4

NOTE The _OVERLAP section is often allocated in a short segment. If so,
use “_OVERLAP: SECTION SHORT” to specify this.

Next we define the function itself.

callee_code: SECTION
callee:
 CLEAR callee_p1,4
 RETURN

To avoid processor specific examples, we assume that there is an assembler macro
CLEAR which writes as many zero bytes as its second argument to the address
specified by its first argument. The second macro RETURN should just generate a
return instruction for the actually used processor. The implementations of these two
macros are processor specific and not contained in this linker manual.

Finally, we have to export callee and its argument:

 XDEF callee
 XDEF callee_p1

The whole example in one block:

;Processor specific macro definition, please adapt to your target
CLEAR: MACRO
141Smart Linker

Linking Issues
Overlapping Locals
 ...
 ENDM

RETURN: MACRO
 ...
 ENDM

_OVERLAP: SECTION
callee_p1: DS 4

callee_code: SECTION

callee:
 CLEAR callee_p1,4
 RETURN
; export function and parameter
 XDEF callee
 XDEF callee_p1

Some additional points to consider
• In the ELF format, the name of the p1 parameter must be _OVL_callee_p1

instead of callee_p1.

Example for ELF:

_OVERLAP: SECTION
_OVL_callee_p1: DS 4

callee_code: SECTION

callee:
 CLEAR _OVL_callee_p1,4
 RETURN
; export function and parameter
 XDEF callee
 XDEF _OVL_callee_p1

• Every function defined in assembler should be in a separate section as a linker
section containing code corresponds to a compiler function.

Example two functions put into one segment:

 XDEF callee0
 XDEF callee1
142 Smart Linker

Linking Issues
Overlapping Locals
_OVERLAP: SECTION
loc0: DS 4
loc1: DS 4

code_seg: SECTION
callee0:
 CLEAR loc0,4
 RETURN
callee1: ; ERROR function should be in separate segment
 CLEAR loc1,4
 RETURN

Because callee0 and callee1 are in the same segment, the linker treats them as if they
were two entry points of the same function. Because of this, loc0 and loc1 will not be
overlapped and additional dependencies are generated.

To solve the problem, put the two functions into separate segments:

 XDEF callee0
 XDEF callee1
_OVERLAP: SECTION
loc0: DS 4
loc1: DS 4

code_seg0: SECTION
callee0:
 CLEAR loc0,4
 RETURN
code_seg1: SECTION
callee1:
 CLEAR loc1,4
 RETURN

• Parameter objects are exported if the corresponding function is exported too.
Locals are usually not exported.

Example of an illegal non exported definition of a parameter:

 XDEF callee
_OVERLAP: SECTION
callee_p1: DS 4

callee_code: SECTION

callee:
 CLEAR callee_p1,4
143Smart Linker

Linking Issues
Overlapping Locals
 RETURN

Because callee_p1 is not exported, an external caller of callee will not use the correct
actual parameter. Actually, the application will not be able to link because of the
unresolved external callee_p1.

To correct it, export callee_p1 too:

 XDEF callee
 XDEF callee_p1
_OVERLAP: SECTION
callee_p1: DS 4

callee_code: SECTION

callee:
 CLEAR callee_p1,4
 RETURN

• Do only use parameters of functions which are actually called. Do not use local
variables of other functions. The assembler does not prevent the usage of locals,
which would not have been possible in C. Such additional usages are not taken
into account for the allocation and may therefore not work as expected. As rule,
only access objects defined in the _OVERLAP section from one single
SECTION unless the object is a parameter. Parameters can be safely accessed
from all sections containing calls to the callee and from the section defining the
callee.

Example of an illegal usage of a local variable

_OVERLAP: SECTION
loc: DS 4

callee0_code: SECTION
callee0:
 CLEAR loc,4 ; error: usage of local var loc from two functs
 RETURN

callee1_code: SECTION
callee1:
 CLEAR loc,4 ; error: usage of local var loc from two functs
 RETURN

Instead use two different locals for two different functions:

_OVERLAP: SECTION
144 Smart Linker

Linking Issues
Overlapping Locals
loc0: DS 4; local var of function callee0
loc1: DS 4; local var of function callee1

callee0_code: SECTION
callee0:
 CLEAR loc0,4 ; OK, only callee 0 uses loc0
 RETURN

callee1_code: SECTION
callee1:
 CLEAR loc1,4 ; OK, only callee 0 uses loc1
 RETURN

• In the HIWARE format, functions defined in assembly must access all its
parameters and locals allocated in the _OVERLAP segment.

There must be no unused parameters in the _OVERLAP segment. If this rule is
violated, then the linker allocates the parameter in the overlap area of one of the
callers. This object can then overlap with the local variables of other callers.

In the ELF format, the binding to the defining function is done by the name
mangling and this restriction does therefore not exists.

The following example does not work in the HIWARE format because callee_p1
is not accessed.

_OVERLAP: SECTION
callee_p1: DS 4; error: parameter MUST be accessed

callee_code: SECTION
callee:
 RETURN

To correct it, do use the parameter even if the usage is not actually
necessary:
_OVERLAP: SECTION
callee_p1: DS 4; OK parameter is accessed

callee_code: SECTION
callee:
 CLEAR callee_p1,1
 RETURN
145Smart Linker

Linking Issues
Overlapping Locals
DEPENDENCY TREE in the Map File
The DEPENDENCY TREE section in the map file was especially built to provide
useful information about the overlapped allocation.

Example:

volatile int intPending; /* interrupt being handled? */

void interrupt 1 inter(void) {
 int oldIntPending=intPending;
 intPending=TRUE;
 while (0 == read((void*)0x1234)) {}
 intPending=oldIntPending;
}

unsigned char read(void* adr) {
 return *(volatile char*)adr;
}

Does generate the following tree:

_Vector_1 : 0x808..0x80B
|
+* inter : 0x808..0x80B
 | +* oldIntPending : 0x80A..0x80B
 |
 +* read : 0x808..0x809
 +* _readp0 : 0x808..0x809

Vector_1 is for the interrupt vector 1 specified in the C source.

The parameter name adr is encoded to _readp0 because in C, parameter names may
have different names in different declarations, or even no name as in the example.

Vector_1, inter and read do all depend on the adr parameter of read, which is allocated
at 0x808 to 0x809 (inclusive). So this area is included for all these objects. Only
Vector_1 and inter do depend on oldIntPending, so the area 0x80A to 0x80B is only
contained in these functions.
146 Smart Linker

Linking Issues
Overlapping Locals
Optimizing the overlap size
The area of memory used by one function is the area of this function plus the
maximum of the areas of all used functions. The branches with the maximum area are
marked with a star “*”.

When a local variable is added to a function with a “*”, the whole overlap area will
grow by the variable size. More useful, when a variable of a function marked with a
“*” is removed, then the size of the overlap may decrease (it may also not, because
there can be several functions with a * on the same level). When a marked function is
using some variables of its own, then splitting this function into several parts may also
reduce the overlap area.

Recursion Checks
Assume, that for the previous example, a second interrupt function exists:

Example

void interrupt 2 inter2(void) {
 int oldIntPending=intPending;
 intPending=TRUE;
 while (0 == read((void*)0x1235)) {}
 intPending=oldIntPending;
}

Now, there are two dependency trees in the map file

 _Vector_2 : 0x808..0x80B
 |
 +* inter2 : 0x808..0x80B
 | +* oldIntPending : 0x80A..0x80B
 |
 +* read : 0x808..0x809
 +* _readp0 : 0x808..0x809

 _Vector_1 : 0x80C..0x80D
 |
 +* inter : 0x80C..0x80D
 | +* oldIntPending : 0x80C..0x80D
 |
 +* read : 0x808..0x809 (see above) (object allocated
in area of another root)
147Smart Linker

Linking Issues
Overlapping Locals
The subtree of the read function is printed only once. The second time, the “(see
above)” is printed instead of the whole subtree. The second remark “(object allocated
in area of another root)” is more serious. Both interrupt functions are using the same
read function. If one interrupt handler can interrupt the other handler, then the
parameter of the read functions may be overwritten, the first handler would fail. But if
both interrupt are exclusive, which is common for the small processors using
overlapped variables, then this information should be added to the prm file to allow an
optimal allocation.

Example (prm file):

DEPENDENCY
 ROOT inter inter2 END
END

Now the warning disappears and both inter and inter2 are contained in the same tree:

 DEPENDECY ROOT
 |
 +* inter2 : 0x808..0x80B
 | | +* oldIntPending : 0x80A..0x80B
 | |
 | +* read : 0x808..0x809
 | +* _readp0 : 0x808..0x809
 |
 +* inter : 0x808..0x80B
 | +* oldIntPending : 0x80A..0x80B
 |
 +* read : 0x808..0x809 (see above)

Because the oldIntPending’s of both handlers are now allocated overlapping, this
saves 2 bytes in this example.

NOTE Vector_1 and Vector_2 are still handled by the linker as additional
roots. But because all is allocated using the DEPENDENCY ROOT,
the have no influence on the generated code. But their trees are still
listed in the DEPENDENCY TREE section in the map file. These
trees can be safely ignored.
148 Smart Linker

Linking Issues
Linker Defined Objects
See Also
ROM Libraries and Overlapping Locals

DEPENDENCY command

OVERLAP_GROUP command

ENTRIES command

Linker Defined Objects
The linker supports to define special objects in order to get the address and size of
sections at link time. Objects to be defined by the linker must have a special prefix.
Their name must start with one of the strings below and they must not be defined by
the application at all.

NOTE Because the linker defines C variables automatically when their size
is known, the usual variables declaration fails for this feature. For an
“extern int __SEG_START_SSTACK;”, the linker allocates the size
of an int, and does not define the object as address of the stack.
Instead use the following syntax so that the compiler/linker has no
size for the object: “extern int __SEG_START_SSTACK[];”.

Usual applications of this feature are the initialization of the stack pointer and to get
the last address of an application to compute a code checksum at runtime.

The object name is built by using a special prefix and then the name of the symbol.

The following tree prefixes are supported:

• “__SEG_START_”: start address of the segment

• “__SEG_END_”: end address of the segment

• “__SEG_SIZE_”: size of the segment

NOTE The “__SEG_END_” end address is the address of the first byte
behind the named segment.

The remaining text after the prefix is taken as segment name by the linker. If the linker
does not find such a segment, a warning is issued an 0 is taken as address of this
object.
149Smart Linker

Linking Issues
Linker Defined Objects
Because identifiers in C must not contain a period in their name, the HIWARE format
aliases can be used for the special ELF names (for example, “SSTACK” instead of
“.stack”).

Example:

With the following C source code:

#define __SEG_START_REF(a) __SEG_START_ ## a
#define __SEG_END_REF(a) __SEG_END_ ## a
#define __SEG_SIZE_REF(a) __SEG_SIZE_ ## a

#define __SEG_START_DEF(a) extern char __SEG_START_REF(a) []
#define __SEG_END_DEF(a) extern char __SEG_END_REF(a) []
#define __SEG_SIZE_DEF(a) extern char __SEG_SIZE_REF(a) []

/* To use this feature, first define the symbols to be used: */
 __SEG_START_DEF(SSTACK); // start of stack
 __SEG_END_DEF(SSTACK); // end of stack
 __SEG_SIZE_DEF(SSTACK); // size of stack

/* Then use the new symbols with the _REF macros: */
int error;
void main(void) {
 char* stackBottom= (char*)__SEG_START_REF(SSTACK);
 char* stackTop = (char*)__SEG_END_REF(SSTACK);
 int stackSize= (int)__SEG_SIZE_REF(SSTACK);
 error=0;
 if (stackBottom+stackSize != stackTop) { // top is bottom + size
 error=1;
 }
 for (;;); /* wait here */
}

And the following corresponding prm file (must be adapted for some processors):

LINK example.abs
 NAMES example.o END
SECTIONS
 MY_RAM = READ_WRITE 0x0800 TO 0x0FFF;
 MY_ROM = READ_ONLY 0x8000 TO 0xEFFF;
 MY_STACK = NO_INIT 0x400 TO 0x4ff;
END
PLACEMENT
 DEFAULT_ROM INTO MY_ROM;
 DEFAULT_RAM INTO MY_RAM;
150 Smart Linker

Linking Issues
Automatic Distribution of Paged Functions
 SSTACK INTO MY_STACK;
END
INIT main

The linker defined symbols are defined the following way:

__SEG_START_SSTACK 0x400
__SEG_END_SSTACK 0x500
__SEG_SIZE_SSTACK 0x100

NOTE To use the same source code with other linkers or old linkers, define
the symbols in a separate module for them.

NOTE In C, you must use the address as value, and not any value stored in
the variable. So in the previous example,
“(int)__SEG_SIZE_REF(SSTACK)” was used to get the size of the
stack segment and not a C expression like
“__SEG_SIZE_REF(SSTACK)[0]”.

Automatic Distribution of Paged
Functions

One common problem with applications distributed in several pages is how to
distribute the functions into the pages. The simple approach is to compile all function
calls so that they can take place across page boundaries. Then the linker can distribute
the functions without any restrictions.

The disadvantage of this conservative approach is that functions, which are only used
within one page would not actually need the paged calling convention. Compiling
these functions with a intrapage calling convention does both save memory and
execution time. But to guarantee that all calls to an optimized function are within one
page, all callers and the callee have to be allocated in a special segment, which is
allocated in one single page. The callee’s calling convention must be additionally
marked as “intrapage”.

Example:

 C Source:
151Smart Linker

Linking Issues
Automatic Distribution of Paged Functions
#pragma CODE_SEG FUNCTIONS
void f(void) { ... }
void g(void) { ... f(); ... }
void h(void) { ... g(); ... }

Link parameter File:

SECTIONS
...
 MY_ROM0 = READ_ONLY 0x06000 TO 0x07FFF;
 MY_ROM1 = READ_ONLY 0x18000 TO 0x18FFF;
 MY_ROM2 = READ_ONLY 0x28000 TO 0x28FFF;
...
PLACEMENT
...
 FUNCTIONS INTO MY_ROM1, MY_ROM2;
...

Assume that f and g have place in MY_ROM1. The function h is too large and
therefore allocated in MY_ROM2. Further assume for now that f is only called by g.

Even in this simple case, the compiler does not know that f and g are on the same page,
so the compiler has to use a page crossing calling convention to call f. Because this is
not really needed, the source can be adapted:

#define __INTRAPAGE__ .../* actually name depends on the */
 /* target processor. E.g. __near, __far,... */

#pragma CODE_SEG F_AND_G_FUNCTIONS
void __INTRAPAGE__ f(void) { ... }
void g(void) { ... f(); ... }
#pragma CODE_SEG FUNCTIONS
void h(void) { ... g(); ... }

Link parameter File:

...
 MY_ROM1 = READ_ONLY 0x18000 TO 0x18FFF;
 MY_ROM2 = READ_ONLY 0x28000 TO 0x28FFF;
...
PLACEMENT
..
 F_AND_G_FUNCTIONS INTO MY_ROM1;
 FUNCTIONS INTO MY_ROM2;
152 Smart Linker

Linking Issues
Automatic Distribution of Paged Functions
...

Now the compiler is explicitly told that he can call f with the intrapage calling
convention. So this example will generate the most effective code.

But already this very simple case shows that such a solution is very hard to maintain
by hand. Just consider that h must not call f directly, otherwise the code will fail.

Also there are usually not just 3 functions, but thousands or even more. The larger the
project, the less this approach is applicable.

Some new linker and compiler features do allow now to optimize complex cases
automatically.

This happens in several steps.

1. All functions which should be optimized are put into one distribution segment. As
this can be done on a per module, or even on a per application basis with one
header file, this does not cause much effort.

2. Then the application is compiled with the conservative assumption that all calls in
this segment use the interpage calling convention.

3. The linker is run with this application with the special option -Dist.
The linker builds a new header file, which assigns a segment for every function to
be distributed. The name of this header file can be specified with the option -
DistFile.
Functions only called within the same segment are especially marked. This step
does actually build classes of functions which must to be allocated in the same
page.

...
/* list of all used code segments */

#pragma CODE_SEG __DEFAULT_SEG_CC__ FUNCTIONS0
#pragma CODE_SEG __DEFAULT_SEG_CC__ FUNCTIONS1

/* list of all mapped objects with their calling convention */

#pragma REALLOC_OBJ "FUNCTIONS0" f __NON_INTERSEG_CC__
#pragma REALLOC_OBJ "FUNCTIONS0" g __INTERSEG_CC__
153Smart Linker

Linking Issues
Automatic Distribution of Paged Functions
#pragma REALLOC_OBJ "FUNCTIONS1" h __INTERSEG_CC__

The macros __DEFAULT_SEG_CC__, __INTERSEG_CC__ and
__NON_INTERSEG_CC__ are set depending on the target processor so that the
compiler is using the optimized calling convention, if applicable.

The #pragma CODE_SEG's are defining all used segments, this is a precondition
of the "#pragma REALLOC_OBJ". This pragma does then cause the functions to
be allocated into the correct segments and tells the compiler when he can use the
optimized calling convention.

4. The application is rebuild. This time the linker generated header file is included
into every compilation unit.

5. The linker is run again, this time the usual way without the special option.
Because of the shorter calling convention used now, some segments will not be
completely full. Functions which have the intrasegment calling convention can fill
such pages, so that the resulting application does not only runs faster, but also
needs less pages.

NOTE Steps 2 to 5 are two usual build processes and can be done with the
maker or a batch file.

NOTE As soon as new function calls are added to the sources, all steps from
2 have to be rerun (or the user has to be sure no to call a function with
intrapage calling convention across pages).
When the source is modified gets larger, the linking in step 5 may
fail. Then steps 2 to 5 have to be repeated.

NOTE The linker does not know whether some functions are called with
function pointers.
If this is the case all such functions must be removed from the
segment to be optimized in step 1.
This is especially the case for C++ virtual function calls. From the
linker’s point of view, a virtual function call is like a function pointer
call. So the calling convention of virtual functions cannot be
automatically optimized.

New qualifiers and keywords for the optimization:
154 Smart Linker

Linking Issues
Automatic Distribution of Paged Functions
To determine which sections are banked or not banked it has to be added an
IBCC_NEAR (interbank calling convention near) respectively an IBCC_FAR
(interbank calling convention far) flag. The distribution segment (in the example
down: FUNCTIONS) has to be followed by the "DISTRIBUTE_INTO" keyword
(instead of "INTO").

NOTE If you want to use the optimizer don’t forget to write
“DISTRIBUTE_INTO” instead of “INTO” in the placement of the
distribution segment, otherwise the optimizer doesn‘t work.

Example:

C Source:

#pragma CODE_SEG FUNCTIONS
void f(void) { ... }
void g(void) { ... f(); ... }
void h(void) { ... g(); ... }

Link parameter File:

SECTIONS
...
 MY_ROM0 = READ_ONLY IBCC_NEAR 0x06000 TO 0x07FFF;
 MY_ROM1 = READ_ONLY IBCC_FAR 0x18000 TO 0x18FFF;
 MY_ROM2 = READ_ONLY IBCC_FAR 0x28000 TO 0x28FFF;
...
PLACEMENT
...
 FUNCTIONS DISTRIBUTE_INTO MY_ROM1, MY_ROM2;
...

How the optimizer works:

The functions with the most incoming calls and they which are called from outside the
distribution segment are inserted into the not banked sections (sections with the
“IBCC_Near” flag). Thus they can be called with a near calling convention. The
remained functions are arranged like this that in every section will be as few as
possible incoming calls (this mean as few as possible calls from a function which is
not in the section to an inside one). This can be reached when the caller and the callee
are in the same section. A function which is in a banked section (sections with the
“IBCC_Far” flag) can only then have a near calling convention if it isn‘t called by an
other function from outside this bank.
155Smart Linker

Linking Issues
Checksum Computation
Result of the optimization:

With the option -DistInfo an output file can be generated. It contains the result of the
optimized distribution. To see the full result of linking it is recommendable to use the -
M option to generate a MAPFILE . If necessary it is possible to check which
functions from outside of the distribution segment call such from inside. For this the
message “ Function is not in the distribution segment “ has to be enabled which has as
default “disabled”.

Appropriate options:

Requirements:

The explained method does only work with recent linker version and a compiler
supporting the pragma REALLOC_OBJ.

Limitations
There are several points to consider while distributing code in the linker:

• The linker cannot know about calling convention used for function pointers. The
compiler can check some simple cases, but in general this is not possible. So be
careful while using function pointers that all targets called by function pointers
have the correct calling convention set by the memory model. Best is to exclude
functions being target of a function pointer call from distribution.

• Actually only one segment can be specified for distribution.

• Usage of HLI: The compiler/linker does not change the HLI code for calling
convention. E.g. if a ‘far’ calling instruction is used in HLI to call a ‘near’
function, this will not work.

• Linker assumes fixed code sizes for ‘far’ and ‘near’ function calling sequences.
This is used by the linker to calculate the impact of calling convention change.
This way the linker may put some more functions into a segment/bank. However
the linker cannot know about other effects of calling convention change.

Checksum Computation
The linker supports two ways how the computation of a checksum can be invoked:

• prm file controlled checksum computation

The prm file specifies which kind of checksum should be computed over which
area and where the resulting checksum should be stored. This method gives the
full flexibility, but it also requires more user configuration effort. With this
method the linker only computes the actual checksum value. It’s up to the
156 Smart Linker

Linking Issues
Checksum Computation
application code to ensure that the area specified in the prm file does match the
area computed at runtime.

• automatic linker controlled checksum computation

With this method, the linker generates a data structure which contains all
information to compute the checksum. The linker lists all ROM areas, he
computes the checksum and stores them together with area information and type
information in a data structure which can then be used at runtime to verify the
code.

Prm file controlled Checksum Computation
The linker can be instructed by some special commands in the prm file to compute the
checksum over some explicitly specified areas.

All necessary information for this is specified in the prm file:

Example (in the prm file):

Table 6.4 Comparison of Checksum methods

Method Prm file controlled Checksum
Computation

Automatic Linker controlled Checksum
Computation

Complexity needs some configuration
prm file needs adaptations

easy to use
Just call _Checksum_Check

Robustness values used in the prm file and
in the source code have to
match. All areas to be checked
have to be listed in the prm
and the source code.

Good.
nothing (or few things) to configure

Control Everything is in full user
control.

Poor. Only if a segment should be
checked can be controlled.

Target
Memory Usage

Good, only what is needed is
present.

Needs more memory because of the
control data structure.

Execution time. mainly depends on method.
Too much might be checked
as the code size is not exactly
known.

mainly depends on method.
only needed areas are checked.
157Smart Linker

Linking Issues
Checksum Computation
CHECKSUM
 CHECKSUM_ENTRY
 METHOD_CRC_CCITT
 OF READ_ONLY 0xE020 TO 0xFEFF
 INTO READ_ONLY 0xE010 SIZE 2
 UNDEFINED 0xff
 END
END

See the linker command CHECKSUM description for the exact syntax to be used in
the prm file and also for more examples.

Automatic Linker controlled Checksum
Computation
The linker itself is the one who knows all the memory areas used by an application,
therefore this method is using this knowledge to generate a data structure, which then
can be used at runtime to validate the complete code.

The linker is providing this information similar to the way it provides copy down and
zero out information.

The linker does automatically generate the checksum data structure if the startup data
structure has two have additional fields:

extern struct _tagStartup {
....
 struct __Checksum* checkSum;
 int nofCheckSums;
....

The structure __Checksum is defined in the header file checksum.h:

struct __Checksum {
 void* start;
 unsigned int len;
#if _CHECKSUM_CRC_CCITT
 _CheckSum2ByteType checkSumCRC_CCITT;
#endif
#if _CHECKSUM_CRC_16
 _CheckSum2ByteType checkSumCRC16;
#endif
#if _CHECKSUM_CRC_32
158 Smart Linker

Linking Issues
Checksum Computation
 _CheckSum4ByteType checkSumCRC32;
#endif
#if _CHECKSUM_ADD_BYTE
 _CheckSum1ByteType checkSumByteAdd;
#endif
#if _CHECKSUM_XOR_BYTE
 _CheckSum1ByteType checkSumByteXor;
#endif
};

The __checksum structure is allocated by the linker in a ".checksum" section after all
the other code or constant sections. As the .checksum section itself must not be
checked, it must be the last section in a SECTION list.

The linker is issuing checksum information for all the used segments in the prm file.
However, if some segments are filled with a FILL command, then this fill area is not
contained.

The checksum types to be computed is derived by the linker by using the field names
of the __Checksum structure. Usually only one of the alternatives should be present,
but the linker does support to compute any combination checksum methods together.

Automatic struct detection
The linker does read the debug information of the module containing _tagStartup

to detect which checksums it should actually generate and how the structure is built.

Because of this, the structure used by the compiler does always match the structure
generated by the linker.

The linker does know the structure field names and the name __Checksum of the
checksum structure itself. These names cannot be changed.

The types of the structure fields can be adapted to the actual needs.

.checksum section:
The ".checksum" section must be the last section in a placement. It is allowed to be
after the .copy section.

If it is not mentioned in the prm file, its automatically allocated when needed.

The checksum areas do not cover .checksum itself.
159Smart Linker

Linking Issues
Linking an Assembly Application
Partial Fields
The __Checksum structure can also contain checkSumWordAdd, checkSumLongAdd,
checkSumWordXor and checkSumLongXor fields to have checksums computed with
larger element sizes. However, as the FILL areas are not considered, the len field
might be not a multiple of the element size. When this happens, 0 has to be assumed
for the missing bytes. Because this is not handled in the provided example code,
automatic generated word or long size add or xor checksums are not officially
supported.

Runtime support
The file checksum.h does contain functions prototypes and utilities to compute the
various checksums.

The corresponding source file is checksum.c. Check it to find out how to compute the
various checksums.

The automatic generated checksum feature does not need any customer code.

A simple call "_Checksum_Check(_startupData.checkSum,
_startupData.nofCheckSums);" does state if the checksums are OK.

 Linking an Assembly Application

Prm File
When an application consists in assembly files only, the linker prm file can be
simplified. In that case:

• No startup structure is required.

• No stack initialization is required, because the stack is directly initialized in the
source file.

• No main function is required

• An entry point in the application is required
160 Smart Linker

Linking Issues
Linking an Assembly Application
Example:

LINK test.abs
NAMES test.o test2.o END
SECTIONS
 DIRECT_RAM = READ_WRITE 0x00000 TO 0x000FF;
 RAM_AREA = READ_WRITE 0x00300 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
PLACEMENT
 myRegister INTO DIRECT_RAM;
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
END
INIT Start ; Application entry point
VECTOR ADDRESS 0xFFFE Start ; Initialize Reset Vector

In the previous example:

• All data sections defined in the assembly input files are allocated in the segment
RAM_AREA.

• All code and constant sections defined in the assembly-input files are allocated in
the segment ROM_AREA.

• The function MyStart is defines as application entry point and is also specified as
reset vector. MyStart must be XDEFed in the assembly source file.

 WARNINGS
An assembly application does not need any startup structure or root function.

The two warnings:

 ‘WARNING: _startupData not found‘

and

 ‘WARNING: Function main not found‘

can be ignored.

Smart Linking
When an assembly application is linked, smart linking is performed on section level
instead of object level. That means that the whole sections containing referenced
objects are linked with the application.
161Smart Linker

Linking Issues
Linking an Assembly Application
Example:
Assembly source file

 XDEF entry
 dataSec1: SECTION
 data1: DS.W 1
 dataSec2: SECTION
 data2: DS.W 2
 codeSec: SECTION
 entry:
 NOP
 NOP
 LDX #data1
 LDD #5645
 STD 0, X
 loop: BRA loop

SmartLinker prm file

 LINK test.abs
 NAMES test.o END

 SECTIONS
 RAM_AREA = READ_WRITE 0x00300 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 PLACEMENT
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
 END
 INIT entry
 VECTOR ADDRESS 0xFFE entry

In the previous example:

• The function entry is defines as application entry point and is also specified as
reset vector.

• The data section ‘dataSec1’ defined in the assembly input file is linked with the
application because ‘data1’ is referenced in entry. The section ‘dataSec1’ is
allocated in the segment RAM_AREA at address 0x300.

• The code section ‘codeSec’ defined in the assembly-input file is linked with the
application because ‘entry’ is the application entry point. The section ‘codeSec’
is allocated in the segment ROM_AREA at address 0x8000.
162 Smart Linker

Linking Issues
Linking an Assembly Application
• The data section ‘dataSec2’ defined in the assembly input file is not linked with
the application, because the symbol ‘data2’ defined there it is never referenced.

One can choose to switch smart linking OFF for his application. In that case the whole
assembly code and objects will be linked with the application.

For the previous example, the prm file used to switch smart linking OFF will look as
follows:

ELF Format: (ELF)

 LINK test.abs
 NAMES test.o END

 SEGMENTS
 RAM_AREA = READ_WRITE 0x00300 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 END
 PLACEMENT
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
 END
 INIT entry
 VECTOR ADDRESS 0xFFE entry
 ENTRIES * END

HIWARE Format: (HIWARE)

 LINK test.abs
 NAMES test.o+ END

 SEGMENTS
 RAM_AREA = READ_WRITE 0x00300 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 END
 PLACEMENT
 DEFAULT_RAM INTO RAM_AREA;
 DEFAULT_ROM INTO ROM_AREA;
 END
 INIT entry
 VECTOR ADDRESS 0xFFFE entry

In the previous example:

• The function entry is defines as application entry point and is also specified as
reset vector.
163Smart Linker

Linking Issues
Linking an Assembly Application
• The data section ‘dataSec1’ defined in the assembly input file is allocated in the
segment RAM_AREA at address 0x300.

• The data section ‘dataSec2’ defined in the assembly input file is allocated next to
the section ‘dataSec1’ at address 0x302.

• The code section ‘codeSec’ defined in the assembly-input file is allocated in the
segment ROM_AREA at address 0x8000.

LINK_INFO(ELF)

Some compiler support to write additional information into the ELF file. This
information consists out of a topic name and specific content.

#pragma LINK_INFO BUILD_NUMBER “12345”
#pragma LINK_INFO BUILD_KIND “DEBUG”

The compiler then stores this information into the ELF object file. The linker checks if
different object files contain the same topic with a different content. If so, the linker
issues a warning.

Finally, the linker issues all LINK_INFO’s into the generated output ELF file.

This feature can be used to warn the user about linking incompatible object files
together. Also the debugger can use this feature to pass information from header files
used by the compiler into the generated application.

The linker does currently not have any internal knowledge about specific topic names,
but it might in the future.
164 Smart Linker

7
The Parameter File

The linker’s parameter file is an ASCII text file. For each application you have to write
such a file. It contains linker commands specifying how the linking is to be done. This
section describes the parameter file in detail, giving examples you may use as
templates for your own parameter files. You might also want to take a look at the
parameter files of the examples included in your installation version.

The Syntax of the Parameter File
The following is the EBNF syntax of the parameter file.

ParameterFile={Command}.

Command= LINK NameOfABSFile [AS ROM_LIB]

| NAMES ObjFile {ObjFile} END

| SEGMENTS {SegmentDef} END

| PLACEMENT {Placement} END

| (STACKTOP | STACKSIZE) exp

| MAPFILE MapSecSpecList

| ENTRIES EntrySpec {EntrySpec} END

| VECTOR (InitByAddr | InitByNumber)

| INIT FuncName

| MAIN FuncName

| HAS_BANKED_DATA

| OVERLAP_GROUP {FuncName} END

| DEPENDENCY {Dependency} END

| CHECKSUM {ChecksumEntry} END.

NameOfABSFile= FileName.
165Smart Linker

The Parameter File
The Syntax of the Parameter File
ObjFile= FileName [”-”].

ObjName= Ident.

QualIden = FileName “:” Ident.

FuncName= ObjName | QualIdent.

MapSecSpecList= MapSecSpec “,” {MapSecSpec}.

EntrySpec= [FileName“:”] (* | ObjName).

MapSecSpec= ALL | NONE | TARGET | FILE | STARTUP | SEC_ALLOC
|SORTED_OBJECT_LIST |

 OBJ_ALLOC | OBJ_DEP | OBJ_UNUSED | COPYDOWN |

 OVERLAP_TREE | STATSTIC.

Dependency= ROOT {ObjName} END

| ObjName USES {ObjName} END

| ObjName ADDUSE {ObjName} END

| ObjName DELUSE {ObjName} END.

SegmentDef= SegmentName “=“ SegmentSpec “;”.

SegmentName= Ident.

SegmentSpec= StorageDevice Range [Alignment] [FILL CharacterList]
[OptimizeConstants].

ChecksumEntry= CHECKSUM_ENTRY

 ChecksumMethod

 [INIT Number]

 [POLY Number]

 OF MemoryArea

 INTO MemoryArea

 [UNDEFINED Number]

 END.

ChecksumMethod= METHOD_CRC_CCITT | METHOD_CRC8

| METHOD_CRC16 | METHOD_CRC32

| METHOD_ADD | METHOD_XOR.
166 Smart Linker

The Parameter File
The Syntax of the Parameter File
MemoryArea= StorageDevice Range.

StorageDevice= READ_ONLY | CODE | READ_WRITE | PAGED | NO_INIT.

Range= exp (TO | SIZE) exp.

Alignment= ALIGN [exp] {“[“ObjSizeRange“:” exp”]”}.

ObjSizeRange= Number | Number TO Number | CompareOp Number.

CompareOp= (“<“ | “<=“ | “>“ | “>=“).

CharacterList= HexByte {HexByte}.

OptimizeConstants= {(DO_NOT_OVERLAP_CONSTS |
DO_OVERLAP_CONSTS) {CODE | DATA}}.

Placement= SectionList (INTO | DISTRIBUTE_INTO) SegmentList “;”.

SectionList= SectionName {“,” SectionName}.

SectionName= Ident.

SegmentList= Segment {“,” Segment}.

Segment= SegmentName | SegmentSpec.

InitByAddr= ADDRESS Address Vector.

InitByNumber= VectorNumber Vector.

Address= Number.

VectorNumber= Number.

Vector= (FuncName [OFFSET exp] | exp) [“,” exp].

Ident= <any C style identifier>

FileName= <any file name>.

exp= Number.

Number= DecimalNumber | HexNumber | OctalNumber.

HexNumber= 0xHexDigit{HexDigit}.

DecimalNumber= DecimalDigit{DecimalDigit}.

HexByte= HexDigit HexDigit.

HexDigit= “0” | “1”| “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”|

 “A” | “B” | “C” | “D” | “E” | “F” |

 “a” | “b” | “c” | “d” | “e” | “f” .
167Smart Linker

The Parameter File
Mandatory SmartLinker Commands
DecimalDigit= “0” | “1”| “2” | “3” | “4” | “5” | “6” | “7” | “8” |

 “9” |.

Comments may appear anywhere in a parameter file, except where file names are
expected. You may use either C style comments or Modula-2 style comments.

File names should not contain paths, this keeps your sources portable. Otherwise, if
you copy the sources to some other directory, the linker might not find all files needed.
The linker uses the paths in the environment variables GENPATH, OBJPATH,
TEXTPATH and ABSPATH to decide where to look for files and where to write the
output files.

The order of the commands in the parameter file does not matter. You should only
make sure that the SEGMENTS block is specified before the PLACEMENT block.

There are a couple of default sections, named .data, .text, .stack, .copy,
.rodata1, .rodata, .startData, and .init. Information about these
sections can be found in chapter predefined sections.

Mandatory SmartLinker Commands
A linker parameter file always has to contain at least the entries for LINK (or using
option -O), NAMES, and PLACEMENT. All other commands are optional. The
following example shows the minimal parameter file:

LINK mini.abs /* Name of resulting ABS file */
NAMES
 mini.o startup.o /* Files to link */
END
STACKSIZE 0x20 /* in bytes */
PLACEMENT
 DEFAULT_ROM INTO READ_ONLY 0xA00 TO 0xBFF;
 DEFAULT_RAM INTO READ_WRITE 0x800 TO 0x8FF;
END

In case the linker is called by CodeWarrior, then the LINK command is not necessary.
The CodeWarrior Plug-In passes the option -O with the destination file name directly
to the linker. You can see this if you enable ‘Display generated command lines in
message window’ in the Linker preference panel in CodeWarrior.

The first placement statement
168 Smart Linker

The Parameter File
The INCLUDE directive
DEFAULT_ROM INTO READ_ONLY 0xA00 TO 0xBFF;

reserves the address range from 0xA00 to 0xBFF for allocation of read only objects
(hence the qualifier READ_ONLY). .text subsumes all linked functions, all
constant variables, all string constants and all initialization parts of variables, copied to
RAM at startup.

The second placement statement

DEFAULT_RAM INTO READ_WRITE 0x800 TO 0x8FF;

reserves the address range from 0x800 to 0x8FF for allocation of variables.

The INCLUDE directive
A special directive INCLUDE allows to split up a prm file into several text files, for
example to separate a target specific part of a prm file from a common part.

The syntax of the include directive is:

IncludeDir= “INCLUDE” FileName.

Because the INCLUDE directive may be everywhere in the prm file, it is not contained
in the main EBNF.

Example:

LINK mini.abs /* Name of resulting ABS file */
NAMES
 startup.o /* startup object file */
 INCLUDE objlist.txt
END
STACKSIZE 0x20 /* in bytes */
PLACEMENT
 DEFAULT_ROM INTO READ_ONLY 0xA00 TO 0xBFF;
 DEFAULT_RAM INTO READ_WRITE 0x800 TO 0x8FF;
END
with objlist.txt:
 mini0.o /* user object file(s) */
 mini1.o
169Smart Linker

The Parameter File
The INCLUDE directive
170 Smart Linker

8
SmartLinker Commands

This section describes the details of each linker parameter command.

Each command has at least following description:

• Syntax: Description of the command syntax.

• Description: Detailed description of the command.

• Example: Example how to use the command.

Some commands are only available in ELF/Dwarf format, and some commands only
in HIWARE object file format. This marked with the object file format in parenthesis
(ELF) or (HIWARE).

If a command is only available for a specific language, it is marked too, for example,
‘M2’ denotes that the feature is only available for Modula-2 linker parameter files.

Additionally, if the behavior of a command is different in HIWARE or in ELF/Dwarf
format, this is mentioned too.

AUTO_LOAD

AUTO_LOAD: Load Imported Modules

(HIWARE, M2)

Syntax

AUTOLOAD ON | OFF

Description:
AUTO_LOAD is an optional command having an effect on linking only when there
are Modula2 modules present. When AUTO_LOAD is switched ON, the linker
automatically loads and processes all modules imported in some Modula2 module, i.e.
171Smart Linker

SmartLinker Commands
CHECKSUM
it is not necessary to enumerate all object files of Modula-2applications. The linker
assumes that the object file name of a Modula-2 module is the same as the module
name with extension."o". Modules loaded by the linker automatically (i.e. imported in
some Modula-2 Module present in the NAMES list) must not appear in the NAMES
list. The default Setting is ON.

AUTO_LOAD must be switched OFF when linking with a ROM library. If it is
switched ON, the linker would automatically load the missing object files, thus
disregarding the objects in the ROM library.

Note: AUTO_LOAD must also be switched OFF if the object file names are not the
same as the module names, because in this case the linker is unable to find the object
files.

Example:

AUTOLOAD ON

CHECKSUM

CHECKSUM: Checksum computation (ELF)

Syntax

Checksum= CHECKSUM {ChecksumEntry} END.

ChecksumEntry= CHECKSUM_ENTRY

 ChecksumMethod

 [INIT Number]

 [POLY Number]

 OF MemoryArea

 INTO MemoryArea

 [UNDEFINED Number]

 END.

ChecksumMethod= METHOD_CRC_CCITT | METHOD_CRC8
172 Smart Linker

SmartLinker Commands
CHECKSUM
| METHOD_CRC16 | METHOD_CRC32

| METHOD_ADD | METHOD_XOR.

Description:
The linker can be instructed with this directives to compute the checksum over some
memory areas.

All necessary information for this is specified in this structure.

Note that the OF MemoryArea specified usually also has its separate SEGMENTS entry.
It is recommended to use the FILL directive there to actually fill all gaps to get a
predictable result.
E.g.:
SEGMENTS
MY_ROM = READ_ONLY 0xE020 TO 0xFEFF FILL 0xFF;
....
END
CHECKSUM
 CHECKSUM_ENTRY METHOD_CRC_CCITT
 OF READ_ONLY 0xE020 TO 0xFEFF
 INTO READ_ONLY 0xE010 SIZE 2
 UNDEFINED 0xff
 END
END

The checksum can only computed over areas with READ_ONLY and CODE
qualifiers.

The following methods are supported:

• METHOD_XOR. The elements of the memory area are xored together.
The element size is defined by the size of the INTO_AREA.

• METHOD_ADD. The elements of the memory area are added together.
The element size is defined by the size of the INTO_AREA.

• METHOD_CRC_CCITT. A 16-bit CRC (cyclic redundancy check) checksum
according to CRC CCITT is computed over all bytes in the area. The
INTO_AREA size must be 2 bytes.

• METHOD_CRC16. A 16-bit CRC checksum according to the commonly used
CRC 16 is computed over all bytes in the area. The INTO_AREA size must be 2
bytes.
173Smart Linker

SmartLinker Commands
CHECKSUM
• METHOD_CRC32. A 32-bit CRC checksum according to the commonly used
CRC 32 is computed over all bytes in the area. The INTO_AREA size must be 4
bytes.

The optional [INIT Number] entry is used as initial value in the checksum
computation. If it is not specified, a default values of 0xffffffff for CRC checksums
and 0 for addition and xor is used.

The optional [POLY Number] entry allows to specify alternative polynomials for the
CRC checksum computation.

OF MemoryArea: The area of which the checksum should be computed.

INTO MemoryArea: The area into which the computed checksum should be stored. It
be distinct from any other placement in the prm file and from the OF MemoryArea.

The optional [UNDEFINED Number] value is used when no memory is at certain
places. However it is recommended to use the FILL directive to avoid this (for an
example see above).

Example 1:
CHECKSUM

 CHECKSUM_ENTRY

 METHOD_CRC_CCITT

 OF READ_ONLY 0xE020 TO 0xFEFF

 INTO READ_ONLY 0xE010 SIZE 2

 UNDEFINED 0xff

 END

END

This entry causes the computation of a checksum from 0xE020 up to 0xFEFF
(including this address).

The checksum is calculated according to the CRC CCITT.

Example 2:
Example:

Assume the following memory content:

0x1000 02 02 03 04
174 Smart Linker

SmartLinker Commands
CHECKSUM
Then the XOR 1 byte checksum from 0x1000 to 0x1003 is 0x06
(=0x02^0x02^0x03^0x04).

Notes:

- METHOD_XOR is the fastest method to compute together with METHOD_ADD.

- However, for METHOD_XOR and METHOD_ADD, multiple regular one bit
changes can cancel each other out. The CRC methods avoid this weakness.

As example, assume that both 0x1000 and 0x1001 are getting cleared, then, the XOR
checksum does not change. There are similar cases for the addition as well.

- METHOD_XOR/METHOD_ADD do also support to compute the checksum with
larger element sizes.

The element size is taken as the size of the INTO MemoryArea part.

With a element size of 2, the checksum of the example would be 0x0506 (= 0x2020 ^
0x0304).

Larger element sizes do allow a faster computation of the checksums on 16 or 32 bit
machines.

The size and the address of the OF MemoryArea part have to be a multiple of the
element size.

CRC checksums do only compute the values byte wise (or more precisely they are
even defined bitwise).

- Often, the actual size of the area to be checked is not known in advance.

Depending on how much code the compiler is generating for C source code, the
placements do fill up more or less.

This method however does not support varying sizes. Instead, the unused areas in the
placement have to be filled with the FILL directive to a known value. This causes a
certain overhead as the checksum is computed over these fill areas as well.
175Smart Linker

SmartLinker Commands
CHECKKEYS
CHECKKEYS

CHECKKEYS: Check Module Keys (HIWARE,

M2)

Syntax

CHECKKEYS ON | OFF

Description:
The CHECKKEYS command is optional. If switched ON (which is the default), the
linker compares module keys of the Modula-2 modules in the application and issues
an error message if there is an inconsistency (symbol file newer than the object file).
CHECKKEYS OFF turns off this module key check.

Example:

CHECKKEYS ON

DATA

DATA: Specify the RAM Start (HIWARE)

Syntax

DATA Address

Description
This is a command supported in ‘old-style’ linker parameter files and will be not
supported in a future release.

With this command the default ROM begin can be specified. The specified address has
to be in hexadecimal notation. Internally this command is translated into
176 Smart Linker

SmartLinker Commands
DEPENDENCY
DATA 0x????' => 'DEFAULT_RAM INTO READ_WRITE 0x???? TO 0x????

Note that because the end address is of DEFAULT_RAM is not known, the linker tries
to specify/find out the end address itself. Because this is not a very transparent
behavior, this command will not be supported any more.

Example

START 0x1000

DEPENDENCY

DEPENDENCY: Dependency Control

Syntax

DEPENDENCY {Dependency} END.

Dependency = ROOT {ObjName} END

| ObjName USES {ObjName} END

| ObjName ADDUSE {ObjName} END

| ObjName DELUSE {ObjName} END.

Description
The keyword DEPENDENCY allows the modification of the automatically detected
dependency information.

New roots can be added (ROOT keyword) and existing dependencies can be
overwritten (USES), extended (ADDUSE) or removed (DELUSE).

The dependency information is mainly used for 2 purposes:

• Smart Linking Only objects depending on some roots are linked at all.

• Overlapping of local variables and parameters
Some small 8 bit processors are using global memory instead of stack space to
allocate local variables and parameters. The linker uses the dependency
177Smart Linker

SmartLinker Commands
DEPENDENCY
information to allocate local variables of different functions which never are
active at the same time to the same addresses.

ROOT
With the ROOT keyword a group of root objects can be specified.

A ROOT entry with a single object is semantically the same as if the object would be
in a ENTRIES section. A ROOT entry with several objects is semantically the same as
an OVERLAP_GROUP entry (which is however only available in ELF). If several
objects however are in one root group, there is an additional semantic that only one
object of the group is active at the same time. This information is used for an improved
overlapped allocation of variables. Variables of functions of the same group are
allocated in the same area. If you do not want to specify this, either use several ROOT
blocks or add the objects in the ENTRIES section.

Example (Overlapped allocation of variables, only for
some targets):
C source:

void main(void) { int i;}
void interrupt int1(void) { int j; ... }
void interrupt int2(void) { int k; ... }

prm file:
...DEPENDENCY
 ROOT main END
 ROOT int1 int2 END
END

In this example, the variables of the function main and all its dependents are allocated
first. Then the variables of int1 and int2 are allocated into the same area. So j and k
may overlap.

USES
The USES keyword defines all dependencies for a single object. Only the given
dependencies are used. Any not listed dependencies are not taken into account. If a
needed dependency is not specified after the USES, the linker will complain.
178 Smart Linker

SmartLinker Commands
DEPENDENCY
Example (Overlapped allocation of variables, only for
some targets)
C Source:

void f(void(* fct)(void)) { int i; ... fct();...}
void g(void) { int j;... }
void h(void) { int k;... }
void main(void) { f(g); f(h); }

prm file:

DEPENDENCY
 f USES g h END
END

This USES statement does assure that the variable i of f does not overlap any of the
variables of g or h.

The automatic detection does not work for functions called by a function pointer
initialized outside of the function as in this case.

However the USES keyword hides any dependencies specified by the compiler. Only
if the code of f not shown above does not call additional functions, this USES is safe.
It is usually better to use ADDUSE, explained below, than to use USES.

ADDUSE
The ADDUSE keyword allows to add additional dependencies to the ones
automatically detected. The ADDUSE is safe in the way that no dependencies are lost.
So the generated application might use more memory than necessary, but it does
consider all known dependencies.

Example (Overlapped allocation of variables, only for
some targets)
C Source:

void f(void(* fct)(void)) { int i; ... fct();...}
void g(void) { int j;... }
void h(void) { int k;... }
void main(void) { f(g); f(h); }
179Smart Linker

SmartLinker Commands
DEPENDENCY
prm file:

DEPENDENCY
 f ADDUSE g h END
END

This example is safer than the pervious version with USES because only new
dependencies are added.

For smart linking, the automatic detection covers almost all cases. Only if some
objects are accessed by a fix address, for example, one must link additional depending
objects.

Example (Smart Linking)
C-Code:

int i @ 0x8000;
void main(void) {
 (int)0x8000 = 3;
}

To tell the linker that i has to be linked too, if main is linked, the following line can be
added to the link parameter file:

DEPENDENCY main ADDUSE i END

DELUSE
The DELUSE keyword allows to remove single dependencies from the set of
automatic detected dependencies.

To get a list of all automatic detected dependencies, comment out any DEPENDECY
block in the prm file, switch on the map file generation and see the "OBJECT-
DEPENDENCIES SECTION" in the generated map file.

The automatic generation of dependencies can generate unnecessary dependencies
because, for example, the runtime behavior is not taken into account.

Example
C Source:

void MainWaitLoop(void) { int i; for (;;) { ... } }
180 Smart Linker

SmartLinker Commands
DEPENDENCY
void _Startup(void) { int j; InitAll();
 MainWaitLoop(void); }

prm file:

DEPENDENCY
 _Startup DELUSE MainWaitLoop END
 ROOT _Startup MainWaitLoop END
END

Because MainWaitLoop does not take any parameter and does never return, its local
variable i can be allocated overlapped with _Startup. The ROOT directive specifies
that the locals of the two functions can be allocated at the same addresses.

Overlapping of local variables and
parameters
The most common application of the DEPENDENCY command is for the
overlapping.

See Also
Keyword OVERLAP_GOURP
Overlapping Locals
181Smart Linker

SmartLinker Commands
ENTRIES
ENTRIES

ENTRIES: List of Objects to Link with the
Application

Syntax (ELF):

ENTRIES

 [FileName ” :”](*|objName)

 {[FileName “:”](*|objName)}

END

Syntax (HIWARE):

ENTRIES objName {objName} END

Description
The ENTRIES block is optional in a prm file and it cannot be specified several times.

The ENTRIES block is used to specify a list of objects, which must always be linked
with the application, even when they are never referenced. The specified objects are
used as additional entry point in the application. That means all objects referenced
within these objects will also be linked with the application.

Table 8.1 describes the notation that are supported.

Table 8.1 Notation and their description

Notation Description

<Object Name> The specified global object must be linked with the
application

 <File Name>:<Object

Name> (ELF)
The specified local object defined in the specified
binary file must be linked with the application
182 Smart Linker

SmartLinker Commands
ENTRIES
ELF Specific issues (ELF):
If a file name specified in the ENTRIES block is not present in the NAMES block, this
file name is inserted in the list of binary files building the application.

Example

 NAMES
 startup.o
 END

 ENTRIES
 fibo.o:*
 END

In the previous example, the application is build from the files fibo.o and startup.o.

File Names specified in the ENTRIES block may also be present in the NAMES
block.

Example

 NAMES
 fibo.o startup.o
 END

 ENTRIES
 fibo.o:*
 END

<File Name>:* (ELF) All objects defined within the specified file must be
linked with the application

* (ELF) All objects must be linked with the application. This
switches OFF smart linking for the application

Table 8.1 Notation and their description

Notation Description
183Smart Linker

SmartLinker Commands
HAS_BANKED_DATA
In the previous example, the application is build from the files fibo.o and startup.o.
The file ‘fibo.o’ specified in the ENTRIES block is the same as the one specified in the
ENTRIES block.

NOTE We strongly recommend to avoid switching smart linking OFF, when
the ANSI library is linked with the application. The ANSI library
contains the implementation of all run time functions and ANSI
standard functions. This generates a large amount of code, which is
not required by the application.

HAS_BANKED_DATA

HAS_BANKED_DATA: Application has
banked data (HIWARE)

Syntax

HAS_BANKED_DATA

Description
This entry is used to specify for the HC12 in the HIWARE object file format that all
pointers in the zero out and in the copy down must be 24 bit in size.

In the ELF object file format, this entry is ignored.
184 Smart Linker

SmartLinker Commands
HEXFILE
Example
HAS_BANKED_DATA

HEXFILE

HEXFILE: Link a Hex File with the
Application

Syntax

HEXFILE <fileName> [OFFSET <hexNumber>]

Arguments
<fileName> is any valid file name. This file is searched in the current directory first,
and then in the directories specified in the environment variable "GENPATH".

<hexNumber> if specified, this number is added to the address found in each record of
the hex file. The result is then the address where the data bytes are copied to.

Description
Using this command a Motorola S-Record file or a Intel Hex file can be linked with
the application.

Example:

HEXFILE fiboram.s1 OFFSET 0xFFFF9800 /* 0x800 - 0x7000 */

The optional offset specified in the HEXFILE command is added to each record in the
Motorola S file. The code at address 0x7000 will be encoded at address 0x800. The
offset 0xFFFF9800 used above is the unsigned representation of -0x68000. To
calculate it, use a hex capable calculator, for example the Windows Calculator in
scientific mode, and subtract 0x7000 from 0x800.

NOTE Be careful, in the HIWARE Format, no checking is performed to
avoid overwriting of any portion of normal linked code by data from
hex files.
185Smart Linker

SmartLinker Commands
INIT
Example
HEXFILE fiboram.s1 OFFSET 0xFFFF9800 /* 0x800 - 0x7000 */

INIT

INIT: Specify the Application Init Point

Syntax

INIT FuncName

Description
The INIT command is mandatory for assembly application and optional otherwise. It
cannot be specified several times in the prm file. This command defines the
initialization entry point for the application used.

When INIT is not specified in the prm file, the linker looks for a function named
‘_Startup’ and use it as application entry point.

If an INIT command is specified in the prm file, the linker uses the specified function
as application entry point. This is either the main routine or a startup routine calling
the main routine.

ELF Specific issues (ELF):
You can specify any static or global function as entry point.
186 Smart Linker

SmartLinker Commands
LINK
Example
INIT MyGlobStart /* Specify a global variable as application
entry point.*/

ELF Specific Example (ELF):
INIT myFile.o:myLocStart /* Specify a local variable
as application entry point.*/

This command is not used for ROM libraries. If you specify an INIT command in a
ROM library prm file, a warning is generated.

LINK

LINK: Specify Name of Output File

Syntax

LINK <NameOfABSFile> [‘AS ROM_LIB’]

Description
The LINK command defines the name of the file which should be generated by the
link session. This command is mandatory and can only be specified once in a prm file.

After a successful link session the file “NameOfABSFile” is created. If the
environment variable ABSPATH is defined, the absolute file is generated in the first
directory listed there. Otherwise, it is written to the directory where the parameter file
was found. If a file with this name already exists, it is overwritten.

A successful linking session also creates a map file with the same base name as
“NameOfABSFile” and with extension .map. If the environment variable
TEXTPATH is defined, the map file is generated in the first directory listed there.
Otherwise, it is written to the directory where the parameter file was found. If a file
with this name already exists, it is overwritten.

If the name of the absolute file is followed by AS ROM_LIB, a so-called ROM library
is generated instead of an absolute file (Please see section ROM Libraries). A ROM
library is an absolute file which is not executable alone.
187Smart Linker

SmartLinker Commands
MAIN
The LINK command is mandatory in a prm file. If the LINK command is missing the
SmartLinker generates an error message unless the option -O is specified on the
command line. Note that if the Linker is started from CodeWarrior, the option -O is
automatically added.

If the option -O is specified on the command line, option -O has higher priority than
LINK command.

Example

LINK fibo.abs

NAMES fibo.o startup.o END
SECTIONS
 MY_RAM = READ_WRITE 0x1000 TO 0x18FF;
 MY_ROM = READ_ONLY 0x8000 TO 0x8FFF;
 MY_STK = READ_WRITE 0x1900 TO 0x1FFF;
PLACEMENT
 DEFAULT_ROM INTO MY_ROM;
 DEFAULT_RAM INTO MY_RAM;
 SSTACK INTO MY_STK;
END
VECTOR ADDRESS 0xFFFE _Startup /* set reset vector */

The files fibo.ABS and a fibo.map are generated after successful linking from the
previous prm file.

MAIN

MAIN: Name of the Application Root
Function

Syntax

MAIN FuncName
188 Smart Linker

SmartLinker Commands
MAPFILE
Description
The MAIN command is optional and cannot be specified several times in the prm file.
This command defines the root function for an ANSI C application (the function
which is invoked at the end of the startup function.

When MAIN is not specified in the prm file, the linker looks for a function named
‘main’ and use it as application root.

If a MAIN command is specified in the prm file, the linker uses the specified function
as application root.

ELF Specific issues (ELF):
You can specify any static or global function as application root function.

Example
MAIN MyGlobMain /* Specify a global variable as
application root.*/

ELF Specific Example (ELF):
MAIN myFile.o:myLocMain /* Specify a local variable as
application root.*/

This command is not required for ROM libraries. If you specify a MAIN command in
a ROM library prm file, a warning is generated.

MAPFILE

MAPFILE: Configure Map File Content

Syntax (ELF):

MAPFILE (ALL|NONE|TARGET|FILE|STARTUP_STRUCT|SEC_ALLOC|
OBJ_ALLOC|SORTED_OBJECT_LIST|OBJ_DEP|OBJ_UNUSED|
189Smart Linker

SmartLinker Commands
MAPFILE
COPYDOWN|OVERLAP_TREE|STATISTIC|MODULE_STATISTIC)

[,{(ALL|NONE|TARGET|FILE|STARTUP_STRUCT|SEC_ALLOC|OBJ_ALLOC

|OBJ_DEP|OBJ_UNUSED|COPYDOWN|OVERLAP_TREE|STATISTIC|MODULE_STA
TISTIC)}]

Syntax (HIWARE):

MAPFILE (ON|OFF)

Description
This command is optional, it is used to control the generation of the Map file. Per
default, the command MAPFILE ALL is activated, indicating that a map file must be
created, containing all linking time information.

Table 8.2 describes the map file specifiers that are available.

Table 8.2 Map file specifiers and their description

Specifier Description

ALL (ELF) A map file must be generated containing all
information available

COPYDOWN(ELF) The information about the initialization value for
objects allocated in RAM must be written to the
map file (Section COPYDOWN in the map file)

FILE(ELF) The information about the files building the
application must be inserted in the map file
(Section FILE in the map file).

NONE(ELF) No map file must be generated

OBJ_ALLOC(ELF) The information about the allocated objects must
be inserted in the map file (Section OBJECT
ALLOCATION in the map file)

SORTED_OBJECT_LIST(E

LF)

The map file must contain a list of all allocated
objects sorted by the address. (Section OBJECT
LIST SORTED BY ADDRESS in the map file)

OBJ_UNUSED(ELF) The list of all unused objects must be inserted in
the map file (Section UNUSED OBJECTS in the
map file)
190 Smart Linker

SmartLinker Commands
MAPFILE
The kind of information generated for each specifier is described latter on in chapter
map file.

ELF Specific issues (ELF):
As soon as ALL is specified in the MAPFILE command, all sections are inserted in the
map file.

OBJ_DEP(ELF) The dependencies between the objects in the
application must be inserted in the map file
(Section OBJECT DEPENDENCY in the map
file).

DEPENDENCY_TREE(ELF) The dependency tree shows how the overlapped
variables are allocated (Section DEPENDENCY
TREE in the map file).

OFF (HIWARE) No map file must be generated

ON (HIWARE) A map file must be generated containing all
information available

SEC_ALLOC(ELF) The information about the sections used in the
application must be inserted in the map file
(Section SECTION ALLOCATION in the map
file)

STARTUP_STRUCT(ELF) The information about the startup structure must
be inserted in the map file (Section STARTUP in
the map file).

MODULE_STATISTIC(ELF) The MODULE STATISTICS tell how much
ROM/RAM is used by a specific module (module
is used here as synonym for compilation unit).

STATISTIC(ELF) The statistic information about the link session
must be inserted in the map file (Section
STATISTICS in the map file)

TARGET(ELF) The information about the target processor and
memory model must be inserted in the map file
(Section TARGET in the map file).

Table 8.2 Map file specifiers and their description (continued)

Specifier Description
191Smart Linker

SmartLinker Commands
NAMES
Example
Following commands are all equivalents. A map file is generated, which contains all
the possible information about the linking session.

 MAPFILE ALL
 MAPFILE TARGET, ALL
 MAPFILE TARGET, ALL, FILE, STATISTIC

As soon as NONE is specified in the MAPFILE command, no map file is generated.

Example
Following commands are all equivalents. No map file is generated.

 MAPFILE NONE
 MAPFILE TARGET, NONE
 MAPFILE TARGET, NONE, FILE, STATISTIC

NOTE For compatibility with old style HIWARE format prm file, following
commands are also supported:
MAPFILE OFF is equivalent to MAPFILE NONE
MAPFILE ON is equivalent to MAPFILE ALL

NAMES

NAMES: List the Files building the
Application.

Syntax

NAMES <FileName>[‘+’|’-’] {<FileName>[‘+’|’-’]} END

Description
The NAMES block contains a list of binary files building the application. This block is
mandatory and can only be specified once in a prm file.
192 Smart Linker

SmartLinker Commands
NAMES
The linker reads all files given between NAMES and END. The files are searched for
first in the project directory, then in the directories specified in the environment
variable OBJPATH and finally in the directories specified in the environment variable
GENPATH. The files may be either object files, absolute or ROM Library files or
libraries.

Additional files may be specified by the option -Add. The object files specified with
the option -Add are linked before the files mentioned in the NAMES block.

As the SmartLinker is a smart linker, only the referenced objects (variables and
functions) are linked to the application. You can specify any number of files in the
NAMES block, because of smart linking, the application only contains the functions
and variables really used.

The plus sign after a file name (e.g. FileName+) switches OFF smart linking for
the specified file. That means, all the objects defined in this file will be linked with the
application, regardless whether they are used or not.

A minus sign can also be specified after an absolute file name (e.g. FileName-).
This indicates that the absolute file should not be involved in the application startup
(global variables defined in the absolute file should not be initialized during
application startup) (Please see section Using ROM Libraries).

No blank is allowed between the file name and the plus or minus sign.

Example

LINK fibo.abs

NAMES fibo.o startup.o END
SEGMENTS
 MY_RAM = READ_WRITE 0x1000 TO 0x18FF;
 MY_ROM = READ_ONLY 0x8000 TO 0x8FFF;
 MY_STK = READ_WRITE 0x1900 TO 0x1FFF;
PLACEMENT
 DEFAULT_ROM INTO MY_ROM;
 DEFAULT_RAM INTO MY_RAM;
 SSTACK INTO MY_STK;
END
VECTOR ADDRESS 0xFFFE _Startup /* set reset vector */

In the previous example, the application fibo is build from the files ‘fibo.o’ and
‘startup.o’.
193Smart Linker

SmartLinker Commands
OVERLAP_GROUP
OVERLAP_GROUP

OVERLAP_GROUP: Application uses
Overlapping (ELF)

Syntax

OVERLAP_GROUP {<Objects>} END

Description
The OVERLAP_GROUP is used for overlapping of locals only. See also the chapter
Overlapping Locals.

In some cases the linker cannot detect that there is no dependency between some
functions, so that local variables are not overlapped, even if this would be possible. A
OVERLAP_GROUP block allow the user to specify a group of functions, which does
not overlap.

OVERLAP_GROUP is only available in the ELF object file format. However, the
same functionality can be achieved with the DEPENDENCY ROOT command, which
is also available in the HIWARE format.

Example:
Assume the default implementations of the C startup routines:

• _Startup: the main entry point of the application. It calls first Init and then uses
_startupData to call main.

• Init: Uses the information in _startupData to generate the zero out

• _startupData: Data-structure filled by the linker containing various information
as the address of the main function and which areas are to be handled by the zero
out in Init.

• main: The main startup point of C code

Between these objects, the following dependencies exist:

• _Startup depends on _startupData, Init

• Init depends on _startupData

• _startupData depends on main.
194 Smart Linker

SmartLinker Commands
OVERLAP_GROUP
Assume the following entry in the prm file:

/* _Startup is a group of it’s own */
OVERLAP_GROUP _Startup END

When investigating _Startup, linker does not know that Init does not call main.
According to the dependency information, it might call main, so the variables of Init
and main are not overlapped.

But in this case, the following OVERLAP_GROUP is build in the linker:

/* Overlap the variables of main and the variables of _Startup */
OVERLAP_GROUP main _Startup END

This way, the linker overlaps the variables of Init and main because first main is
allocated and then _Startup.

For the HC05 with the usual startup code, this entry saves 8 bytes in the _OVERLAP
segment. But if the usual startup code is modified the way that _Startup and main must
not overlap, insert “OVERLAP_GROUP _Startup END” into the prm file.

NOTE All the name of the _Startup function, of main and of _startupData
can be configured in prm file to a non-default one.

Example:
Assume that a processor has two interrupt priorities.

Assume two functions IntPrio1A and IntPrio1B handle interrupt 1 priority requests
and the two functions IntPrio0A and IntPrio0B handle the interrupt 0 priority requests.
As never two function on the same priority level can be active at the same time, two
OVERLAP_GROUPs can be used to overlap the functions of the same level.

OVERLAP_GROUP IntPrio1A IntPrio1B END
OVERLAP_GROUP IntPrio0A IntPrio0B END

See also
keyword DEPENDENCY

 Overlapping Locals
195Smart Linker

SmartLinker Commands
PLACEMENT
PLACEMENT

PLACEMENT: Place Sections into
Segments

Syntax

PLACEMENT

 SectionName{,sectionName} (INTO | DISTRIBUTE_INTO)

 SegSpec{,SegSpec};

 {SectionName{,sectionName} (INTO | DISTRIBUTE_INTO)

 SegSpec{,SegSpec};}

END

Description
The PLACEMENT block is mandatory in a prm file and it cannot be specified several
times.

Each placement statement between the PLACEMENT and END defines a relation
between logical sections and physical memory ranges called segments.

Example

 SECTIONS
 ROM_1 = READ_ONLY 0x800 TO 0xAFF;
 PLACEMENT
 DEFAULT_ROM, ROM_VAR INTO ROM_1;
 END

In the previous example, the objects from section ‘DEFAULT_ROM’ are allocated
first and then the objects from section ‘ROM_VAR’.

Allocation of the objects starts with the first section in the list; they are allocated in the
first memory range in the list as long as there is enough memory left. If a segment is
196 Smart Linker

SmartLinker Commands
PLACEMENT
full (i.e. the next object to be allocated doesn’t fit anymore), allocation continues in the
next segment in the list.

Example

 SEGMENTS
 ROM_1 = READ_ONLY 0x800 TO 0xAFF;
 ROM_2 = READ_ONLY 0xB00 TO 0xCFF;
 END
 PLACEMENT
 DEFAULT_ROM INTO ROM_1, ROM_2;
 END

In the previous example, the objects from section ‘DEFAULT_ROM’ are allocated
first in segment ‘ROM_1’. As soon as the segment ‘ROM_1’ is full, allocation
continues in section ‘ROM_2’.

A statement inside of the PLACEMENT block can be split over several lines. The
statement is terminated as soon as a semicolon is detected.

The SECTIONS block must always be defined in front of the PLACEMENT block,
because the segments referenced in the PLACEMENT block must previously be
defined in the SECTIONS block.

 Some restrictions applies on the commands specified in the PLACEMENT block:

• When the .copy section is specified in the PLACEMENT block, it should be the
last section in the section list.

• When the .stack section is specified in the PLACEMENT block, an additional
STACKSIZE command is required in the prm file, when the stack is not the
single section specified in the placement statement.

• The predefined sections .text and .data must always be specified in the
PLACEMENT block. They are used to retrieve the default placement for code or
variable sections. All code or constant sections, which do not appear in the
PLACEMENT block are allocated in the same segment list as the .text section.
All variable sections, which do not appear in the PLACEMENT block are
allocated in the same segment list as the .data section.
197Smart Linker

SmartLinker Commands
PRESTART
PRESTART

PRESTART: Application Prestart Code
(HIWARE)

Syntax

PRESTART (["+"] HexDigit {HexDigit} | OFF)

Description
This is an optional command. It allows the modification of the default init code
generated by the linker at the very beginning of the application. Normally this code
looks like

DisableInterrupts.
On some processor, setup page registers
JMP StartupRoutine ("_Startup" by default)

If a PRESTART command is given, all code before the JMP is replaced by the code
given by the Hex numbers following the keyword. If there is a "+" following the
PRESTART, the code given does not replace the standard sequence but is inserted just
before JMP.

Note: After the PRESTART command do not write a sequence of hexadecimal
numbers in C (or Modula-2) format! Just write an even number of hexadecimal digits.
Example:

 PRESTART + 4E714E71

PRESTART OFF turns off prestart code completely, i.e. the first instruction executed
is the first instruction of the startup routine.
198 Smart Linker

SmartLinker Commands
SECTIONS
Example
PRESTART OFF

SECTIONS

SECTIONS: Define Memory Map

Syntax

SECTIONS {(READ_ONLY|READ_WRITE|NO_INIT|PAGED)

 <startAddr> (TO <endAddr> | SIZE <size>)}

Description
The SECTIONS block is optional in a prm file and it cannot be specified several
times. The SECTIONS block must be directly followed by the PLACEMENT block.

The SECTIONS command allows the user to assign meaningful names to address
ranges. These names can then be used in subsequent placement statements, thus
increasing the readability of the parameter file.

Each address range you define is associated with

• a qualifier.

• a start and end address or a start address and a size.

Section Qualifier
Following qualifier are available for sections:

• READ_ONLY: used for address ranges, which are initialized at program load
time. The application (*.abs) does only contain content for this qualifier.

• READ_WRITE: used for address ranges, which are initialized by the startup code
at runtime. Memory area defined with this qualifier will be initialized with 0 at
application startup. The information how the READ_WRITE section is
initialized is stored in a READ_ONLY section.

• NO_INIT: used for address ranges, where read write accesses are allowed.
Memory area defined with this qualifier will not be initialized with 0 at
199Smart Linker

SmartLinker Commands
SECTIONS
application startup. This may be useful if your target has a battery buffered RAM
or to speedup application startup.

• PAGED: used for address ranges, where read write accesses are allowed.
Memory area defined with this qualifier will not be initialized with 0 at
application startup. Additionally, the linker will not control if there is an overlap
between segments defined with the PAGED qualifier. When overlapped
segments are used, it is the user’s responsibility to select the correct page before
accessing the data allocated on a certain page.

Qualifier Handling

1. These cases are not intended. The linker does however allow some of them. If so,
the qualifier controls what is written into the application.

2. To allocate code in a RAM area, for example for testing purposes, declare this
area as READ_ONLY.

Qualifier Initialized
Variables

Non-
Initialized
Variables

Constants Code

READ_ONLY not applicable
(1)

not applicable
(1)

content written
to target
address

content written
to target
address

READ_WRITE content written
into copy down
area, together
with info where
to copy it at
startup.
Area contained
in zero out
information (3)
(4)

Area contained
in zero out
information (4)

content written
into copy down
area, together
with info where
to copy it at
startup. Area
contained in
zero out
information (3)
(4)

not applicable
(1) (2)

NO_INIT not applicable
(1)

just handled as
allocated.
Nothing
generated.

not applicable
(1)

not applicable
(1)

PAGED not applicable
(1)

just handled as
allocated.
Nothing
generated.

not applicable
(1)

not applicable
(1)
200 Smart Linker

SmartLinker Commands
SECTIONS
3. Initialized objects and constant in READ_WRITE sections do need additionally to
the RAM memory, also space in the copy down area. The copy down contains the
information how the object is initialized in the startup code.

4. The zero out information consist of the information which areas should be
initialized with 0 at startup. Because the zero out contains only an address and a
size per area, it is usually much smaller than a copy down area, which also
contains the (non zero) content of the objects to be initialized.

Example

SECTIONS
 ROM = READ_ONLY 0x1000 SIZE 0x2000;
 CLOCK = NO_INIT 0xFF00 TO 0xFFFF;
 RAM = READ_WRITE 0x3000 TO 0x3EFF;
 Page0 = PAGED 0x4000 TO 0x4FFF;
 Page1 = PAGED 0x4000 TO 0x4FFF;
END

In the previous example:

• the segment ’ROM’ is a READ_ONLY memory area. It starts at address 0x1000
and its size is 0x2000 bytes (from address 0x1000 to 0x2FFF).

• The segment ’RAM’ is a READ_WRITE memory area. It starts at address
0x3000 and ends at 0x3FFF (size = 0x1000 bytes). All variables allocated in this
segment will be initialized with 0 at application startup.

• The segment ’CLOCK’ is a READ_WRITE memory area. It starts at address
0xFF00 and ends at 0xFFFF (size = 100 bytes). Variables allocated in this
segment will not be initialized at application startup.

• The segments ’Page0’ and ‘Page1’ is a READ_WRITE memory area. These are
overlapping segments. It is the user responsibility to select the correct page
before accessing any data allocated in one of these segment. Variables allocated
in this segment will not be initialized at application startup.
201Smart Linker

SmartLinker Commands
SEGMENTS
SEGMENTS

SEGMENTS: Define Memory Map (ELF)

Syntax

SEGMENTS {(READ_ONLY|READ_WRITE|NO_INIT|PAGED)

 <startAddr> (TO <endAddr> | SIZE <size>)

 [ALIGN <alignmentRule>] [FILL <fillPattern>]

 {(DO_OPTIMIZE_CONSTS | DO_NOT_OPTIMIZE_CONSTS)

 { CODE | DATA }

 }

 }

END

Description
The SEGMENTS block is optional in a prm file and it cannot be specified several
times.

The SEGMENTS command allows the user to assign meaningful names to address
ranges. These names can then be used in subsequent placement statements, thus
increasing the readability of the parameter file.

Each address range you define is associated with:

• a qualifier.

• a start and end address or a start address and a size.

• an optional alignment rule

• an optional fill pattern.

• optional constant optimization with Common Code commands.
202 Smart Linker

SmartLinker Commands
SEGMENTS
Segment Qualifier
Following qualifier are available for segments:

• READ_ONLY: used for address ranges, which are initialized at program load
time.

• READ_WRITE: used for address ranges, which are initialized by the startup code
at runtime. Memory area defined with this qualifier will be initialized with 0 at
application startup.

• NO_INIT: used for address ranges, where read write accesses are allowed.
Memory area defined with this qualifier will not be initialized with 0 at
application startup. This may be useful if your target has a battery buffered RAM
or to speedup application startup.

• PAGED: used for address ranges, where read write accesses are allowed.
Memory area defined with this qualifier will not be initialized with 0 at
application startup. Additionally, the linker will not control if there is an overlap
between segments defined with the PAGED qualifier. When overlapped
segments are used, it is the user’s responsibility to select the correct page before
accessing the data allocated on a certain page.

Qualifier Handling

Qualifier Initialized
Variables

Non-
Initialized
Variables

Constants Code

READ_ONLY not applicable
(1)

not applicable
(1)

content written to
target address

content written to
target address

READ_WRITE content
written into
copy down
area, together
with info
where to copy
it at startup.
Area
contained in
zero out
information
(3) (4)

Area
contained in
zero out
information
(4)

content written
into copy down
area, together
with info where to
copy it at startup.
Area contained in
zero out
information (3) (4)

not applicable
(1) (2)
203Smart Linker

SmartLinker Commands
SEGMENTS
1. These cases are not intended. The linker does however allow some of them. If so,
the qualifier controls what is written into the application.

2. To allocate code in a RAM area, for example for testing purposes, declare this
area as READ_ONLY.

3. Initialized objects and constant in READ_WRITE sections do need additionally to
the RAM memory, also space in the copy down area. The copy down contains the
information how the object is initialized in the startup code.

4. The zero out information consist of the information which areas should be
initialized with 0 at startup. Because the zero out contains only an address and a
size per area, it is usually much smaller than a copy down area, which also
contains the (non zero) content of the objects to be initialized.

Example

SEGMENTS
 ROM = READ_ONLY 0x1000 SIZE 0x2000;
 CLOCK = NO_INIT 0xFF00 TO 0xFFFF;
 RAM = READ_WRITE 0x3000 TO 0x3EFF;
 Page0 = PAGED 0x4000 TO 0x4FFF;
 Page1 = PAGED 0x4000 TO 0x4FFF;
END

In the previous example:

• the segment ’ROM’ is a READ_ONLY memory area. It starts at address 0x1000
and its size is 0x2000 bytes (from address 0x1000 to 0x2FFF).

NO_INIT not applicable
(1)

just handled
as allocated.
Nothing
generated.

not applicable (1) not applicable
(1)

PAGED not applicable
(1)

just handled
as allocated.
Nothing
generated.

not applicable (1) not applicable
(1)

Qualifier Initialized
Variables

Non-
Initialized
Variables

Constants Code
204 Smart Linker

SmartLinker Commands
SEGMENTS
• The segment ’RAM’ is a READ_WRITE memory area. It starts at address
0x3000 and ends at 0x3FFF (size = 0x1000 bytes). All variables allocated in this
segment will be initialized with 0 at application startup.

• The segment ’CLOCK’ is a READ_WRITE memory area. It starts at address
0xFF00 and ends at 0xFFFF (size = 100 bytes). Variables allocated in this
segment will not be initialized at application startup.

• The segments ’Page0’ and ‘Page1’ is a READ_WRITE memory area. These are
overlapping segments. It is the user responsibility to select the correct page
before accessing any data allocated in one of these segment. Variables allocated
in this segment will not be initialized at application startup.

Defining an Alignment Rule
An alignment rule can be associated with each segment in the application. This may be
useful when specific alignment rules are expected on a certain memory range, because
of hardware restriction for example.

An Alignment rule can be specified as follows:

ALIGN [<defaultAlignment>] [{‘[‘(<Number>|
 <Number> ‘TO’ <Number>|
 (‘<‘ | ’>’ | ’<=’ | ’>=’)<Number>)’]:’<alignment>}]

defaultAlignment: is used to specify the alignment factor for objects, which do not
match any condition in the following alignment list. If there is no alignment list
specified, the default alignment factor applies to all objects allocated in the segment.
The default alignment factor is optional.

Example

SEGMENTS
 RAM_1 = READ_WRITE 0x800 TO 0x8FF
 ALIGN 2 [1:1];
 RAM_2 = READ_WRITE 0x900 TO 0x9FF
 ALIGN [2 TO 3:2] [>= 4:4];
 RAM_3 = READ_WRITE 0xA00 TO 0xAFF
 ALIGN 1 [>=2:2];
END

In the previous example:

• Inside of segment RAM_1, all objects which size is equal to 1 byte are aligned on
1 byte boundary and all other objects are aligned on 2 bytes boundary.
205Smart Linker

SmartLinker Commands
SEGMENTS
• Inside of segment RAM_2, all objects which size is equal to 2 or 3 bytes are
aligned on 2 bytes boundary and all objects which size is bigger or equal to 4 are
aligned on 4 bytes boundary. Objects which size is 1 byte follow the default
processor alignment rule.

• Inside of segment RAM_3, all objects which size is equal bigger or equal to 2
bytes are aligned on 2 bytes boundary and all other objects are aligned on 1 bytes
boundary.

Alignment rules applying during object allocation are described in chapter alignment.

Defining a Fill Pattern
An fill pattern can be associated with each segment in the application. This may be
useful to automatically initialize not initialized variables in the segments with a
predefined pattern.

An Fill pattern can be specified as follows:

FILL <HexByte> {<HexByte>}

Example

 SEGMENTS
 RAM_1 = READ_WRITE 0x800 TO 0x8FF
 FILL 0xAA 0x55;
 END

In the previous example, non-initialized objects and filling bytes are initialized with
the pattern 0xAA55.

If the size of an object to initialize is higher than the size of the specified pattern, the
pattern is repeated as many time as required to fill the objects. In the previous
example, an object which size is 4 bytes will be initialized with 0xAA55AA55.

If the size of an object to initialize is smaller than the size of the specified pattern, the
pattern is truncated to match exactly the size of the object. In the previous example, an
object which size is 1 byte will be initialized with 0xAA.

When the value specified in an element of a fill pattern does not fit in a byte, it is
truncated to a byte value.

Example

 SEGMENTS
206 Smart Linker

SmartLinker Commands
SEGMENTS
 RAM_1 = READ_WRITE 0x800 TO 0x8FF
 FILL 0xAA55;
 END

In the previous example, non-initialized objects and filling bytes are initialized with
the pattern 0x55. The specified fill pattern is truncated to a 1-byte value.

Fill patterns are useful to assign an initial value to the padding bytes inserted between
two objects during object allocation. This allows marking from the unused position
with a specific marker and detecting them inside of the application.

For example, unused position inside of a code section can be initialized with the
hexadecimal code for the NOP instruction.

Optimizing Constants with Common Code
Constants having the same byte pattern can be allocated to the same addresses. The
most common usage is to allocate some string in another string.

Example

const char* hwstr=”Hello World”;
const char* wstr= “World”;

The string “World” is exactly contained in the string “Hello World”. When the
constants are optimized, wstr will point to hwstr+6.

In the HIWARE format, the linker does only optimize strings. In the ELF format,
however all constant objects including strings, constants and code can be optimized.

For all segments it can be specified if code or data (only constants and strings) should
be optimized. If nothing is specified, the default is controlled with the option -Cocc.

Example
C-Source File

void print1(void) {
 printf(“Hello”);
}
void print2(void) {
 printf(“Hello”);
}

207Smart Linker

SmartLinker Commands
STACKSIZE
Prm File:

SECTIONS
 ...
 MY_ROM = READ_ONLY 0x9000 TO 0xFEFF DO_OVERLAP_CONSTS CODE DATA;
END

Because data is optimized, the string “Hello” will only be once in the ROM-image.
Because code and data is optimized, also the function print1 and print2 are allocated at
the same address. Note however, if only code should be optimized (this in not the case
here), then print1 and print2 would not be optimized because they were using a
different instance of the string “Hello”.

If code is optimized the linker issues the warning “L1951: Function print1 is allocated
inside of print2 with offset 0. Debugging may be affected”. This warning is issued
because the debugger cannot distinguish between print1 and print2. So the wrong
function might be displayed while debugging. This does however not affect the
runtime behavior.

The linker does detect certain branch distance optimizations done by the compiler
because of the special fixups used. If the linker detects such a case, both the caller and
the callee are not moved into other functions. However, other functions can still be
moved into them. Also switching off this compiler optimizations can produce smaller
applications, if the compiler optimizations does prevent linker optimizations.

One important case of this optimization are C++ applications. In C++ several language
constructs result in identical functions in different compilation units. Different
instances of the same template might have identical code. Compiler generated
functions and inline functions, which were not actually inlined are defined in every
compilation unit. Finally, constants defined in header files are static in C++. So they
are also contained in every object file once.

STACKSIZE

STACKSIZE: Define Stack Size

Syntax

STACKSIZE Number
208 Smart Linker

SmartLinker Commands
STACKSIZE
Description
The STACKSIZE command is optional in a prm file and it cannot be specified several
times. Additionally, you cannot specify both STACKTOP and STACKSIZE
command in a prm file.

The STACKSIZE command defines the size requested for the stack. We recommend
using this command if you do not care where the stack is allocated but only how large
it is.

When the stack is defined trough a STACKSIZE command alone, the stack is placed
next to the section .data.

Note: In the HIWARE object file format, the synonym STACK instead of
STACKSIZE is allowed too. This is for compatibility only, and may be removed in a
future version.

Example

 SECTIONS
 MY_RAM = READ_WRITE 0xA00 TO 0xAFF;
 MY_ROM = READ_ONLY 0x800 TO 0x9FF;
 PLACEMENT
 DEFAULT_ROM INTO MY_ROM;
 DEFAULT_RAM INTO MY_RAM;
 END
 STACKSIZE 0x60

In the previous example, if the section .data is 4 bytes wide (from address 0xA00 to
0xA03), the section .stack is allocated next to it, from address 0xA63 down to address
0xA04. The stack initial value is set to 0xA62.

When the stack is defined trough a STACKSIZE command associated with the
placement of the .stack section, the stack is supposed to start at the segment start
address incremented by the specified value and is defined down to the start address of
the segment, where .stack has been placed.

Example

 SECTIONS
 MY_STK = NO_INIT 0xB00 TO 0xBFF;
 MY_RAM = READ_WRITE 0xA00 TO 0xAFF;
 MY_ROM = READ_ONLY 0x800 TO 0x9FF;
 PLACEMENT
209Smart Linker

SmartLinker Commands
STACKTOP
 DEFAULT_ROM INTO MY_ROM;
 DEFAULT_RAM INTO MY_RAM;
 SSTACK INTO MY_STK;
 END
 STACKSIZE 0x60

In the previous example, the section SSTACK is allocated from address 0xB5F down
to address 0xB00. The stack initial value is set to 0xB5E.

STACKTOP

STACKTOP: Define Stack Pointer Initial
Value

Syntax

STACKTOP Number

Description
The STACKTOP command is optional in a prm file and it cannot be specified several
times. Additionally, you cannot specify both STACKTOP and STACKSIZE
command in a prm file.

The STACKTOP command defines the initial value for the stack pointer

 Example
 If STACKTOP is defined as

 STACKTOP 0xBFF

the stack pointer will be initialized with 0xBFF at application startup.

When the stack is defined trough a STACKTOP command alone, a default size is
affected to stack. This size depends on the processor and is big enough to store the
target processor PC.

When the stack is defined trough a STACKTOP command associated with the
placement of the .stack section, the stack is supposed to start at the specified address,
and is defined down to the start address of the segment, where .stack has been placed.
210 Smart Linker

SmartLinker Commands
START
Example

 SEGMENTS
 MY_STK = NO_INIT 0xB00 TO 0xBFF;
 MY_RAM = READ_WRITE 0xA00 TO 0xAFF;
 MY_ROM = READ_ONLY 0x800 TO 0x9FF;
 END
 PLACEMENT
 DEFAULT_ROM INTO MY_ROM;
 DEFAULT_RAM INTO MY_RAM;
 SSTACK INTO MY_STK;
 END
 STACKTOP 0xB7E

In the previous example, the stack pointer will be defined from address 0xB7E down
to address 0xB00.

START

START: Specify the ROM Start (HIWARE)

Syntax

START Address

Description
This is a command supported in ‘old-style’ linker parameter files and will be not
supported in a future release.

With this command the default ROM begin can be specified. The specified address has
to be in hexadecimal notation. Internally this command is translated into:

START 0x????' => 'DEFAULT_ROM INTO READ_ONLY 0x???? TO 0x????

Note that because the end address is of DEFAULT_ROM is not known, the linker tries
to specify/find out the end address itself. Because this is not a very transparent
behavior, this command will not be supported any more.
211Smart Linker

SmartLinker Commands
VECTOR
If you get an error message during linking that START is not defined: The reason
could be that there is no application entry point visible for the linker, e.g. the ‘main’
routine is defined as static.

Example
START 0x1000

VECTOR

VECTOR: Initialize Vector Table

Syntax

VECTOR (InitByAddr | InitByNumber)

Description
The VECTOR command is optional in a prm file and it can be specified several times.

A vector is a small piece of memory, having the size of a function address. This
command allows the user to initialize the processor’s vectors while downloading the
absolute file.

A VECTOR command consist in a vector location part (containing the location of the
vector) and a vector target part (containing the value to store in the vector).

The vector location part can be specified:

• through a vector number. The mapping of vector numbers to addresses is target
specific.

– For targets with vectors starting at 0, the vector is allocated at <Number> *
<Size of a Function Pointer>.

– For targets with vectors located from 0xFFFE and allocated downwards,
VECTOR 0 maps to 0xFFFE. In general the address is 0xFFFE- <Number> *
2.

– For HC05 and St7 the environment variable RESETVECTOR specifies the
address of VECTOR 0. All other vectors are calculated depending on it. As
default, address 0xFFFE is used.
212 Smart Linker

SmartLinker Commands
VECTOR
– For all other supported targets, VECTOR numbers do automatically map to
vector locations natural for this target.

• through a vector address. In this case the keyword ADDRESS must be specified
in the vector command.

 The vector target part can be specified:

• as a function name

• as an absolute address.

Example

 VECTOR ADDRESS 0xFFFE _Startup
 VECTOR ADDRESS 0xFFFC 0xA00
 VECTOR 0 _Startup
 VECTOR 1 0xA00

 In the previous example, if the size of a function pointer is coded on two bytes:

• The vector located at address 0xFFFE is initialized with the address of the
function ‘_Startup’.

• The vector located at address 0xFFFC is initialized with the absolute address
0xA00.

• The address of vector numbers is target specific.
For a HC16, vector number 0 (located at address 0x000) is initialized with the
address of the function ‘_Startup’.
For a HC08 or HC12 vector number 0 is located at address 0xFFFE.

• The address of vector numbers is target specific.
For a HC16, the vector number 1 (located at address 0x002) is initialized with the
absolute address 0xA00.
For a HC08 or HC12 vector number 1 is located at address 0xFFFC.

You can specify an additional offset when the vector target is a function name. In this
case the vector will be initialized with the address of the object + the specified offset.

Example
VECTOR ADDRESS 0xFFFE CommonISR OFFSET 0x10

In the previous example, the vector located at address 0xFFFE is initialized with the
address of the function ‘CommonISR’ + 0x10 Byte. If ‘CommonISR’ starts at address
0x800, the vector will be initialized with 0x810.

This notation is very useful for common interrupt handler.
213Smart Linker

SmartLinker Commands
VECTOR
All objects specified in a VECTOR command are entry points in the application. They
are always linked with the application, as well as the objects they refer to.
214 Smart Linker

9
Sections (ELF)

The section concept gives the user complete control over allocation of objects in
memory. A section is a named group of global objects (variables or functions)
associated with a certain memory area that may be non-contiguous. The objects
belonging to a section are allocated in its associated memory range. This chapter
describes the use of segmentation in detail.

There are many different ways to make use of the section concept, the most important
being

• Distribution of two or more groups of functions and other read-only objects to
different ROMs.

• Allocation of a single function or variable to a fixed absolute address (for
example, to access processor ports using high level language variables).

• Allocation of variables in memory locations where special addressing modes may
be used.

Terms: Segments and Sections
A Section is a named group of global objects declared in the source file, that is,
functions and global variables.

A Segment is a not necessarily contiguous memory range.

In the linker’s parameter file, each section is associated with a segment so the linker
knows where to allocate the objects belonging to a section.

Definition of Section
A section definition always consists of two parts: the definition of the objects
belonging to it, and the memory area(s) associated with it, called segments. The first is
necessarily done in the source files of the application using pragmas or directive,
please see Compiler or Assembler Manual. The second is done in the parameter file
215Smart Linker

Sections (ELF)
Definition of Section
using the SEGMENTS and PLACEMENT commands (Please see section The Syntax of
the Parameter File).

Some predefined sections are handled in a particular way.

Predefined Sections
There are a couple of predefined section names which can be grouped into sections
named by the runtime routines

• Sections for other things than variables and functions: .rodata1, .copy,
.stack.

• Sections for grouping large sets of objects:
.data, .text.

• A section for placing objects initialized by the linker: .startData.

• A Section to allocate read-only variables: .rodata

NOTE The sections .data and .text provide default sections for allocating
objects.

Subsequently we will discuss each of these predefined sections.

.rodata1 All string literals (for example, This is a string) are allocated in section

.rodata1. If this section is associated with a segment qualified as READ_WRITE,
the strings are copied from ROM to RAM at startup.

.rodata Any constant variable (declared as const in a C module or as DC in an
assembler module), which is not allocated in a user-defined section, is allocated in
section .rodata. Usually, the .rodata section is associated with READ_ONLY
segment.

If this section is not mentioned in the PLACEMENT block in the parameter file, these
variables are allocated next to the section .text.

.copy Initialization data belongs to section .copy. If a source file contains the
declaration

int a[] = {1, 2, 3};

the hex string 000100020003 (6 bytes), which is copied to a location in RAM at
program startup, belongs to segment .copy.
216 Smart Linker

Sections (ELF)
Definition of Section
If the .rodata1 section is allocated to a READ_WRITE segment, all strings also
belong to the .copy section. Any objects in this section are copied at startup from
ROM to RAM.

.stack The runtime stack has its own segment named .stack. It should always
be allocated to a READ_WRITE segment.

.data This is the default section for all objects normally allocated to RAM. It is used
for variables not belonging to any section or to a section not assigned a segment in the
PLACEMENT block in the linker’s parameter file. If any of the sections .bss or
.stack is not associated with a segment, these sections are included in the .data
memory area in the following order:

.text This is the default section for all functions. If a function is not assigned to a
certain section in the source code or if its section is not associated with a segment in
the parameter file, it is automatically added to section .text.I f any of the sections
.rodata, .rodata1, .startData or .init is not associated with a
segment, these sections are included in the .text memory area in the following
order:

.startData The startup description data initialized by the linker and used by the
startup routine is allocated to segment .startData. This section must be allocated
to a READ_ONLY segment.

.init The application entry point is stored in the section .init. This section also
has got to be associated with a READ_ONLY segment.

.overlap Compilers using pseudo-statically variables for locals are allocating
these variables in .overlap. Variables of functions not depending on each other may be
allocated at the same place. For details see the chapter Overlapping Locals. This
section must be associated with a NO_INIT segment.
217Smart Linker

Sections (ELF)
Definition of Section
NOTE The .data and .text sections must always be associated with a
segment.
218 Smart Linker

10
Segments (HIWARE)

The segment concept gives the user complete control over allocation of objects in
memory. A segment is a named group of global objects (variables or functions)
associated with a certain memory area that may be non-contiguous. The objects
belonging to a segment are allocated in its associated memory range. This chapter
describes the use of segmentation in detail.

There are many different ways to make use of the segment concept, the most important
being

• Distribution of two or more groups of functions and other read-only objects to
different ROMs.

• Allocation of a single function or variable to a fixed absolute address (for
example, to access processor ports using high level language variables).

• Allocation of variables in memory locations where special addressing modes may
be used.

Terms: Segments and Sections (HIWARE)

A Segment is a named group of global objects declared in the source file, i.e. functions
and global variables.

A Section is a not necessarily contiguous memory range.

In the linker’s parameter file, each segment is associated with a section so the linker
knows where to allocate the objects belonging to a segment.

Definition of Segment (HIWARE)

A segment definition always consists of two parts: the definition of the objects
belonging to it, and the memory area(s) associated with it, called sections. The first is
necessarily done in the source files of the application using pragmas or directive,
please see Compiler or Assembler Manual. The second is done in the parameter file
219Smart Linker

Segments (HIWARE)
Definition of Segment (HIWARE)
using the SECTIONS and PLACEMENT commands (Please see section The Syntax of
the Parameter File).

Some predefined sections are handled in a particular way.

Predefined Segments
There are a couple of predefined section names which can be grouped into sections
named by the runtime routines

• Segments for other things than variables and functions: STRINGS, COPY,
SSTACK.

• Segments for grouping large sets of objects:
DEFAULT_RAM, DEFAULT_ROM.

• A Segment for placing objects initialized by the linker: STARTUP.

• A Segment to allocate read-only variables: ROM_VAR

NOTE The Segments DEFAULT_RAM and DEFAULT_ROM provide
default segments for allocating objects.

Subsequently we will discuss each of these predefined segments.

STRINGS All string literals (e.g. “This is a string”) are allocated in segment
STRINGS. If this segment is associated with a segment qualified as READ_WRITE,
the strings are copied from ROM to RAM at startup.

ROM_VAR Any constant variable (declared as const in a C module or as DC in an
assembler module), which is not allocated in a user-defined segment, is allocated in
segment ROM_VAR. Usually, the ROM_VAR segment is associated with
READ_ONLY section.

If this segment is not mentioned in the PLACEMENT block in the parameter file, these
variables are allocated next to the segment DEFAULT_ROM.

FUNCS Any function code, which is not allocated in a user-defined segment, is
allocated in segment FUNCS. Usually, the FUNCS segment is associated with
READ_ONLY section.

COPY Initialization data belongs to segment COPY. If a source file contains the
declaration
220 Smart Linker

Segments (HIWARE)
Definition of Segment (HIWARE)
int a[] = {1, 2, 3};

the hex string 000100020003 (6 bytes), which is copied to a location in RAM at
program startup, belongs to segment COPY.

If the STRINGS segment is allocated to a READ_WRITE section, all strings also
belong to the COPY segment. Any objects in this segment are copied at startup from
ROM to RAM.

SSTACK The runtime stack has its own segment named SSTACK. It should always
be allocated to a READ_WRITE section.

DEFAULT_RAM This is the default segment for all objects normally allocated to
RAM. It is used for variables not belonging to any segment or to a segment not
assigned a section in the PLACEMENT block in the linker’s parameter file. If the
segment SSTACK is not associated with a section, it is appended to the
DEFAULT_RAM memory area.

DEFAULT_ROM This is the default segment for all functions. If a function is not
assigned to a certain segment in the source code or if its segment is not associated with
a section in the parameter file, it is automatically added to segment DEAFULT_ROM.
If any of the segments _PRESTART, STARTUP or COPY is not associated with a
section, these segments are included in the DEFAULT_ROM memory area in the
following order:

STARTUP The startup description data initialized by the linker and used by the
startup routine is allocated to segment STARTUP. This segment must be allocated to a
READ_ONLY section.

_PRESTART The application entry point is stored in the segment _PRESTART. This
segment also has got to be associated with a READ_ONLY section.

_OVERLAP This segment contains local variables, which are by the compiler pseudo-
statically for non-reentrant functions.
The linker analyzes the call graph (that is, it keeps track of which function calls which
other functions) and chooses memory areas in the _OVERLAP segment that are
distinct if it detects a call dependency between two functions. If it doesn’t detect such
a dependency, it may overlap the memory areas used for two separate functions’ local
variables (hence the name of the segment).
221Smart Linker

Segments (HIWARE)
Definition of Segment (HIWARE)
There are cases in which the linker cannot exactly determine whether a function calls
some other function, especially in the presence of function pointers. If the linker
detects a conflict between two functions, it issues an error message.
In the ELF object file format, the name .overlap is a synonym for _OVERLAP.
For details of the usage of this segment, see also chapter Overlapping Locals.

NOTE The DEFAULT_RAM and DEFAULT_ROM segments must always
be associated with a section.
222 Smart Linker

11
Examples

Examples 1 and 2 illustrate the use of sections to control allocation of variables and
functions precisely.

Example 1
Distributing code into two different ROMs:

LINK first.ABS
NAMES first.o strings.o startup.o END
STACKSIZE 0x200
SECTIONS
 ROM1 = READ_ONLY 0x4000 TO 0x4FFF;
 ROM2 = READ_ONLY 0x8000 TO 0x8FFF;
PLACEMENT
 DEFAULT_ROM INTO ROM1, ROM2;
 DEFAULT_RAM INTO READ_WRITE 0x1000 TO 0x1FFF;
END

Example 2
Allocation in battery buffered RAM:

/* Extract from source file "bufram.c" */
#pragma DATA_SEG Buffered_RAM
 int done;
 int status[100];
#pragma DATA_SEG DEFAULT
/* End of extract from "bufram.c" */

SmartLinker parameter file:

LINK bufram.ABS
NAMES
223Smart Linker

Examples
Example 2
 bufram.o startup.o
END
STACKSIZE 0x200
SECTIONS
 BatteryRAM = NO_INIT 0x1000 TO 0x13FF;
 MyRAM = READ_WRITE 0x5000 TO 0x5FFF;
PLACEMENT
 DEFAULT_ROM INTO READ_ONLY 0x2000 TO 0x2800;
 DEFAULT_RAM INTO MyRAM;
 Buffered_RAM INTO BatteryRAM;
END
224 Smart Linker

12
Program Startup

NOTE This section deals with advanced material. First time users of
HI-CROSS+ may skip this section; standard startup modules taking
care of the common cases are delivered together with the
HI-CROSS+ programs and examples. It suffices to include the
startup module in the files to link in the parameter file. For more
information about the names of the startup modules and the different
variants see the file Startup.txt in directory LIB.

Prior to calling the application’s root function (main), one must:

• initialize the processor’s registers,

• zero out memory and

• copy initialization data from ROM to RAM.

Depending on the processor and the application’s needs different startup routines may
be necessary.

In HI-CROSS+, there are standard startup routines for every processor and memory
model. They’re easy to adapt to your particular needs because all these startup routines
are based on a startup descriptor containing all information needed. Different startup
routines only differ in the way they make use of that information.

The Startup Descriptor (ELF)

The startup descriptor of the linker is declared as

typedef struct{
 unsigned char *far beg;int size;
} _Range;

typedef struct{
 int size; unsigned char * far dest;
225Smart Linker

Program Startup
The Startup Descriptor (ELF)
} _Copy;

typedef void (*_PFunc)(void);

typedef struct{
 _PFunc *startup; /* address of startup desc */
} _LibInit;

typedef struct _Cpp {
 _PFunc initFunc; /* address of init function */
} _Cpp;

extern struct _tagStartup {
 unsigned char flags;
 _PFunc main;
 unsigned short stackOffset;
 unsigned short nofZeroOuts;
 _Range *pZeroOut;
 _Copy *toCopyDownBeg;
 unsigned short nofLibInits;
 _LibInit *libInits;
 unsigned short nofInitBodies;
 _Cpp *initBodies;
 unsigned short nofFiniBodies;
 _Cpp *finiBodies;
} _startupData;

The linker expects somewhere in your application a declaration of the variable
_startupData, that is:

struct _tagStartup _startupData;

The fields of this struct are initialized by the linker and the _startupData is
allocated in ROM in section .startData. If there is no declaration of this variable,
the linker does not create a startup descriptor. In this case, there is no .copy section,
and the stack is not initialized. Furthermore, global C++ constructor and ROM
libraries are not initialized.

The fields have the following semantics:

flags Contains some flags, which may be used to detect special condition at startup.
Currently two bits are used, as shown in Table 12.1:
226 Smart Linker

Program Startup
The Startup Descriptor (ELF)
Table 12.1 Bits description

The bit 1 (with mask 2) is tested in the startup code, to detect if the stack pointer
should be initialized.

main is a function pointer set to the application’s root function. In a C program, this
usually is function main unless there is a MAIN entry in the parameter file specifying
some other function as being the root. In a ROM library, this field is zero. The
standard startup code jumps to this address once the whole initialization is over.

stackOffset is valid only if (flags & 2) == 0. This field contains the
initial value of the stack pointer.

nofZeroOuts is the number of READ_WRITE segments to fill with zero bytes at
startup.

This field is not required if you do not have any RAM memory area, which should be
initialized at startup. Be careful, when this field is not present in the startup structure,
the field pZeroOut must not be present either.

pZeroOut is a pointer to a vector with elements of type _Range. It has exactly
nofZeroOuts elements, each describing a memory area to be cleared. This field is
not required if you do not have any RAM memory area, which should be initialized at
startup. Be careful, when this field is not present in the startup structure, the field
nofZeroOuts must not be present either.

toCopyDownBeg contains the address of the first item which must be copied from
ROM to RAM at runtime. All data to be copied is stored in a contiguous piece of ROM
memory and has the following format:

CopyData = {Size[t] TargetAddr {Byte}
Size Alignment} 0x0[t].

Alignment= 0x0[0..7].

The size is a binary number whose most significant byte is stored first. This field is not
required if you do not have any RAM memory area, which should be initialized at
startup. The alignment is used to align the next size and TargetAddr field. The number
of alignment bytes depends on the processors capability to access non aligned data.
For small processors, there is usually no alignment. The size t of Size[t] and 0x0[t]
does depend on the target processor and memory model.

Bit # Set if...

0 The application has been linked as a ROM library

1 There is no stack specification
227Smart Linker

Program Startup
User Defined Startup Structure: (ELF)
nofLibInits is the number of ROM libraries linked with the application that must
be initialized at startup. This field is not required if you do not link any ROM library
with your application. Be careful, when this field is not present in the startup structure,
the field libInits must not be present.

libInits is a vector of pointers to the _startupData records of all ROM
libraries in the application. It has exactly nofLibInits elements. These addresses
are needed to initialize the ROM libraries. This field is not required if you do not link
any ROM library with your application. Be careful, when this field is not present in the
startup structure, the field nofLibInits must not be present

nofInitBodies is the number of C++ global constructors, which must be executed
prior to invoking the application root function. This field is not required if your
application does not contain any C++ module. Be careful, when this field is not
present in the startup structure, the field initBodies must not be present

initBodies is a pointer to a vector of function pointers containing the addresses of
the global C++ constructors in the application, sorted in the order they have to be
called. It has exactly nofInitBodies elements. If an application does not contain
any C++ modules, the vector is empty. This field is not required if your application
does not contain any C++ module. Be careful, when this field is not present in the
startup structure, the field nofInitBodies must not be present either.

nofFiniBodies is the number of C++ global destructors, which must be executed
after the invocation of the application root function. This field is not required if your
application does not contain any C++ module. Be careful, when this field is not
present in the startup structure, the field finiBodies must not be present either. If
the application root function does not return, nofFiniBodies and finiBodies
can both be omitted.

finiBodies is a pointer to a vector of function pointers containing the addresses of
the global C++ destructors in the application, sorted in the order they have to be called.
It has exactly nofFiniBodies elements. If an application does not contain any
C++ modules, the vector is empty. This field is not required if your application does
not contain any C++ module. Be careful, when this field is not present in the startup
structure, the field nofFiniBodies must not be present either. If the application
root function does not return, nofFiniBodies and finiBodies can both be
omitted.

User Defined Startup Structure: (ELF)

The user can define his own startup structure. That means it can remove the fields,
which are not required for his application, or move the fields inside of the structure. If
228 Smart Linker

Program Startup
User Defined Startup Structure: (ELF)
the user changes the startup structure, it is his responsibility to adapt the startup
function to match the modification he performs.

Example
If the user does not have any RAM area to initialize at startup, no ROM libraries and
no C++ modules in the application, he can define the startup structure as follows:

 extern struct _tagStartup {
 unsigned short flags;
 _PFunc main;
 unsigned short stackOffset;
 } _startupData;

In that case the startup code must be adapted accordingly in the following way:

 extern void near _Startup(void) {
 /* purpose: 1) initialize the stack
 2) call main;
 parameters: NONE */
 do { /* forever: initialize the program; call the root-procedure */
 asm{
 ; adapted for the HC12. Please modify it for other CPUS.
 LDD _startupData.flags
 BNE Initialize
 LDS _startupData.stackOffset
 Initialize:
 }
 /* Here user defined code could be inserted,
 the stack can be used
 */
 /* call main() */
 (*_startupData.main)();
 } while(1); /* end loop forever */
 }

NOTE The name of the fields in the startup structure should not be changed.
The user is free to remove fields inside of the structure, but he should
respect the names of the different fields, otherwise the SmartLinker
will not be able to initialize the structure correctly.
229Smart Linker

Program Startup
User Defined Startup Routines (ELF)
User Defined Startup Routines (ELF)

There are two ways to replace the standard startup routine by one of your own:

You may provide a startup module containing a function named _Startup and link
it with the application in place of the startup module delivered.

You can implement a function with another name as _Startup and define it as entry
point for your application using the command INIT

INIT function_name

In the latter case, function function_name is the startup routine.

The Startup Descriptor (HIWARE)

The startup descriptor of the linker is declared as

typedef struct{
 unsigned char *beg; int size;
} _Range;

typedef void (*_PFunc)(void);

extern struct _tagStartup{
 unsigned flags;
 _PFunc main;
 unsigned dataPage;
 long stackOffset;
 int nofZeroOuts;
 _Range *pZeroOut;
 long toCopyDownBeg;
 _PFunc *mInits;
 struct _tagStartup *libInits;
} _startupData;

The linker expects somewhere in your application a declaration of the variable
_startupData, that is:

struct _tagStartup _startupData;

The fields of this struct are initialized by the linker and the struct is allocated
in ROM in segment STARTUP. If there is no declaration of this variable, the linker
does not create a startup descriptor. In this case, there is no COPY segment, and the
230 Smart Linker

Program Startup
The Startup Descriptor (HIWARE)
stack is not initialized. Furthermore, global C++ constructor and ROM libraries are not
initialized.

The fields have the following semantics:

flags Contains some flags, which may be used to detect special condition at startup.
Currently two bits are used, as shown in Table 12.2:

Table 12.2 Bits description

This flag is tested in the startup code, to detect if the stack pointer should be
initialized.

main is a function pointer set to the application’s root function. In a C program, this
usually is function main unless there is a MAIN entry in the parameter file specifying
some other function as being the root. In a ROM library, this field is zeroed out. The
standard startup code jumps to this address once the whole initialization is over.

datapage is only used for processor having paged memory and memory models
supporting only one page. In this case, dataPage gives the page.

stackOffset is valid only if flags == 0. This field contains the initial value
of the stack pointer.

nofZeroOuts is the number of READ_WRITE segments to fill with zero bytes at
startup.

pZeroOut is a pointer to a vector with elements of type _Range. It has exactly
nofZeroOuts elements, each describing a memory area to be cleared.

toCopyDownBeg contains the address of the first item which must be copied from
ROM to RAM at runtime. All data to be copied is stored in a contiguous piece of ROM
memory and has the following format:

CopyData = {Size[2] TargetAddr {Byte}
Size} 0x0[2].

The size is a binary number whose most significant byte is stored first.

libInits is a pointer to an array of pointers to the _startupData records of all ROM
libraries in the application. These addresses are needed to initialize the ROM libraries.
To specify the end of the array, the last array element contains the value 0x0000ffff.

Bit # Set if...

0 The application has been linked as a ROM library

1 There is no stack specification
231Smart Linker

Program Startup
User Defined Startup Routines (HIWARE)
mInits is a pointer to an array of function pointers containing the addresses of the
global C++ constructors in the application, sorted in the order they have to be called.
The array is terminated by a single zero entry.

User Defined Startup Routines (HIWARE)

There are two ways to replace the standard startup routine by one of your own:

You may provide a startup module containing a function named _Startup and link
it with the application in place of the startup module delivered.

You can implement a function with another name as _Startup and define it as entry
point for your application using the command INIT

INIT function_name

In the latter case, function function_name is the startup routine.

Example of Startup Code in ANSI-C
Normally the startup code delivered with the compiler is provided in HLI for code
efficiency reasons. But there is also a version in ANSI-C available in the library
directory (startup.c and startup.h). You may use this startup for your own
modifications or just to get familiar with the startup concept. The code printed here
may vary depending on the actual implementation.

Header File startup.h:

/***
 FILE : startup.h
 PURPOSE : data structures for startup
 LANGUAGE: ANSI-C
**/
#ifndef STARTUP_H
#define STARTUP_H
#ifdef __cplusplus
extern "C" {
#endif
/*
 the following data structures contain the data needed to
 initialize the processor and memory
*/

typedef struct{
232 Smart Linker

Program Startup
User Defined Startup Routines (HIWARE)
 unsigned char *beg;
 int size; /* [beg..beg+size] */
} _Range;

typedef struct _Copy{
 int size;
 unsigned char * dest;
} _Copy;

typedef struct _Cpp {
 _PFunc initFunc; /* address of init function */
} _Cpp;

typedef void (*_PFunc)(void);
typedef struct _LibInit{
 struct _tagStartup *startup; /* address of startup desc */
} _LibInit;
#define STARTUP_FLAGS_NONE 0
#define STARTUP_FLAGS_ROM_LIB (1<<0) /* ROM library */
#define STARTUP_FLAGS_NOT_INIT_SP (1<<1) /* init stack */
#ifdef __ELF_OBJECT_FILE_FORMAT__
/* ELF/DWARF object file format */
/* attention: the linker scans for this structs */
/* to obtain the available fields and their sizes. */
/* So do not change the names in this file. */

extern struct _tagStartup {
 unsigned char flags; /* STARTUP_FLAGS_xxx */
 _PFunc main; /* first user fct */
 unsigned short stackOffset; /* initial stack pointer */
 unsigned short nofZeroOuts; /* number of zero outs */
 _Range *pZeroOut; /* vector of zero outs */
 _Copy *toCopyDownBeg; /* copy down start */
 unsigned short nofLibInits; /* number of ROM Libs */
 _LibInit *libInits; /* vector of ROM Libs */
 unsigned short nofInitBodies; /* number of C++ inits */
 _Cpp *initBodies; /* C+ init funcs */
 unsigned short nofFiniBodies; /* number of C++ dtors */
 _Cpp *finiBodies; /* C+ dtors funcs */
} _startupData;

#else /* HIWARE format */

extern struct _tagStartup {
 unsigned flags; /* STARTUP_FLAGS_xxx */
233Smart Linker

Program Startup
User Defined Startup Routines (HIWARE)
 _PFunc main; /* starting point of user code */
 unsigned dataPage; /* page where data begins */
 long stackOffset; /* initial stack pointer */
 int nofZeroOuts; /* number of zero out ranges */
 _Range *pZeroOut; /* prt to zero out descriptor */
 long toCopyDownBeg;/* address of copydown descr */
 _PFunc *mInits; /* ptr to C++ init fcts */
 _LibInit *libInits; /* ptr to ROM Lib descriptors */
} _startupData;

#endif

extern void _Startup(void); /* execution begins here */
/*---*/
#ifdef __cplusplus
 }
#endif
#endif /* STARTUP_H */

Implementation File startup.c

/***
 FILE : startup.c
 PURPOSE : standard startup code
 LANGUAGE : ANSI-C / HLI
 ***/
#include <hidef.h>
#include <startup.h>
/***/
struct _tagStartup _startupData; /* startup info */
/*---*/
static void ZeroOut(struct _tagStartup *_startupData) {
/* purpose: zero out RAM-areas where data is allocated.*/
 int i, j;
 unsigned char *dst;
 _Range *r;
 r = _startupData->pZeroOut;
 for (i=0; i<_startupData->nofZeroOuts; i++) {
 dst = r->beg;
 j = r->size;
 do {
 dst = '\0'; / zero out */
 dst++;
 j--;
 } while(j>0);
234 Smart Linker

Program Startup
User Defined Startup Routines (HIWARE)
 r++;
 }
}
/*--*/
static void CopyDown(struct _tagStartup *_startupData) {
/* purpose: zero out RAM-areas where data is allocated.
 this initializes global variables with their values,
 e.g. 'int i = 5;' then 'i' is here initialized with '5' */
 int i;
 unsigned char *dst;
 int *p;
 /* _startupData.toCopyDownBeg ---> */
 /* {nof(16) dstAddr(16) {bytes(8)}^nof} Zero(16) */
 p = (int*)_startupData->toCopyDownBeg;
 while (*p != 0) {
 i = *p; /* nof */
 p++;
 dst = (unsigned char*)*p; /* dstAddr */
 p++;
 do {
 /* p points now into 'bytes' */
 *dst = *((unsigned char*)p); /* copy byte-wise */
 dst++;
 ((char*)p)++;
 i--;
 } while (i>0);
 }
}
/*---*/
static void CallConstructors(struct _tagStartup *_startupData) {
/* purpose: C++ requires that the global constructors have
 to be called before main.
 This function is only called for C++ */
#ifdef __ELF_OBJECT_FILE_FORMAT__
 short i;
 _Cpp *fktPtr;

 fktPtr = _startupData->initBodies;
 for (i=_startupData->nofInitBodies; i>0; i--) {
 fktPtr->initFunc(); /* call constructors */
 fktPtr++;
 }
#else
 _PFunc *fktPtr;
 fktPtr = _startupData->mInits;
235Smart Linker

Program Startup
User Defined Startup Routines (HIWARE)
 if (fktPtr != NULL) {
 while(*fktPtr != NULL) {
 (**fktPtr)(); /* call constructors */
 fktPtr++;
 }
 }
#endif
}
/*---*/
static void ProcessStartupDesc(struct _tagStartup *);
/*--*/
static void InitRomLibraries(struct _tagStartup *_sData) {
 /* purpose: ROM libraries have their own startup functions
 which have to be called. This is only necessary if ROM
 Libraries are used! */

#ifdef __ELF_OBJECT_FILE_FORMAT__
 short i;
 _LibInit *p;

 p = _sData->libInits;
 for (i=_sData->nofLibInits; i>0; i--) {
 ProcessStartupDesc(p->startup);
 p++;
 }
#else
 _LibInit *p;
 p = _sData->libInits;
 if (p != NULL) {
 do {
 ProcessStartupDesc(p->startup);
 } while ((long)p->startup != 0x0000FFFF);
 }
#endif
}
/*--*/
static void ProcessStartupDesc(struct _tagStartup *_sData) {
 ZeroOut(_sData);
 CopyDown(_sData);
#ifdef __cplusplus
 CallConstructors(_sData);
#endif
 if (_sData->flags&STARTUP_FLAGS_ROM_LIB) {
 InitRomLibraries(_sData);
 }
236 Smart Linker

Program Startup
User Defined Startup Routines (HIWARE)
}
/*---*/
#pragma NO_EXIT
#ifdef __cplusplus
 extern "C"
#endif
void _Startup (void) {
 for (;;) {
 asm {
 /* put your target specific initialization */
 /* (e.g. CHIP SELECTS) here */
 }
 if (!(_startupData.flags&STARTUP_FLAGS_NOT_INIT_SP)) {
 /* initialize the stack pointer */
 INIT_SP_FROM_STARTUP_DESC(); /* defined in hidef.h */
 }
 ProcessStartupDesc(&_startupData);
 (*_startupData.main)(); /* call main function */
 } /* end loop forever */
}
/*---*/
237Smart Linker

Program Startup
User Defined Startup Routines (HIWARE)
238 Smart Linker

13
The Map File

If linking succeeds, a protocol of the link process is written to a list file called map file.
The name of the map file is the same as that of the .ABS file, but with extension .map.
The map file is written to the directory given by environment variable TEXTPATH.

Map File Contents
The map file consists of many sections:

TARGET This section names the target processor and memory model.

FILE This section lists the names of all files from which objects were used or
referenced during the link process. In most cases, these are the same names that are
also listed in the linker parameter file between the keywords NAMES and END. If a
file refers to a ROM library or a program, all object files used by the ROM library or
the program are listed with indentation.

STARTUP This section lists the prestart code and the values used to initialize the
startup descriptor _startupData. The startup descriptor is listed member by
member with the initialization data at the right hand side of the member name.

SEGMENT ALLOCATION This section lists those segments, in which at least one
object was allocated. At the right hand side of the segment name there is a pair of
numbers, which gives the address range in which the objects belonging to the segment
were allocated.

OBJECT ALLOCATION This section contains the names of all allocated objects
and their addresses. The objects are grouped by module. If an address of an object is
followed by the “@” sign, the object comes from a ROM library. In this case the
absolute file contains no code for the object (if it is a function), but the object’s address
was used for linking. If an address of a string object is followed by a dash “–”, the
string is a suffix of some other string. As an example, if the strings "abc" and "bc" are
present in the same program, the string "bc" is not allocated and its address is the
address of "abc" plus one.

OBJECT DEPENDENCY This section lists for every function and variable that uses
other global objects the names of these global objects.
239Smart Linker

The Map File
Map File Contents
DEPENDENCY TREE This section shows in a tree format all detected dependencies
between functions. Overlapping Locals are also displayed at their defining function.

UNUSED OBJECTS This section lists all objects found in the object files that were
not linked.

COPYDOWN This section lists all blocks that are copied from ROM to RAM at
program startup.

STATISTICS This section delivers information like number of bytes of code in the
application.

If linking fails because there are objects which were not found in any object file, no
map file is written.
240 Smart Linker

14
ROM Libraries

The SmartLinker supports linking to objects to which addresses were assigned in
previous link sessions. Packages of already linked objects are called ROM libraries.
Creation of a ROM library only slightly differs from the linkage of a normal program.
ROM libraries can then be used in subsequent link sessions by including them into the
list of files between NAMES and END (Please see section The Semantics of the
SmartLinker Commands).

Examples for the use of ROM libraries are:

• If a set of related functions is used in different projects it may be convenient to
burn these thoroughly tested library functions into ROM. We call such a set of
objects (functions, variables and strings) at fixed addresses a ROM library.

• To shorten the time needed for downloading, one can build a ROM library with
those modules that are known to be error free and that do not change. Such a
ROM library has to be downloaded only once, before beginning the tests of the
other modules of the application.

• The HI-CROSS+ system allows downloading a program while another program
already is present in the target processor. The most prominent example is the
monitor program. The linker facility described here enables an application
program to use monitor functions.k

Creating a ROM Library
To create a ROM library, the keywords "AS ROM_LIB" must follow the LINK
command in the linker parameter file. In the presence of the ENTRIES command, only
the given objects (functions and variables) are included in the ROM library. Without
an ENTRIES command, all exported objects are written to the ROM library. In both
cases the ROM library will also contain all global objects used by those functions and
variables.

Since a program cannot consist of a ROM library alone, a ROM library must not
contain a function main or a MAIN or INIT command, and the commands
STACKSIZE and STACKTOP are ignored.
241Smart Linker

ROM Libraries
Using ROM Libraries
Besides all the application modules which form a ROM library, the variable
_startupData must also be defined in the ROM library. The HI-CROSS+ library
includes a module containing only a definition of this variable.

ROM Libraries and Overlapping Locals
To allocate overlapping variables, all dependencies between functions have to be
known at link time. For ROM libraries, the linker does not know the dependencies
between all objects in the ROM library. Therefore locals of functions inside of the
ROM library cannot overlap locals of the using modules. Instead, the ROM library
must use a separate area for the .overlap/_OVERLAP segment which is not used in the
main application.

See Also
Overlapping Locals

Using ROM Libraries

Suppressing Initialization
Linking to ROM libraries is done by adding the name of the ROM library to the list of
files in the NAMES section of the linker parameter file. If the ROM library name is
immediately followed by a dash “–” (no blank between the last character of the file
name and the “–”) the ROM library is not initialized by the startup routine.

An unlimited number of ROM libraries may be included in the list of files to link. As
long as no two ROM libraries use the same object file, no problems should arise. If
two ROM libraries contain identical objects (coming from the same object file) and
both are linked in the same application, an error is reported because it is illegal to
allocate the same object more than once.

Example Application
In this example, we want to build and use a ROM library named ‘romlib.lib’. In this
(simple) example ROM library contains only one object file with one function and one
global variable. This is the header file of it:

/* rl.h */
#ifndef __RL_H__
242 Smart Linker

ROM Libraries
Using ROM Libraries
#define __RL_H__

char RL_Count(void);
 /* returns the actual counter and increments it */

#endif

Below is the implementation. Note that somewhere in the ROM library we have to
define an object named ‘_startupData’ for the linker. This startup descriptor is used to
initialize the ROM library (see below).

/* rom library (RL_) rl.c */
#include "rl.h"
#include <startup.h>

struct _tagStartup _startupData; /* for linker */

static char RL_counter; /* initialized to zero by startup */

char RL_Count(void) {
 /* returns the actual counter and increments it */
 return RL_counter++;
}

After compilation of ‘rl.c’ we can now link it and build a ROM library using following
linker parameter file. The main difference between a normal application linker
parameter file and a parameter file for ROM libraries is ‘AS ROM_LIB’ in the LINK
command:

/* rl.prm */
LINK romLib.lib AS ROM_LIB

NAMES rl.o END

SECTIONS
 MY_RAM = READ_WRITE 0x4000 TO 0x43FF;
 MY_ROM = READ_ONLY 0x1000 TO 0x3FFF;

PLACEMENT
 DEFAULT_ROM, ROM_VAR, STRINGS INTO MY_ROM;
 DEFAULT_RAM INTO MY_RAM;
END
243Smart Linker

ROM Libraries
Using ROM Libraries
In this example we have RAM from 0x4000 and ROM from 0x1000. Note that by
default the Linker generates startup descriptors for ROM libraries too. The startup
descriptors are used to zero out global variables or to initialize global variables with
initialization values. Additionally C++ constructors and destructors may be called.
This hole process is called ‘Module Initialization’ too.

To switch off Module Initialization’ for a single object file in the above linker
parameter file, a dash (‘-’) has to be added at the end of each object file. For the above
example this would be:

NAMES rl.o- END

After building the ROM library, the linker generates following map file (extract). Note
that the linker also has generated a startup descriptor at address 0x1000 to initialize the
ROM library.

**
STARTUP SECTION
--
Entry point: none
_startupData is allocated at 1000 and uses 44 Bytes

extern struct _tagStartup{
 unsigned flags 3
 _PFunc main 103C ()
 unsigned dataPage 0
 long stackOffset 4202
 int nofZeroOuts 1
 _Range pZeroOut -> 4000 2
 long toCopyDownBeg 102C
 _PFunc mInits -> NONE
 void * libInits -> NONE
} _startupData;

**
SEGMENT-ALLOCATION SECTION
--
Segmentname Size Type From To Name

FUNCS 14 R 102E 1041 MY_ROM
COPY 2 R 102C 102D MY_ROM
STARTUP 2C R 1000 102B MY_ROM
DEFAULT_RAM 2 R/W 4000 4001 MY_RAM
**
OBJECT-ALLOCATION SECTION
--
244 Smart Linker

ROM Libraries
Using ROM Libraries
Type: Name: Address: Size:

MODULE: -- rl.o --
- PROCEDURES:
 RL_Count 102E 14

- VARIABLES:
 _startupData 1000 2C
 RL_counter 4000 2

Now we want to use the ROM library from our application. Our simple application is:

/* main application using ROM library: main.c */
#include "rl.h"

int cnt;

void main(void) {
 int i;

 for (i=0; i<100; i++) {
 cnt = RL_Count();
 }
}

After compiling this main.c we can link it with our ROM library:

LINK main.abs

NAMES main.o romlib.lib startup.o ansi.lib END

SECTIONS
 MY_RAM = READ_WRITE 0x5000 TO 0x53FF;
 MY_ROM = READ_ONLY 0x6000 TO 0x6FFF;

PLACEMENT
 DEFAULT_ROM, ROM_VAR, STRINGS INTO MY_ROM;
 DEFAULT_RAM INTO MY_RAM;
END

STACKSIZE 0x200

Note that depending on your CPU configuration and memory model you have to use
another startup object file than ‘startup.o’ and another library than ‘ansi.lib’.
Additionally you have to be careful to choose the right startup object file. For
245Smart Linker

ROM Libraries
Using ROM Libraries
efficiency reasons most of the startup files implemented in HLI are optimized for a
specific target. To save ROM usage, they do not support ROM libraries in the startup
code. As long as there is no Module Initialization needed, this is not a problem. But if
we want to use the Module Initialization feature (as in our example), we use the ANSI-
C implementation in the library directory (startup.c). Because this startup file may not
be delivered in every target configuration, you have to compile this startup file
‘startup.c’ too.

After linking to main.abs, you get following map file (extract):

**
STARTUP SECTION
--
Entry point: 0x6000
Linker generated code (at 0x6000) before calling __Startup:
MOVE #0x2700, SR
JMP 0x61A0
_startupData is allocated at 600A and uses 48 Bytes

extern struct _tagStartup{
 unsigned flags 0
 _PFunc main 603C (_main)
 unsigned dataPage 0
 long stackOffset 5202
 int nofZeroOuts 1
 _Range pZeroOut -> 5000 2
 long toCopyDownBeg 603A
 _PFunc mInits -> NONE
 void * libInits -> 1000
} _startupData;

**
SEGMENT-ALLOCATION SECTION
--
Segmentname Size Type From To Name

FUNCS 184 R 603C 61BF MY_ROM
COPY 2 R 603A 603B MY_ROM
STARTUP 30 R 600A 6039 MY_ROM
_PRESTART A R 6000 6009 MY_ROM
SSTACK 200 R/W 5002 5201 MY_RAM
DEFAULT_RAM 2 R/W 5000 5001 MY_RAM
**
OBJECT-ALLOCATION SECTION
--
246 Smart Linker

ROM Libraries
Using ROM Libraries
Type: Name: Address: Size:
VECTOR
 value: 0 0 4
 &_Startup 4 4

MODULE: -- main.o --
- PROCEDURES:
 main 603C 26

- VARIABLES:
 cnt 5000 2

MODULE: -- X:\METROWERKS\DEMO\M68KC\rl.o --
- PROCEDURES:
 RL_Count 102E 14 @

- VARIABLES:
 __startupData 1000 2C @
 RL_counter 4000 2 @

MODULE: -- startup.o --
- PROCEDURES:
 ZeroOut 6062 50
 CopyDown 60B2 54
 ProcessStartupDesc 6142 3E
 HandleRomLibraries 6106 3C
 Start 6180 20
 _Startup 61A0 20

- VARIABLES:
 _startupData 600A 30

Please note that objects linked from the ROM library (RL_Count, RL_counter) are
marked with a ‘@’ in the OBJECT-ALLOCATION-SECTION. Again the linker has
generated a startup descriptor at address 0x600A which points with field ‘libInits’ to
the startup descriptor in our ROM library at address 0x1000.

Note that the main.abs does NOT include the code/data of the ROM library, thus they
are NOT downloaded during downloading of main.abs, because they have to be
downloaded (e.g. with a EEPROM) separately.
247Smart Linker

ROM Libraries
Using ROM Libraries
248 Smart Linker

15
How To ...

How To Initialize the Vector Table
The vector table can be initialized in the assembly source file or in the linker
parameter file. We recommend to initialize it in the prm file.

Initializing the Vector Table in the
SmartLinker Prm File
Initializing the vector table from the prm file allows you to initialize single entries in
the table. The user can decide if he wants to initialize all the entries in the vector table
or not.

The labels or functions, which should be inserted in the vector table, must be
implemented in the assembly source file. All these labels must be published otherwise
they cannot be addressed in the linker prm file.

Example

XDEF IRQFunc, XIRQFunc, SWIFunc, OpCodeFunc, ResetFunc
DataSec: SECTION
Data: DS.W 5 ; Each interrupt increments another element of the
table.
CodeSec: SECTION
; Implementation of the interrupt functions.
IRQFunc:
 LDAB #0
 BRA int
XIRQFunc:
 LDAB #2
 BRA int
SWIFunc:
 LDAB #4
 BRA int
249Smart Linker

How To ...
How To Initialize the Vector Table
OpCodeFunc:
 LDAB #6
 BRA int
ResetFunc:
 LDAB #8
 BRA entry
int:
 LDX #Data ; Load address of symbol Data in X
 ABX ; X <- address of the appropriate element in the
table
 INC 0, X ; The table element is incremented
 RTI
entry:
 LDS #$AFE
loop: BRA loop

NOTE The functions ‘IRQFunc’, ‘XIRQFunc’, ‘SWIFunc’, ‘OpCodeFunc’,
‘ResetFunc’ are published. This is required, because they are
referenced in the linker prm file.

NOTE As the HC12 processor automatically pushes all registers on the stack
on occurrence of an interrupt, the interrupt function do not need to
save and restore the registers it is using.

NOTE All Interrupt functions must be terminated with an RTI instruction.

The vector table is initialized using the linker command VECTOR ADDRESS.

Example

 LINK test.abs
 NAMES
 test.o
 END

 SECTIONS
 MY_ROM = READ_ONLY 0x0800 TO 0x08FF;
 MY_RAM = READ_WRITE 0x0B00 TO 0x0CFF;
 PLACEMENT
250 Smart Linker

How To ...
How To Initialize the Vector Table
 DEFAULT_RAM INTO MY_RAM;
 DEFAULT_ROM INTO MY_ROM;
 END

 INIT ResetFunc
 VECTOR ADDRESS 0xFFF2 IRQFunc
 VECTOR ADDRESS 0xFFF4 XIRQFunc
 VECTOR ADDRESS 0xFFF6 SWIFunc
 VECTOR ADDRESS 0xFFF8 OpCodeFunc
 VECTOR ADDRESS 0xFFFE ResetFunc

NOTE The statement ‘INIT ResetFunc’ defines the application entry point.
Usually, this entry point is initialized with the same address as the
reset vector.

NOTE The statement ‘VECTOR ADDRESS 0xFFF2 IRQFunc’ specifies
that the address of function ‘IRQFunc’ should be written at address
0xFFF2.

Initializing the Vector Table in the
Assembly Source File Using a Relocatable
Section
Initializing the vector table in the assembly source file requires that all the entries in
the table are initialized. Interrupts, which are not used, must be associated with a
standard handler.

The labels or functions, which should be inserted in the vector table must be
implemented in the assembler source file. The vector table can be defined in an
assembly source file in an additional section containing constant variables.

Example

 XDEF ResetFunc
 DataSec: SECTION
 Data: DS.W 5 ; Each interrupt increments an element of the table.
 CodeSec: SECTION
 ; Implementation of the interrupt functions.
251Smart Linker

How To ...
How To Initialize the Vector Table
 IRQFunc:
 LDAB #0
 BRA int
 XIRQFunc:
 LDAB #2
 BRA int
 SWIFunc:
 LDAB #4
 BRA int
 OpCodeFunc:
 LDAB #6
 BRA int
 ResetFunc:
 LDAB #8
 BRA entry
 DummyFunc:
 RTI
 int:
 LDX #Data
 ABX
 INC 0, X
 RTI
 entry:
 LDS #$AFE
 loop: BRA loop

 VectorTable:SECTION
 ; Definition of the vector table.
 IRQInt: DC.W IRQFunc
 XIRQInt: DC.W XIRQFunc
 SWIInt: DC.W SWIFunc
 OpCodeInt: DC.W OpCodeFunc
 COPResetInt: DC.W DummyFunc; No function attached to COP Reset.
 ClMonResInt: DC.W DummyFunc; No function attached to Clock
 ; MonitorReset.
 ResetInt : DC.W ResetFunc

NOTE Each constant in the section ‘VectorTable’ is defined as a word (2
Byte constant), because the entries in the HC12 vector table are 16 bit
wide.
252 Smart Linker

How To ...
How To Initialize the Vector Table
NOTE In the previous example, the constant ‘IRQInt’ is initialized with the
address of the label ‘IRQFunc’.

NOTE In the previous example, the constant ‘XIRQInt’ is initialized with
the address of the label ‘XIRQFunc’.

NOTE All the labels specified as initialization value must be defined,
published (using XDEF) or imported (using XREF) before the vector
table section. No forward reference allowed in DC directive.

The section should now be placed at the expected address. This is performed in the
linker parameter file.

Example

 LINK test.abs
 NAMES test.o+ END

 SECTIONS
 MY_ROM = READ_ONLY 0x0800 TO 0x08FF;
 MY_RAM = READ_WRITE 0x0A00 TO 0x0BFF;
 /* Define the memory range for the vector table */
 Vector = READ_ONLY 0xFFF2 TO 0xFFFF;
 PLACEMENT
 DEFAULT_RAM INTO MY_RAM;
 DEFAULT_RAM INTO MY_ROM;
 /* Place the section ‘VectorTable’ at the appropriated address. */
 VectorTable INTO Vector;
 END

 INIT ResetFunc

NOTE The statement ‘Vector = READ_ONLY 0xFFF2 TO 0xFFFF’
defines the memory range for the vector table.

NOTE The statement ‘VectorTable INTO Vector’ specifies that the vector
table should be loaded in the read only memory area Vector. This
253Smart Linker

How To ...
How To Initialize the Vector Table
means, the constant ‘IRQInt’ will be allocated at address 0xFFF2, the
constant ‘XIRQInt’ will be allocated at address 0xFFF4, and so on.
The constant ‘ResetInt’ will be allocated at address 0xFFFE.

NOTE The statement ‘NAMES test.o+ END’ switches smart linking OFF in
the module test.o. If this statement is missing in the prm file, the
vector table will not be linked with the application, because it is
never referenced. The smart linker only links the referenced objects
in the absolute file.

Initializing the Vector Table in the
Assembly Source File Using an Absolute
Section
Initializing the vector table in the assembly source file requires that all the entries in
the table are initialized. Interrupts, which are not used, must be associated with a
standard handler.

 The labels or functions, which should be inserted in the vector table must be
implemented in the assembly source file. The vector table can be defined in an
assembly source file in an additional section containing constant variables.

Example

 XDEF ResetFunc
 DataSec: SECTION
 Data: DS.W 5 ; Each interrupt increments an element of the table.
 CodeSec: SECTION
 ; Implementation of the interrupt functions.
 IRQFunc:
 LDAB #0
 BRA int
 XIRQFunc:
 LDAB #2
 BRA int
 SWIFunc:
 LDAB #4
 BRA int
 OpCodeFunc:
 LDAB #6
254 Smart Linker

How To ...
How To Initialize the Vector Table
 BRA int
 ResetFunc:
 LDAB #8
 BRA entry
 DummyFunc:
 RTI
 int:
 LDX #Data
 ABX
 INC 0, X
 RTI
 entry:
 LDS #$AFE
 loop: BRA loop

 ORG $FFF2
 ; Definition of the vector table in an absolute section
 ; starting at address
 ; $FFF2.
 IRQInt: DC.W IRQFunc
 XIRQInt: DC.W XIRQFunc
 SWIInt: DC.W SWIFunc
 OpCodeInt: DC.W OpCodeFunc
 COPResetInt: DC.W DummyFunc; No function attached to COP Reset.
 ClMonResInt: DC.W DummyFunc; No function attached to Clock
 ; MonitorReset.
 ResetInt : DC.W ResetFunc

NOTE Each constant in the section ‘VectorTable’ is defined as a word (2
Byte constant), because the entry in the HC12 vector table are 16 bit
wide.

NOTE In the previous example, the constant ‘IRQInt’ is initialized with the
address of the label ‘IRQFunc’.

NOTE In the previous example, the constant ‘XIRQInt’ is initialized with
the address of the label ‘XIRQFunc’.
255Smart Linker

How To ...
How To Initialize the Vector Table
NOTE All the labels specified as initialization value must be defined,
published (using XDEF) or imported (using XREF) before the vector
table section. No forward reference allowed in DC directive.

NOTE The statement ‘ORG $FFF2‘ specifies that the following section
must start at address $FFF2.

Example

 LINK test.abs
 NAMES
 test.o+
 END

 SEGMENTS
 MY_ROM = READ_ONLY 0x0800 TO 0x08FF;
 MY_RAM = READ_WRITE 0x0A00 TO 0x0BFF;
 PLACEMENT
 DEFAULT_RAM INTO MY_RAM;
 DEFAULT_ROM INTO MY_ROM;
 END

 INIT ResetFunc

NOTE The statement ‘NAMES test.o+ END’ switches smart linking OFF in
the module test.o. If this statement is missing in the prm file, the
vector table will not be linked with the application, because it is
never referenced. The smart linker only links the referenced objects
in the absolute file
256 Smart Linker

16
Messages

Message Kinds
There are four kinds of messsages generated by the SmartLinker:

WARNING
A message will be printed and linking will continue. Warning messages are used to indicate
possible programming errors to the user.

ERROR
A message will be printed and linking will be stopped. Error messages are used to indicate illegal
syntax in the PRM file.

FATAL
A message will be printed and linking will be aborted. A fatal message indicates a severe error
which anyway will stop the linker.

If the Linker prints out a message, the message contains a message code (‘L’ for Linker) and a
four to five digit number. This number may be used to search very fast for the indicated message
in the manual. The messages for the linker linking EL/DWARF object files are counted from L1000
to L1999. The messages for the linker linking HIWARE format object files are counted from L2000
to L2999. The messages common for both are counted until L999 and from L4000 to L4999.

All messages generated by the SmartLinker are documented in increasing number order for easy
and fast retrieaval.
Each message also has a description and if available a short example with a possible solution or
tips to fix a problem.

For each message the type of the message is also noted, e.g. [ERROR] indicates that the
message is an error message.

Messages for Linking ELF/DWARF Object File Format
L1000 <command name> not found

[ERROR]
Description
This message is generated when a mandatory linker command is missing in the
257Smart Linker

Messages
Message Kinds
PRM file.
<command name>: name of the command, which is not found in the PRM file.

The mandatory commands are:
• LINK, which contains the name of the absolute file to generate. If the option –O

is specified on the command line this message is not generated when the com-
mand LINK is missing in the PRM file.

• NAMES, where the files building the application are enumerated.
• PLACEMENT, where at least the predefined section ‘.text’ and ‘.data’ must be

associated with a memory range.

When the LINK command is missing the message will be:
‘LINK not found‘
When the NAMES command is missing the message will be:
‘NAMES not found‘
When the PLACEMENT command is missing the message will be:
‘PLACEMENT not found‘

Example
NAMES fibo.o start12s.o ansis.lib END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips
Insert the missing command in the PRM file.
Example
LINK fibo.abs
NAMES fibo.o start12s.o ansis.lib END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
258 Smart Linker

Messages
Message Kinds
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

L1001 <command name> multiply defined
[ERROR]
Description
This message is generated when a linker command, which is expected only once, is
detected several times in the PRM file.
<command name>: name of the command, which is found twice in the PRM file.
The commands, which cannot be specified several times in a PRM file, are:

• LINK, which contains the name of the absolute file to generate.
• NAMES, where the files building the application are enumerated.
• SEGMENTS, where a name can be associated with a memory area.
• PLACEMENT, where the sections used in the application are assigned to a

memory range.
• ENTRIES, where the objects, which should always be linked with the applica-

tion, are enumerated.
• MAPFILE, where the information to be stored in the MAP file can be specified.
• MAIN, which defines the application main function.
• INIT, which defines the application entry point.
• STACKSIZE, which defines the size of the stack.
• STACKTOP, which defines the stack pointer initial value.
• OBJECT_ALLOCATION, where an absolute address or a section can be as-

signed to the objects in the application.
• LAYOUT, where the allocation order of the different objects can be defined.
• START_DATA, which defines the name of the startup structure.

When the LINK command is detected several times the message will be:
‘LINK multiply defined‘

Example
LINK fibo.abs
NAMES fibo.o start12s.o ansis.lib END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
LINK fibo.abs
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips
259Smart Linker

Messages
Message Kinds
Remove one of the duplicated command.
Example
LINK fibo.abs
NAMES fibo.o start12s.o ansis.lib END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

L1003 Only a single SEGMENTS or SECTIONS block is allowed
[ERROR]
Description
The PRM file contains both a SECTIONS and a SEGMENTS block. The SECTIONS
block is a synonym for the SEGMENTS block. It is supported for compatibility with
old style HIWARE PRM file.
Example
LINK fibo.abs
NAMES fibo.o start12s.o ansis.lib END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
SECTIONS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips
Remove either the SEGMENTS or the SECTIONS block.
260 Smart Linker

Messages
Message Kinds
L1004 <Token> expected
[ERROR]
Description
This message is generated, when the specified <Token> is missing at a position
where it is expected.
<Token>: character or expression expected.
Example 1:
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x8FF
 ALIGN [2TO 4, 4]
 ^
 ERROR: : expected.

Tips
Insert the specified separator at the expected position.

L1005 Fill pattern will be truncated (>0xFF)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
This message is generated when the constant specified as fill pattern cannot be cod-
ed on a byte. The constant truncated to a byte value will be used as fill pattern.
Example
SEGMENTS
 MY_RAM = READ_WRITE 0x0800 TO 0x8FF FILL 0xA34;
END

Tips
To avoid this message, split the constant you specify into two byte constants.
Example
SEGMENTS
 MY_RAM = READ_WRITE 0x0800 TO 0x8FF FILL 0xA 0x34;
END

L1006 <Token> not allowed
[ERROR]
Description
This message is generated when a file name followed by a * is specified in a
OBJECT_ALLOCATION or LAYOUT block. This is not possible, because a section
is either a read only or a read write section. When all objects defined in a file are
moved to a section, the destination section will contain both code and variable. This
is logically not possible.
Example
OBJECT_ALLOCATION
 fibo.o:* INTO mySec;
 ^
261Smart Linker

Messages
Message Kinds
ERROR: * not allowed
END

Tips
Move either all functions, or all variables, or all constants to the destination section.
Example
OBJECT_ALLOCATION
 fibo.o:CODE[*] INTO mySec;
END

L1007 <character> not allowed in file name (restriction)
[ERROR]
Description
A file name specified in the PRM file contains an illegal character.
<character>: list of characters, which are not allowed in a file name at the pointed
position.
Following characters are not allowed in a file name:

• ‘:’, which is used as separator to specify a local object (function or variable) in a
PRM file.

• ‘;’, which is used as delimiter for a command line in a LAYOUT or
OBJECT_ALLOCATION block.

• ‘>’, which is used as separator to refer to object located in a section inside of a
LAYOUT or OBJECT_ALLOCATION block.

We also recommend to avoid character ‘+’ and ‘-‘ in a file name. This may generate
a problem when ‘+’ or ‘-‘ are used as suffix for a file name in the NAMES block.
Example
NAMES
 file:1.o;
 ^
ERROR: ':' or '>' not allowed in file name (restriction)
END
or
NAMES
 file1.o file>2.lib;
 ^
ERROR: ':' or '>' not allowed in file name (restriction)
END

Tips
Change the file name and avoid the illegal characters.

L1008 Only single object allowed at absolute address
[ERROR]
Description
Multiple objects are placed at an absolute address in an OBJECT_ALLOCATION
block. Only single objects are allowed there.
262 Smart Linker

Messages
Message Kinds
Example
OBJECT_ALLOCATION
 var1 var2 AT 0x0800;
 ^
ERROR: Only single object allowed at absolute address
END
or
OBJECT_ALLOCATION
 file.o:DATA[*] AT 0x900;
 ^
ERROR: Only single object allowed at absolute address
END

Tips
Split the faulty command from the OBJECT_ALLOCATION command in several
commands referring to single object.
Example
OBJECT_ALLOCATION
 var1 AT 0x0800;
 var2 AT 0x0802;
END

L1009 Segment Name <segment name> unknown
[ERROR]
Description
The segment specified in a PLACEMENT or LAYOUT command line was not previ-
ously defined in the SEGMENTS block.
<segment name>: name of the segment, which is not known.
Example
LINK fibo.abs
NAMES fibo.o start12s.o ansis.lib END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text INTO ROM_AREA;
 ^
ERROR: Segment Name ROM_AREA unknown
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup
263Smart Linker

Messages
Message Kinds
Tips
Define the requested segment names in the SEGMENTS block.
Example
LINK fibo.abs
NAMES fibo.o start12s.o ansis.lib END
SEGMENTS
 RAM_AREA = READ_WRITE 0x800 TO 0x80F;
 ROM_AREA = READ_ONLY 0x810 TO 0xAFF;
 STK_AREA = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text INTO ROM_AREA;
 .data INTO RAM_AREA;
 .stack INTO STK_AREA;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

L1010 Section Name <section name> unknown
[ERROR]
Description
The section name specified in a command from the OBJECT_ALLOCATION block
was not previously specified in the PLACEMENT block.
<section name>: name of the section, which is not known.
Example
LINK fibo.abs
NAMES fibo.o start12s.o ansis.lib END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
OBJECT_ALLOCATION
 fibo.o:DATA[*] IN dataSec;
 ^
ERROR: Section Name dataSec unknown
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup
264 Smart Linker

Messages
Message Kinds
Tips
Specify the section in the PLACEMENT block.
Example
LINK fibo.abs
NAMES fibo.o start12s.o ansis.lib END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text INTO MY_ROM;
 .data, dataSec INTO MY_RAM;
 .stack INTO MY_STK;
END
OBJECT_ALLOCATION
 fibo.o:DATA[*] IN dataSec;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

L1011 Incompatible segment qualifier: <qualifier1> in previous seg-
ment and <qualifier> in <segment name>
[ERROR]
Description
Two segments specified in the same command line from the PLACEMENT block are
not defined with the same qualifier.
<qualifier1>: segment qualifier associated with the previous segment in the list. This
qualifier may be READ_ONLY, READ_WRITE, NO_INIT, PAGED.
<qualifier2> segment qualifier associated with the current segment in the list. This
qualifier may be READ_ONLY, READ_WRITE, NO_INIT, PAGED.
<segment name >: name of the current segment in the list.
Example
LINK fibo.abs
NAMES fibo.o start12s.o ansis.lib END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 SEC_RAM= READ_WRITE 0x020 TO 0x02F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .data INTO MY_RAM;
 .text INTO MY_ROM, SEC_RAM;
265Smart Linker

Messages
Message Kinds
 ^
ERROR: Incompatible segment qualifier: READ_ONLY in previous
segment and READ_WRITE in SEC_RAM
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips
Modify the qualifier associated with the specified segment.
Example
LINK fibo.abs
NAMES fibo.o start12s.o ansis.lib END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 SEC_ROM= READ_ONLY 0x020 TO 0x02F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .data INTO MY_RAM;
 .text INTO MY_ROM, SEC_ROM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

L1012 Segment is not aligned on a <bytes> boundary
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Some targets (M-CORE, M68k) require aligned access for some objects.
Example (M-CORE)
All 4 byte accesses must be aligned to 4. According to the EABI, 8 byte doubles must
be aligned to 8. But if a 8 byte structure only contains chars, then alignment is not
needed.
Tips
Check whether the section contains objects which must be aligned.

L1013 Section is not aligned on a <bytes> boundary
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Some targets (M-CORE, M68k) require aligned access for some objects.
Example (M-CORE)
All 4 byte accesses must be aligned to 4. According to the EABI, 8 byte doubles must
be aligned to 8. But if a 8 byte structure only contains chars, then alignment is not
266 Smart Linker

Messages
Message Kinds
needed.
Tips
Check whether the section contains objects which must be aligned.

L1015 No binary input file specified
[ERROR]
Description
No file names specified in the NAMES block.
Example
LINK fibo.abs
NAMES END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips
Specify at least a file name in the NAMES block.

L1016 File <filename> found twice
[DISABLE, INFORMATION, WARNING, ERROR]
Description
A file name is detected several times. The file may be specified in the NAMES block
in the link parameter file or it may have been added by the option -Add.
<file name >: name of the file, which is detected twice.
Note that CodeWarrior is using the option -Add to add object files which are in the
project. Therefore these files should not be mentioned in the prm file as well.
Example1§
LINK fibo.abs
NAMES fibo.o startup.o fibo.o END
 ^
WARNING L1016: File fibo.o found twice
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
267Smart Linker

Messages
Message Kinds
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips
Remove the second occurrence of the specified file.

L1017 Section <Object/Section> in module <ModuleName> is in-
compatible with previous usages of this section
[DISABLE, INFORMATION, WARNING, ERROR]
Description
In the ELF object file format, two object files do contain the same section with incom-
patible modes. Sections containing code are for example incompatible with sections
containing not initialized variable.
Example§
file1.c:
#pragma DATA_SEG MY_SEG
int i;
file2.asm
MY_SEG: SECTION
 NOP
file.prm
LINK file.abs
NAMES file1.o file2.o .. END
... ^

Tips
Use different section names for different types of sections.

L1018 Checksum error <Description>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The checksum function has found a problem with the checksum configuration.

L1037 ***** Linking of <Linkparameterfile> failed ****
[ERROR]
Description
An error occurred in the linking process and the linking was interrupted and
no output is written. The destination absolute file and the map file are killed by the
Linker.
Tips
See the last error message for interpretation.

L1038 Success. Executable file written to <absfile>
268 Smart Linker

Messages
Message Kinds
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The application was successfully linked and the specified application was created.
When the linking fails, L1037 is issued. If the linking succeeds this message is is-
sued, but as it is disabled by default, it is only visible if it was enabled with a com-
mand line option.
See also
Command line option -WmsgSi.

L1052 User requested stop
Description
[DISABLE, INFORMATION, WARNING, ERROR]
The user has pressed the stop button in the toolbar. The linker stops execution as
soon as possible.

L1100 Segments <segment1 name> and <segment2 name> overlap
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Two segments defined in the PRM file overlap.
<segment1 name >: name of the first overlapping segment.
<segment2 name >: name of the second overlapping segment.
Example
^
Segments MY_RAM and MY_ROM overlap
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x805 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips
Modify the segment definition to remove the overlap.
Example
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
269Smart Linker

Messages
Message Kinds
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

L1102 Out of allocation space in segment <segment name> at ad-
dress <first address free>
[ERROR]
Description
The specified segment is not big enough to contain all objects from the sections
placed in it.
<segment name>: is the name of the segment, which is too small.
<first address free>: is the first address free in this segment (i.e. the address follow-
ing directly the last address used).
Example
In the following example, suppose the section ‘.data’ contains a character variable
and then a structure which size is 5 bytes.
^
Out of allocation space in segment MY_RAM at address 0x801
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x803;
 MY_ROM = READ_ONLY 0x805 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips
Set the end address of the specified segment to an higher value.

L1103 <section name> not specified in the PLACEMENT block
[ERROR]
270 Smart Linker

Messages
Message Kinds
Description
Indicates that one of the mandatory sections is not specified in the placement block.
The sections, which must always be specified in the PLACEMENT block, are .text
and .data.
Example
^
ERROR: .text not specified in the PLACEMENT block
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .init, .rodata INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips
Insert the missing section in the PLACEMENT block.
Note:
The sections DEFAULT_RAM is a synonym for .data and DEFAULT_ROM is a syn-
onym for .text. These two sections name have been defined for compatibility with the
old style HIWARE Linker.

L1104 Absolute object <Object Name> overlaps with segment <Seg-
ment Name>
[ERROR]
Description
An absolutely allocated object overlaps with a segment, where some section is allo-
cated. This is not allowed, because this may cause multiple objects to be allocated
at the same address.
Example
^
ERROR: Absolute object globInt overlaps with segment MY_RAM
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
271Smart Linker

Messages
Message Kinds
END
PLACEMENT
 .text, .rodata INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
OBJECT_ALLOCATION
 fiboCount AT 0x802;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips
Move the object to a free address.
Example
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
OBJECT_ALLOCATION
 fiboCount AT 0xC00;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Note:
An absolute object can also be placed in a segment, in which no sections are as-
signed.
Example
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 ABS_MEM= READ_WRITE 0xC00 TO 0xC0F;
END
272 Smart Linker

Messages
Message Kinds
PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
OBJECT_ALLOCATION
 fiboCount AT 0xC00;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

L1105 Absolute object <object name> overlaps with another abso-
lutely allocated object or with a vector
[ERROR]
Description
An absolutely allocated object overlaps with another absolute object or with a vector.
Example
^
ERROR: Absolute object globChar overlaps with another
absolutely allocated object or with a vector
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text, .rodata INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
OBJECT_ALLOCATION
 fiboCount AT 0xC02;
 counter AT 0xC03;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips
Move the object to a free position.

L1106 <Object Name> not found
[ERROR]
Description
An object referenced in the PRM file or in the application is not found anywhere in
273Smart Linker

Messages
Message Kinds
the application. This message is generated in following cases:
• An object moved to another section in the OBJECT_ALLOCATION block is not

found anywhere in the application (WARNING).
• An object placed at an absolute address in the OBJECT_ALLOCATION block is

not found anywhere in the application (ERROR).
• An object specified in a VECTOR or VECTOR ADDRESS command is not found

anywhere in the application (ERROR).
• No start-up structure detected in the application (WARNING).
• An object (function or variable) referenced in another object is not found in the

application (ERROR).
• An object (function or variable) specified in the ENTRIES block is not found in

the application (ERROR).
Example
 ^
 ERROR: globInt not found
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text, .rodata INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

 OBJECT_ALLOCATION
 globInt AT 0xC02;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
The missing object must be implemented in one of the module building the applica-
tion.
Make sure that your definition of the OBJPATH and GENPATH is correct and that
the Linker uses the last version of the object files.
You can also check if all the binary files building the application are enumerated in
the NAMES block.

L1107 <Object Name> not found
[DISABLE, INFORMATION, WARNING, ERROR]
274 Smart Linker

Messages
Message Kinds
Description
An object referenced in the PRM file or in the application is not found anywhere in
the application. This message is generated in following cases:

• An object moved to another section in the OBJECT_ALLOCATION block is not
found anywhere in the application (WARNING).

• An object placed at an absolute address in the OBJECT_ALLOCATION block is
not found anywhere in the application (ERROR).

• An object specified in a VECTOR or VECTOR ADDRESS command is not found
anywhere in the application (ERROR).

• No start-up structure detected in the application (WARNING).
• An object (function or variable) referenced in another object is not found in the

application (ERROR).
• An object (function or variable) specified in the ENTRIES block is not found in

the application (ERROR).
Example
 ^
 ERROR: globInt not found
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text, .rodata INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

 OBJECT_ALLOCATION
 globInt AT 0xC02;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
The missing object must be implemented in one of the module building the applica-
tion.
Make sure that your definition of the OBJPATH and GENPATH is correct and that
the Linker uses the last version of the object files.
You can also check if all the binary files building the application are enumerated in
the NAMES block.
A missing _startupData is only issued if there is a non assembly object file or library
275Smart Linker

Messages
Message Kinds
linked.

L1108 Initializing of Vector <Name> failed because of <Reason>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The linker can not initialize the named vector because of some target restrictions.
Some processors do not imply any restrictions, while other do only allow the VEC-
TOR's to point into a certain address range or have alignment constraints.
Tips
Try to allocate the interrupt function in a special segment and allocate this segment
separately.

L1109 <Segment Name> appears twice in SEGMENTS block
[ERROR]
Description
A segment name is specified twice in a PRM file. This is not allowed. When this seg-
ment name is referenced in the PLACEMENT block, the Linker cannot detect which
memory area is referenced.
Example
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 MY_RAM = READ_WRITE 0xC00 TO 0xCFF;
 ^
 ERROR: MY_RAM appears twice in SEGMENTS block
 END
 PLACEMENT
 .text, .rodata INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
Change one of the segment names, to generate unique segment names. If the same
memory area is defined twice, you can remove one of the definitions.

L1110 <Segment Name> appears twice in PLACEMENT block
[ERROR]
Description
276 Smart Linker

Messages
Message Kinds
The specified segment appears twice in a PLACEMENT block, and in one of the
PLACEMENT line, it is part of a segment list. A segment name may appear in several
lines in the PLACEMENT block, if it is the only segment specified in the segment list.
In that case the section lists specified in both PLACEMENT line are merged in one
single list of sections, which are allocated in the specified segment.
Example
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 ROM_2 = READ_ONLY 0x500 TO 0x7FF;
 END
 PLACEMENT
 .text, .rodata INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 codeSec1, codeSec2 INTO ROM_2, MY_ROM;
 ^
 ERROR: MY_ROM appears twice in PLACEMENT block
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
Remove one of the instance of the segment in the PLACEMENT block.

L1111 <Section Name> appears twice in PLACEMENT block
[ERROR]
Description
The specified section appears multiple times in a PLACEMENT block.
Example
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 ROM_2 = READ_ONLY 0x500 TO 0x7FF;
 END
 PLACEMENT
 .text, .rodata INTO MY_ROM;
277Smart Linker

Messages
Message Kinds
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 .text INTO ROM_2;
 ^
 ERROR: .text appears twice in PLACEMENT block
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
Remove one of the occurrence of the specified section from the PLACEMENT block.

L1112 The <Section name> section has segment type <Segment
Qualifier> (illegal)
[ERROR]
Description
A section is placed in a segment, which has been defined with an incompatible qual-
ifier. This message is generated in following cases:

• The section ‘.stack’ is placed in a READ_ONLY segment.
• The section ‘.bss’ is placed in a READ_ONLY segment.
• The section ‘.startData’ is placed in a READ_WRITE, NO_INIT or PAGED seg-

ment.
• The section ‘.init’ is placed in a READ_WRITE, NO_INIT or PAGED segment.
• The section ‘.copy’ is placed in a READ_WRITE, NO_INIT or PAGED segment.
• The section ‘.text’ is placed in a READ_WRITE, NO_INIT or PAGED segment.
• The section ‘.data’ is placed in a READ_ONLY segment.

Example
 ^
 ERROR: The .data section has segment type READ_ONLY (illegal)
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 ROM_2 = READ_ONLY 0x500 TO 0x7FF;
 END
 PLACEMENT
 .text, .rodata INTO MY_ROM;
 .data INTO ROM_2;
 .stack INTO MY_STK;
 END
278 Smart Linker

Messages
Message Kinds
/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
Place the specified section in a segment, which has been defined with an appropri-
ated qualifier.
Example
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 ROM_2 = READ_ONLY 0x500 TO 0x7FF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

L1113 The <Section name> section has segment type <Segment
Qualifier> (illegal)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
A section is placed in a segment, which has been defined with an incompatible qual-
ifier. This message is generated in following cases:

• The section ‘.stack’ is placed in a READ_ONLY segment.
• The section ‘.bss’ is placed in a READ_ONLY segment.
• The section ‘.startData’ is placed in a READ_WRITE, NO_INIT or PAGED seg-

ment.
• The section ‘.init’ is placed in a READ_WRITE, NO_INIT or PAGED segment.
• The section ‘.copy’ is placed in a READ_WRITE, NO_INIT or PAGED segment.
• The section ‘.text’ is placed in a READ_WRITE, NO_INIT or PAGED segment.
• The section ‘.data’ is placed in a READ_ONLY segment.

Example
 ^
 ERROR: The .data section has segment type READ_ONLY (illegal)
 LINK fibo.abs
 NAMES fibo.o startup.o END
279Smart Linker

Messages
Message Kinds
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 ROM_2 = READ_ONLY 0x500 TO 0x7FF;
 END
 PLACEMENT
 .text, .rodata INTO MY_ROM;
 .data INTO ROM_2;
 .stack INTO MY_STK;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
Place the specified section in a segment, which has been defined with an appropri-
ated qualifier.
Example
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 ROM_2 = READ_ONLY 0x500 TO 0x7FF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

L1114 The <Section Name> section has segment type <Segment
Qualifier> (initialization problem)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The specified section is loaded in a segment, which has been defined with the qual-
ifier NO_INIT or PAGED. This may generate a problem because the section contains
some initialized constants, which will not be initialized at application start-up. This
message is generated in following cases:
280 Smart Linker

Messages
Message Kinds
• The section ‘.rodata’ is placed in a NO_INIT or PAGED segment.
• The section ‘.rodata1’ is placed in a NO_INIT or PAGED segment.

Example
 ^
 ERROR: The .rodata section has segment type NO_INIT
(initialization problem)
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 RAM_2 = NO_INIT 0x500 TO 0x7FF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 .rodata INTO RAM_2;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
Place the specified section in a segment defined with either the READ_ONLY or the
READ_WRITE qualifier.
Example
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 RAM_2 = NO_INIT 0x500 TO 0x7FF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 .rodata INTO MY_ROM;
 END
281Smart Linker

Messages
Message Kinds
/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

L1115 Function <Function Name> not found
[ERROR]
Description
The specified function is not found in the application. This message is generated in
following cases:

• No main function available in the application. This function is not required for as-
sembly application. For ANSI C application, if no main function is available in the
application, it is the programmer responsibility to ensure that application start-up
is performed correctly. Usually the main function is called ‘main’, but you can de-
fine your own main function using the linker command MAIN.

• No init function available in the application. The init function defines the entry
point in the application. This function is required for ANSI C as well as for as-
sembly application. Usually the init function is called ‘_Startup’, but you can de-
fine your own init function using the linker command INIT.

Tips
Provide the application with the requested function.

L1116 Function <Function Name> not found
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The specified function is not found in the application. This message is generated in
following cases:

• No main function available in the application. This function is not required for as-
sembly application. For ANSI C application, if no main function is available in the
application, it is the programmer responsibility to ensure that application startup
is performed correctly. Usually the main function is called ‘main’, but you can de-
fine your own main function using the linker command MAIN.

• No init function available in the application. The init function defines the entry
point in the application. This function is required for ANSI C as well as for as-
sembly application. Usually the init function is called ‘_Startup’, but you can de-
fine your own init function using the linker command INIT.

Tips
Provide the application with the requested function.

L1117 <Object Name> allocated at absolute address <Address>
overlaps with sections placed in segment <Segment Name>
[ERROR]

Description
The specified absolutely allocated object is allocated inside of a segment, which is
specified in the PLACEMENT block. This is not allowed, because the object may
then overlap with object defined in the sections, which are placed in the specified
segment.
282 Smart Linker

Messages
Message Kinds
An absolutely allocated object may be allocated inside of a segment, which do not
appear in the PLACEMENT block.
Example
 ^
 ERROR: fiboCount allocated at absolute address 0x804 overlaps
with sections placed in segment MY_RAM
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 RAM_2 = NO_INIT 0x500 TO 0x7FF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 .rodata INTO RAM_2;
 END

 OBJECT_ALLOCATION
 counter AT 0x500;
 fiboCount AT 0x804;
 END
/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
Move the absolutely allocated object to an unused address.
Example
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 RAM_2 = NO_INIT 0x500 TO 0x7FF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
283Smart Linker

Messages
Message Kinds
 .rodata INTO MY_ROM;
 END

 OBJECT_ALLOCATION
 counter AT 0x500;
 fiboCount AT 0x404;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

L1118 Vector allocated at absolute address <Address> overlaps
with another vector or an absolutely allocated object
[ERROR]
Description
A vector overlaps with an absolute object or with another vector.
Example
 ^
 ERROR: Vector allocated at absolute address 0xFFFE overlaps
with another vector or an absolutely allocated object
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text, .rodata INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

 OBJECT_ALLOCATION
 counter AT 0xFFFD;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
Move the object or vector to a free position.

L1119 Vector allocated at absolute address <Address> overlaps
with sections placed in segment <Segment Name>
284 Smart Linker

Messages
Message Kinds
[ERROR]
Description
The specified vector is allocated inside of a segment, which is specified in the
PLACEMENT block. This is not allowed, because the vector may then overlap with
object defined in the sections, which are placed in the specified segment.
A vector may be allocated inside of a segment, which do not appear in the PLACE-
MENT block.
Example
 ^
 ERROR: Vector allocated at absolute address 0xFFFE overlaps
with sections placed in segment ROM_2
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 ROM_2 = READ_ONLY 0xFF00 TO 0xFFFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 .rodata INTO ROM_2;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
Defined the specified segment outside of the vector table.
Example
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 ROM_2 = READ_ONLY 0xC00 TO 0xCFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
285Smart Linker

Messages
Message Kinds
 .stack INTO MY_STK;
 .rodata INTO ROM_2;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

L1120 Vector allocated at absolute address <Address> placed in
segment <Segment Name>, which has not READ_ONLY qual-
ifier
[ERROR]
Description
The specified vector is defined inside of a segment, which is not defined with the
qualifier READ_ONLY. The vector table should be initialized at application loading
time during the debugging phase. It should be burned into EPROM, when application
development is terminated. For these reason, the vector table must always be locat-
ed in a READ_ONLY memory area.
Example
 ^
 ERROR: Vector allocated at absolute address 0xFFFE placed in
segment RAM_2 which has not READ_ONLY qualifier
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 RAM_2 = READ_WRITE 0xFF00 TO 0xFFFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
Define the specified segment with the qualifier READ_ONLY.

L1121 Out of allocation space at address <Address> for .copy sec-
tion
[ERROR]
286 Smart Linker

Messages
Message Kinds
Description
There is not enough memory available to store all the information about the initialized
variables in the ‘.copy’ section.
Tips
Specify an higher end address for the segment, where the ‘.copy’ section is allocat-
ed.

L1122 Section .copy must be the last section in the section list
[ERROR]
Description
The section ‘.copy’ is specified in a section list from the PLACEMENT block, but it is
not specified at the end of the list. As the size from this section cannot be evaluated
before all initialization values are written, the .copy section must be the last section
in a section list.
Example
 ERROR: Section .copy must be the last section in the section
list

 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .copy, .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
Move the section .copy to the last position in the section list or define it on a separate
PLACEMENT line in a separate segment.
Please note that .copy is also a synonym for COPY (e.g. used in HIWARE object file
format prm files).
Example
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
287Smart Linker

Messages
Message Kinds
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 ROM_2 = READ_ONLY 0xC00 TO 0xDFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 .copy INTO ROM_2;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

L1123 Invalid range defined for segment <Segment Name>. End ad-
dress must be bigger than start address
[ERROR]
Description
The memory range specified in the specified segment definition is not valid. The seg-
ment end address is smaller than the segment start address.
Example
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x7FF;
 ^
 ERROR: Invalid range defined for segment MY_RAM. End address
must be bigger than start address
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
 Change either the segment start or end address to define a valid memory range.

L1124 '+' or '-' should directly follow the file name
288 Smart Linker

Messages
Message Kinds
[ERROR]
Description
The ‘+’ or ‘-‘ suffix specified after a file name in the NAMES block does not directly
follow the file name. There is at least a space between the file name and the suffix.
Example
 LINK fibo.abs
 NAMES fibo.o + startup.o END
 ^
 ERROR: '+' or '-' should directly follow the file name
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
 Remove the superfluous space after the file NAME.
Example
 LINK fibo.abs
 NAMES fibo.o+ startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

L1125 In small memory model, code and data must be located on
bank 0. (StartAddr EndAddr)
[DISABLE, INFORMATION, WARNING, ERROR]
289Smart Linker

Messages
Message Kinds
Description
The application has been assembled or compiled in small memory model and the
memory area specified for some segment is not located on the first 64K (0x0000 to
0xFFFF).
This message is not issued for all processors.
Example
 ^
 ERROR: In small memory model, code and data must be located
on bank 0
 LINK fibo.abs
 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x10810 TO 0x10AFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
If some memory upper than 0xFFFF is required for the application, the application
must be assembled or compiled using the medium memory model. If no memory up-
per than 0xFFFF is required, modify the memory range and place it on the first 64K
of memory.

L1127 Placement located outside 16 bit area in small memory model
in area StartAddr .. EndAddr
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The application has been assembled or compiled in small memory model and the
memory area specified for some segment is not located on the first 64K (0x0000 to
0xFFFF).
This message is only issued for the HC12 and note that this message is disabled by
default.
Example
 ^
 Warning: Placement located outside 16 bit area in small memory
model in area 0x10810.. 0x10AFF
 LINK fibo.abs
 NAMES fibo.o startup.o END
290 Smart Linker

Messages
Message Kinds
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x10810 TO 0x10AFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
If some memory upper than 0xFFFF is required for the application, the application
must be assembled or compiled using the medium memory model. If no memory up-
per than 0xFFFF is required, modify the memory range and place it on the first 64K
of memory.

L1128 Cutting value <ItemName> from <FullValue> to <WrittenVal-
ue>
[DISABLED|INFORMATION|WARNING|ERROR]
Description
The linker does want to write a startup information entry which does not fit into the
size available. The startup code defines the size available for an address, for exam-
ple. If then larger addresses have to be written, this message is generated.
Example
For a startup code with 16 bits:
int i@0x12345678=7;
For the initialization of i, the linker has to encode the address of i (0x12345678) into
two bytes. Obviously, the address has to be cutted, and the message is issued.
Tips
Check which kind of information did cause this message. Some startup codes do
only support to initialize some part of the address space. This is especially the case
when using small memory models and allocate variables in paged areas.
To avoid to generate (non working) initialization data, variables can be placed in a
NO_INIT section.
The startup code can be adapted to support larger addresses.
Different memory models do have different limitations.

L1130 Section .checksum must be the last section in the section list
[DISABLED|INFORMATION|WARNING|ERROR]
Description
The section .checksum which will contains the linker generated checksum should it-
self not be considered for the checksum calculation. Therefore this section has to be
291Smart Linker

Messages
Message Kinds
after all other sections.
Example
 LINK chesksum.abs
 NAMES chesksum.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 END
 PLACEMENT
 .checksum,.text INTO MY_ROM;
 .data INTO MY_RAM;
 END
 STACKSIZE 0x60
/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
Mention the .checksum section at the end of the section list or don’t mention it at all.
See also
Chapter CHECKSUM

L1200 Both STACKTOP and STACKSIZE defined
[ERROR]
Description
Both STACKTOP and STACKSIZE commands are specified in the PRM file. This is
not allowed, because it generates an ambiguity on the definition of the stack.
Example
 LINK fibo.abs
 NAMES fibo.o startup.o END

 STACKTOP 0xBFE
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 END
 STACKSIZE 0x60
/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
292 Smart Linker

Messages
Message Kinds
 Remove either the STACKTOP or the STACKSIZE command from the PRM file.

L1201 No stack defined
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The PRM file does not contains any stack definition. In that case it is the programmer
responsibility to initialize the stack pointer inside of his application code. The stack
can be defined in the PRM file in one of the following way:

• Trough the STACKTOP command in the PRM file.
• Trough the STACKSIZE command in the PRM file.
• Trough the specification of the section .stack in the placement block.

Example
 ^
WARNING: No stack defined
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 END
/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
Define the stack in one of the three way specified above.
Note:
If the customer initializes the stack pointer inside of his source code, the initialization
from the linker will be overwritten.

L1202 .stack cannot be allocated on more than one segment
[ERROR]
Description
The section .stack is specified on a PLACEMENT line, where several segments are
enumerated. This is not allowed, because the memory area reserved for the stack
must be contiguous and cannot be split over different memory range.
Example
 ^
 ERROR: stack cannot be allocated on more than one segment
 LINK fibo.abs
 NAMES fibo.o startup.o END
293Smart Linker

Messages
Message Kinds
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 STK_1 = READ_WRITE 0xB00 TO 0xBFF;
 STK_2 = READ_WRITE 0xD00 TO 0xDFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO STK_1, STK_2;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
Define a single segment with qualifier READ_WRITE or NO_INIT to allocate the
stack.

L1203 STACKSIZE command defines a size of <Size> but .stack
specifies a stacksize of <Size>
[ERROR]
Description
The stack is defined trough both a STACKSIZE command and placement of the
.stack section in a READ_WRITE or NO_INIT segment, but the size specified in the
STACKSIZE command is bigger than the size of the segment where the stack is al-
located.
Example
 ^
 ERROR: STACKSIZE command defines a size of 0x120 but .stack
specifies a stacksize of 0x100
 LINK fibo.abs
 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 STK_1 = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO STK_1;
 END

 STACKSIZE 0x120
/* Set reset vector on _Startup */
294 Smart Linker

Messages
Message Kinds
 VECTOR ADDRESS 0xFFFE _Startup

Tips
To avoid this message you can either adapt the size specified in the STACKSIZE
command to fit into the segment where .stack is allocated or simply remove the com-
mand STACKSIZE.
If you remove the command STACKSIZE from the previous example, The linker will
initialized a stack from 0x100 bytes. The stack pointer initial value will be set to
0xBFE.
Example
 LINK fibo.abs
 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup
If the size specified in a STACKSIZE command is smaller than the size of the seg-
ment where the section .stack is allocated, the stack pointer initial value will be eval-
uated as follows:
<segment start address> + <size in STACKSIZE> -
<Additional Byte Required by the processor.>

Example
 LINK fibo.abs
 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END
 STACKSIZE 0x60
/* Set reset vector on _Startup */
295Smart Linker

Messages
Message Kinds
 VECTOR ADDRESS 0xFFFE _Startup
 In the previous example, the initial value for the stack pointer is evaluated as:
 0xB00 + 0x60s –2 = 0xB5E

L1204 STACKTOP command defines an initial value of <stack top>
but .stack specifies an initial value of <Initial Value>
[ERROR]
Description
The stack is defined trough both a STACKTOP command and placement of the
.stack section in a READ_WRITE or NO_INIT segment, but the value specified in the
STACKTOP command is bigger than the end address of the segment where the
stack is allocated.
Example
 ^
 ERROR: STACKTOP command defines an initial value of 0xCFE but
.stack specifies an initial value of 0xBFF
 LINK fibo.abs
 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 STK_1 = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO STK_1;
 END

 STACKTOP 0xCFE
/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
To avoid this message you can either adapt the address specified in the STACKTOP
command to fit into the segment where .stack is allocated or simply remove the com-
mand STACKTOP.
If you remove the command STACKTOP from the previous example, the stack point-
er initial value will be set to 0xBFE.
Example
 LINK fibo.abs
 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
296 Smart Linker

Messages
Message Kinds
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

L1205 STACKTOP command incompatible with .stack being part of
a list of sections
[ERROR]
Description
The stack is defined trough both a STACKTOP command and placement of the
.stack section in a READ_WRITE or NO_INIT segment, but the .stack section is
specified inside of a list of section in the PLACEMENT block.
Example
 ^
 ERROR: STACKTOP command incompatible with .stack being part
of a list of sections
 LINK fibo.abs
 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 STK_1 = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data, .stack INTO STK_1;
 END

 STACKTOP 0xBFE
/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
Specify the .stack section in a placement line, where the stack alone is specified.

L1206 .stack overlaps with a segment which appear in the PLACE-
MENT block
[ERROR]
Description
The stack is defined trough the command STACKTOP, and the specified initial value
297Smart Linker

Messages
Message Kinds
is inside of a segment, which is used in the PLACEMENT block.
This is not allowed, because the stack may overlap with some allocated objects.
Example
 ^
 ERROR: .stack overlaps with a segment which appear in the
PLACEMENT block
 LINK fibo.abs
 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 STK_1 = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO STK_1;
 END

 STACKTOP 0xBFE
/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
Define the stack initial value outside of all the segment specified in the PLACEMENT
block.
Example
 LINK fibo.abs
 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 END
 STACKTOP 0xBFE

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

L1207 STACKSIZE command is missing
[ERROR]
Description
298 Smart Linker

Messages
Message Kinds
The stack is defined only trough the placement of the .stack section in a
READ_WRITE or NO_INIT segment, but the .stack section is not alone in the section
list. In this case a STACKSIZE command is required, to specify the size required for
the stack by the application.
Example
 LINK fibo.abs
 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 STK_1 = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data, .stack INTO STK_1;
 END

/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
Indicate the requested stack size in a STACKSIZE command.

L1301 Cannot open file <File Name>
[ERROR]
Description
The linker is not able to open the application map or absolute file or to open one of
the binary file building the application.
Tips
If the abs or map file cannot be found, check if there is enough memory on the direc-
tory where you want to store the file. Check also if you have read/write access on this
directory.
If the environment variable TEXTPATH is defined, the MAP file is stored in the first
directory specified there, otherwise it is created in the directory, where the source file
was detected.
If the environment variable ABSPATH is defined, the absolute file is stored in the first
directory specified there, otherwise it is created in the directory, where the PRM file
was detected.
If a binary file cannot be found, make sure the file really exist and his name is cor-
rectly spelled. Then check if your paths are defined correctly. The binary files must
be located in one of the paths enumerated in the environment variable OBJPATH or
GENPATH or in the working directory

L1302 File <File Name> not found
[ERROR]
Description
299Smart Linker

Messages
Message Kinds
A file required during the link session cannot be found. This message is generated
in following cases:

• The parameter file specified on the command line cannot be found.
Tips
Make sure the file really exist and his name is correctly spelled.
Then check if your paths are defined correctly. The PRM file must be located in one
of the paths enumerated in the environment variable GENPATH or in the working di-
rectory.

L1303 <File Name> is not a valid ELF file
[ERROR]
Description
The specified file is not a valid ELF binary file. The linker is only able to link ELF bi-
nary files.
Tips
Check that you have compiled or assembled the specified file with the correct option
to generate an ELF binary file.
Check if your paths are defined correctly. The binary files must be located in one of
the paths enumerated in the environment variable OBJPATH or GENPATH or in the
working directory.

L1305 <File Name> is not an ELF format object file (ELF object file
expected)
[ERROR]
Description
The specified file is an old style HIWARE object file format binary file. The linker is
only able to link ELF binary files.
Tips
Check that you have compiled or assembled the specified file with the correct option
to generate an ELF binary file.
Check if your paths are defined correctly. The binary files must be located in one of
the paths enumerated in the environment variable OBJPATH or GENPATH or in the
working directory

L1309 Cannot open <File>
[ERROR]
Description
An input file of the linker is missed or the linker can’t open it.
Tips
Check your path environment settings in the “default.env” in your working directory.

L1400 Incompatible processor: <Processor Name> in previous files
and <Processor Name> in current file
[DISABLE, INFORMATION, WARNING, ERROR]
300 Smart Linker

Messages
Message Kinds
Description
The binary files building the application have been generated for different target pro-
cessor. In this case, the linked code cannot be compatible.
Note that when this message is disabled, the produced absolute file may or may not
work. The processor of the first read file is taken for the generation of fixups and sim-
ilar entries. Because different processors define fixups and other topics differently, it
is not predictable which combinations do really work.
Tips
Make sure you are compiling or assembling all your sources for the same processor.
Check if your paths are defined correctly. The binary files must be located in one of
the paths enumerated in the environment variable OBJPATH or GENPATH or in the
working directory

L1401 Incompatible memory model: <Memory Model Name> in pre-
vious files and <Memory Model Name> in current file
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The binary files building the application have been generated for different memory
model. In this case, the linked code cannot be compatible.
Tips
Make sure you are compiling or assembling all your sources in the same memory
model.
Check if your paths are defined correctly. The binary files must be located in one of
the paths enumerated in the environment variable OBJPATH or GENPATH or in the
working directory.
This error can be moved to a warning to generate an abs file angering the problem.
The problem may occur when linking object files of different vendors, because the
memory model may not be correctly recognized.
When the memory model are compatible, this message can safely be switched off.

L1403 Unknown processor <Processor Constant>
[ERROR]
Description
The processor encoded in the binary object file is not a valid processor constant.
Tips
Check if your paths are defined correctly. The binary files must be located in one of
the paths enumerated in the environment variable OBJPATH or GENPATH or in the
working directory.
This message cannot be disabled because the meaning of fixups depends on the
processor.

L1404 Unknown memory model <Memory Model Constant>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The memory model encoded in the binary object file is not a valid memory model for
301Smart Linker

Messages
Message Kinds
the target processor.
Tips
Check if your paths are defined correctly. The binary files must be located in one of
the paths enumerated in the environment variable OBJPATH or GENPATH or in the
working directory.
This error can be moved to a warning to generate an abs file ignoring the problem.
The problem may occur when linking object files of different vendors, because the
memory model may not be correctly recognized.
When the memory model are compatible, this message can safely be switched off.

L1501 <Symbol Name> cannot be moved in section <Section Name>
(invalid qualifier <Segment Qualifier>)
[ERROR]
Description
An invalid move operation has been detected from an object inside of a section,
which appears only in the PRM file. In that case, the first object moved in a section
determines the attribute associated with the section.

• If the object is a function, the section is supposed to be a code section,
• if the object is a constant, the section is supposed to be a constant section,
• otherwise, it is supposed to be a data section.

 This message is generated:
• When a variable is moved in a section, which is placed in a READ_ONLY seg-

ment.
• When a function is moved in a section, which is placed in a READ_WRITE,

NO_INIT or PAGED segment.
Example
ERROR: counter cannot be moved in section sec2 (invalid
qualifier READ_ONLY)
 LINK fibo.abs
 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 STK_1 = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text, sec2 INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO STK_1;
 END

 OBJECT_ALLOCATION
 counter IN sec2;
 END
/* Set reset vector on _Startup */
302 Smart Linker

Messages
Message Kinds
 VECTOR ADDRESS 0xFFFE _Startup

Tips
 Move the section in a segment with the required qualifier or remove the move com-
mand.

L1502 <Object Name> cannot be moved from section <Source Sec-
tion Name> to section <Destination Section Name>
[ERROR]
Description
An invalid move operation has been detected from an object inside of a section,
which appears also in a binary file.
This message is generated:
· When a variable is moved in a code or constant section
· When a function is moved in a data section or constant section.
Example
 ^
 ERROR: counter cannot be moved from section .data to section
.text
 LINK fibo.abs
 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 STK_1 = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO STK_1;
 END

 OBJECT_ALLOCATION
 counter IN .text;
 END
/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
Move the object in a section with the required attribute or remove the move com-
mand.

L1503 <Object Name> (from file <File Name>) cannot be moved from
section <Source Section Name> to section <Destination Sec-
tion Name>
[ERROR]
303Smart Linker

Messages
Message Kinds
Description
An invalid move operation has been detected from objects defined in a binary file in-
side of a section.
This message is generated:

• When a variable is moved in a code or constant section
• When a function is moved in a data section or constant section.

Example
 ^
ERROR: counter (from file fibo.o) cannot be moved from section
.data to section .text
 LINK fibo.abs
 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 STK_1 = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO STK_1;
 END

 OBJECT_ALLOCATION
 fibo.o:[DATA] IN .text;
 END
/* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips
Move the specified object in a section with the required attribute or remove the move
command.

L1504 <Object Name> (from section <Section Name>) cannot be
moved from section <Source Section Name> to section <Des-
tination Section Name>
[ERROR]
Description
An invalid move operation has been detected from objects defined in a section inside
of another section.
This message is generated:

• When a variable is moved in a code or constant section
• When a function is moved in a data section or constant section.

Example
^

304 Smart Linker

Messages
Message Kinds
ERROR: counter (from section .data) cannot be moved from
section .data to section .text
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 STK_1 = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO STK_1;
END
OBJECT_ALLOCATION
 .data>[*] IN .text;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips
Move the specified object in a section with the required attribute or remove the move
command.

L1600 main function detected in ROM library
[DISABLE, INFORMATION, WARNING, ERROR]
Description
A main function has been detected in a ROM library. As ROM libraries are not self
executable applications, no main function is required there.
Tips
If the MAIN command is present in the PRM file, remove it.
If the application contains a function ‘main’, rename it.

L1601 startup function detected in ROM library
[DISABLE, INFORMATION, WARNING, ERROR]
Description
An application entry point has been detected in a ROM library. As ROM libraries are
not self executable applications, no application entry point is required there.
Tips
If the INIT command is present in the PRM file, remove it.
If the application contains a function ‘_Startup’, rename it.

L1620 Bad digit in binary number
[ERROR]
Description
Syntax Error.
305Smart Linker

Messages
Message Kinds
Illegal character in a binary number.

L1621 Bad digit in octal number
[ERROR]
Description
Syntax Error.
Illegal character in a octal number.

L1622 Bad digit in decimal number
[ERROR]
Description
Syntax Error.
Illegal character in a decimal number.

L1623 Number too big
[ERROR]
Description
Syntax Error.
An identifier in the link parameter file is limited to a length of 31 characters.
Tips
Reduce the length of the identifier.

L1624 Ident too long. Cut after 255 characters
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Syntax Error.
An identifier in the link parameter file is limited to a length of 255 characters. The
identifier string is cut after that length.
Tips
Reduce the length of the identifier or move this message to a warning.

L1625 Comment not closed
[DISABLE, INFORMATION, WARNING, ERROR]
Description
An ANSI-C comment (‘/* */’) was opened, but not closed.
Tips
Close the comment.

L1626 Unexpected end of file
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The end of file encountered and the scanner was involved in the inner scope of an
expression or structure nesting. This is illegal.
Tips
Check the syntax of the link parameter file.
306 Smart Linker

Messages
Message Kinds
L1627 PRESTART command not supported, ignored
[DISABLE, INFORMATION, WARNING, ERROR]
Description
This message is issued by the linker when an ELF application is linked and the used
link parameter file contains a PRESTART directive, which is not supported for ELF.
The PRESTART command is only recognized from the parser to be able to skip it,
but it is not implemented.
Tips
The prestart functionality can be achieved easily by adapting the startup code.

L1629 START_DATA command not supported yet
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The START_DATA command is already recognized from the parser, but not imple-
mented yet.
Tips
Contact your vendor for the features of the next release.

L1631 HAS_BANKED_DATA not needed for ELF Object File Format
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The HAS_BANKED_DATA entry in the prm file is needed in the HIWARE file to de-
fine the size of pointers in the zero out and in the copy-down data structures. In the
ELF format, the linker reads the sizes of the pointers from the DWARF2 debug info.
When only DWARF1 is present, only one default pointer size per target is supported.
The HAS_BANKED_DATA is completely ignored in the ELF Format.

L1632 Filename too long
[ERROR]
Description
A file name was longer as the limit for this file system.
Tips
As one filename can be longer than 250 characters under Win32 or most UNIX de-
rivatives, the name did probably contain many paths. Try to use relative paths or use
shorter path names.

L1633 Illegal Filename
[ERROR]
Description
A filename did contain an illegal character.
Tips
Win32 does not allow / \ : * ? “ < > | in filenames as they have a special semantic. Do
use a different name instead.

L1634 Illegal Prestart
307Smart Linker

Messages
Message Kinds
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The PRESTART link parameter file does not have correct parameters.
Tips
Prestart is not supported in ELF. Initialize your application in the startup code.

L1650 The encoding of <Object> in the special section .overlap was
not recognized. The object is not overlapped
[DISABLE, INFORMATION, WARNING, ERROR]
Description
To overlap <Object> it must be known to which function this object belongs. The
name of this function should be encoded into the object name. If the encoding is not
correct, this message appears.
Tips
Do not use the sections .overlap and _OVERLAP for objects which should not be
overlapped.
The compiler knows the section internally, so that these section names should only
appear in the prm file and not in C sources.

L1651 The function <Function> of the overlap object <Object> was
not found. The object is not overlapped
[DISABLE, INFORMATION, WARNING, ERROR]
Description
To overlap <Object> it must be known to which function this object belongs. The
name of this function should be encoded into the object name. The encoding was
recognized, but the corresponding function was not found or not linked.
Tips
Do not use the sections .overlap and _OVERLAP for objects which should not be
overlapped.
The compiler knows the section internally, so that these section names should only
appear in the prm file and not in C sources.

L1653 The object <Object> was not overlapped allocate
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The specified object is in the section .overlap and it’s depending function was recog-
nized. However, no root function did reached the function which corresponds to this
object.
Tips
Add the name of the function to a OVERLAP_GROUP prm file entry.

L1654 <Object> was not marked as root for overlapping
[DISABLE, INFORMATION, WARNING, ERROR]
Description
308 Smart Linker

Messages
Message Kinds
The <Object>, which may be a object file was not considered as root for the overlap
analysis.
Tips
Add the name of all root functions into one or several OVERLAP_GROUP prm file
entries.

L1655 Overlapping <Object> depends on itself
[DISABLE, INFORMATION, WARNING, ERROR]
Description
During the execution, the same function with overlapping objects must not be in-
voked twice. The linker has detect that one function depends on itself.
Example:
As recursion is not allowed with overlapping the following implementation is not only
inefficient, it will even fail with overlapped variables.
int fibonacci(int i) {
 return fibonacci(i-1)+fibonacci(i-2);
}

Tips
If the dynamic behavior of the function guarantees that no recursion takes place, ig-
nore this warning. Otherwise change your code to avoid any recursion.

L1656 Overlapping <Object> depends on multiple roots
[DISABLE, INFORMATION, WARNING, ERROR]
Description
During the execution, the same function with overlapping objects must not be in-
voked twice. The linker has detect that one function depends on two root functions.
This message is not issued for root objects.
Example:
In this example, the parameters of Mul are destroyed when Mul is invoked twice. As
this happens only when the higher priority interrupt intercept the lower interrupt func-
tion, this bug is hard to catch with other tests. When both interrupt functions have the
same priority, a OVERLAP_GROUP prm file entry should be used.

long l0,l1,l2,l3,l4,l5;
long Mul(long a, long b) {
 return a*b;
}
void interrupt 1 interrupt1(void) {
 l0=Mul(l1,l2);
}
void interrupt 2 interrupt2(void) {
 l3=Mul(l4,l5);
}

Tips
309Smart Linker

Messages
Message Kinds
Check whether it is possible if the function is called twice at the same time. If so cor-
rect the code. Otherwise ignore this warning.
If the two roots cannot be called at the same time, a OVERLAP_GROUP prm file en-
try may save overlap space.

L1700 File <File Name> should contain DWARF information
[ERROR]
Description
The binary file, where the startup structure is defined does not contain any DWARF
information. This is required, because the type of the startup structure is not fixed by
the linker, but depends on the field and field position inside of the user defined struc-
ture.
Tips
Recompile the ANSI C file containing the definition of the startup structure and insert
DWARF information there.

L1701 Start up data structure is empty
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The size of the user defined startup structure is 0 bytes.
Tips
Check if you really do not need any startup structure.
If a startup structure is available, check if the field name in the structure matches the
name of the field expected by the linker.

L1702 Startup data structure field <name> is unknown
[DISABLE, INFORMATION, WARNING, ERROR]
Description
In the ELF object file format, the linker reads the debug information to build the star-
tup data structures as the compiler expects them. Therefore no names in the startup
structure should be changed. The linker did not find the information about the men-
tioned field, so no adoption takes place.
Tips
Check if the mentioned field exists in the startup data structure.
Check that all fields have the correct type.
If the startup information is not actually used, then it can be removed from the startup
descriptor.

L1800 Read error in <File>
[ERROR]
Description
An error occurred while reading one of the ELF input object files. The object file is
corrupt.
Tips
Recompile your sources. Contact your vendor, if the error appears again.
310 Smart Linker

Messages
Message Kinds
L1803 Out of memory in <Function Name>
[FATAL]
Description
There is not enough memory to allocate the internal structure required by the linker.

L1804 No Elf Section Header Table found in <File Name>
[ERROR]
Description
No section header table detected in the binary file.
Tips
Check if you are using the correct binary file.
Check if your paths are defined correctly. The binary files must be located in one of
the paths enumerated in the environment variable OBJPATH or GENPATH or in the
working directory

L1806 Elf file <File Name> appears to be corrupted
[ERROR]
Description
The specified binary file is not a valid ELF binary file.
Tips
Check if you are using the correct binary file.
Check if your paths are defined correctly. The binary files must be located in one of
the paths enumerated in the environment variable OBJPATH or GENPATH or in the
working directory

L1808 String overflow in <Function Name>, contact vendor
[ERROR]
Description
The section name detected in a section table is longer than 100 characters. This is
an internal limit in this linker.
Tips
Ensure all the section names are smaller than 100 characters.

L1809 Section <Section Name> located in a segment with invalid
qualifier
[ERROR]
Description
The attributes associated with a section, which is used in several binary file are not
compatible. In one file, the section contains variables in the other it contains con-
stants variables or code.
Tips
Check usage of the different sections over all the binary files. A specific section
should always contain the same type of information, all over the project.
311Smart Linker

Messages
Message Kinds
L1818 Symbol <Symbol Number> - <Symbol Name> duplicated in
<First File Name> and <Second file Name>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The specified global symbol is defined in two different binary files.
Example
/* foo.h */
int i;
/* foo1.c */
#include “foo.h”
/* foo2.c */
#include “foo.h”

Tips
Rename the symbol defined in one on the specified files or check if a definition is
present in a header file and included more than once (defined more than once).

L1820 Weak symbol <Symbol Name> duplicated in <First File
Name> and <Second file Name>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The specified weak symbol is defined in two different binary files.
Tips
Rename the symbol defined in one on the specified files.

L1821 Symbol <id1> conflicts with <id2> in file <File> (same code)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
A static symbol is defined twice in the same module.
Tips
Rename one of the symbols in the module.

L1822 Symbol <Symbol Name> in file <File Name> is undefined
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The specified symbol is referenced in the file specified, but is not defined anywhere
in the application.
Tips
Check if there is no object file missing in the NAMES block and if you are using the
correct binary file.
Check if your paths are defined correctly. The binary files must be located in one of
the paths enumerated in the environment variable OBJPATH or GENPATH or in the
working directory

L1823 External object <Symbol Name> in <File Name> created by
312 Smart Linker

Messages
Message Kinds
default
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Unresolved external.
The specified symbol is referenced in the file specified, but is not defined anywhere
in the application, but an external declaration for this object is available in at least
one of the binary file. The object is supposed to be defined in the first binary file
where it is externally defined.
This is only valid for ANSI C applications.
In this case an external definition for a variable var looks like:
extern int var;
The definition of the corresponding variable looks like:
int var;

Tips
Define the specified symbol in one of the files building the application.

L1824 Invalid mark type for <Ident>
[ERROR]
Description
Internal error. The object file is corrupt.
Tips
Recompile your sources and contact your vendor if this leads to the same results.

L1826 Can't read file. <Filename> is a not an ELF library containing
ELF objects (ELF objects expected)
[ERROR]
Description
The specified file is not a valid library. The linker is only able to link uniform binary
files together (Not ELF and HIWARE mixed).
Tips
Recompile the source file to ELF object file format.

L1827 Symbol <Ident> has different size in <Filename> (<Size>
bytes) and <Filename> (<Size> bytes)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
An object was specified with different sizes in different object files.
This message is only issued if both sizes are specified in a object file. If one object
file is contained in a library, L1828 is issued.
Example
a.h : exten char * buf;
 extern long intvar;
a.c : char buf[100];
 long intvar;
313Smart Linker

Messages
Message Kinds
Tips
Check if all declarations and definitions of the named object match.
Recompile the source file to ELF object file format.
In C it is a recommended practise that the defining C file includes its own header file,
even if this is not necessary to compile the C file. The compiler has only a chance to
issue a warning about such cases if both the declarations in the header file and the
definitions in the C file are read in one compilation.
See also
Message L1828

L1828 Library: Symbol <Ident> has different size in <Filename>
(<Size> bytes) and <Filename> (<Size> bytes)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
An object was specified with different sizes in different object files.
One of the two object files is contained in a library.
This message is only issued if one object file is contained in a library. If both sizes
are specified in a object file, L1827 is issued.
Tips
Check if all declarations and definitions of the named object match.
Recompile the source file to ELF object file format.
In C it is a recommended practise that the defining C file includes its own header file,
even if this is not necessary to compile the C file. The compiler has only a chance to
issue a warning about such cases if both the declarations in the header file and the
definitions in the C file are read in one compilation.
See also
Message L1827

L1829 Cannot resolve label 'Ident'
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The value of a label cannot be determined. This message may only be generated by
assembly files.
Tips
Check the definition of the label.

L1902 <Cmd> command not supported
[DISABLE, INFORMATION, WARNING, ERROR]
Description
There are some command keywords in the link parameter file scanner, that are not
yet implemented as commands. In this case, this message is issued.
Tips
See in your manual for the implemented commands.

L1903 Unexpected Symbol in Linkparameter file
314 Smart Linker

Messages
Message Kinds
[ERROR]
Description
Syntax error in link parameter file. An illegal character appeared.
Tips
It may accidentally happen that the link process is started with the name of the exe-
cutable as file argument on command line instead of the link parameter file. In this
case type the right file name.
If the file is really a link parameter file. Edit it and replace the invalid character or sym-
bol.

L1905 Invalid section attribute for program header
[ERROR]
Description
Illegal object file.
Tips
Do recompile your sources. If this leads to the same results, contact your vendor for
support.

L1906 Fixup out of buffer (<Obj> referenced at offset <Address>)
[ERROR]
Description
An illegal relocation of an object is detected in the object file <Object> at address
<Address>. The type of the object is given in <objType>.
Tips
Check the relocation at that address. The offset may be out of range for this reloca-
tion type. If not it may be caused by a corrupt object file.
Recompile your sources and try to link again. If this leads to the same result,
contact your vendor for support

L1907 Fixup overflow in <Object>, type <objType> at offset <Ad-
dress>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
An illegal relocation of an object is detected in the object file <Object> at address
<Address>. The type of the object is given in <objType>.
Tips
Check the relocation at that address. The offset may be out of range for this reloca-
tion type. If not it may be caused by a corrupt object file.
Check if all objects are allocated in the correct area. Is the object correctly declared?
This error might occur if the zero paged variables are allocated out of the zero page.

L1908 Fixup error in <Object>, type <objType> at offset <Address>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
315Smart Linker

Messages
Message Kinds
An illegal relocation of an object is detected in the object file <Object> at address
<Address>. The type of the object is given in <objType>.
Tips
Check the relocation at that address. The offset may be out of range for this reloca-
tion type. If not it may be caused by a corrupt object file.
Recompile your sources and try to link again. If this leads to the same result, contact
your vendor for support

L1910 Invalid section attribute for program header
[ERROR]
Description
A program header needs specific section attributes that have no sense to be
changed.
Tips
The cause of the error is internal and may be caused by a corrupt object file.
Recompile your sources and try to link again. If this leads to the same result,
contact your vendor for support

L1912 Object <obj> overlaps with another (last addr: <addr>, object
address: <objadr>
[ERROR]
Description
The object with name <obj> overlaps with another object at address <addr>. The ad-
dress of the object is given in <objadr>.
Tips
Do place one of the objects somewhere else.

L1913 Object Filler overlaps with something else
[ERROR]
Description
An object filler overlaps with another object this is not allowed.

L1914 Invalid object: <Object>
[ERROR]
Description
An object of unknown type is detected in an object file.
Tips
The cause of the error is internal and may be caused by a corrupt object file or in-
compatibility of the object formats.
Recompile your sources and try to link again. If this leads to the same result, contact
your vendor for support or a new linker release, if the linker you are running is an
older version that does not support the features of later compiler releases.

L1916 Section name <Section> is too long. Name is cut to 90 char-
316 Smart Linker

Messages
Message Kinds
acters length
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The length of a name is limited to 90 characters.
Tips
Rename the section and recompile your sources.

L1919 Duplicate definition of <Object> in library file(s) <File1> and/
or <File2> discarded
[DISABLE, INFORMATION, WARNING, ERROR]
Description
A definition of an object is duplicated in a library. (In object file <File1> and <File2>.
Tips
Rename one of the objects and recompile your sources.

L1921 Marking: too many nested procedure calls
[ERROR]
Description
The object file <name< is corrupt or your application.
Tips
Recompile your sources and try to link again. If this leads to the same result, contact
your vendor for support.

L1922 File <filename> has DWARF data of different version, DWARF
data may not be generated
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The files linked have different versions of the debug info sections (ELF/DWARF).
Tips
Recompile your sources with an unique version of output. See the compiler manual
for the right option settings.
When linking object files of different vendors, this message might occur when the
linker does not recognize the debug info in all object files.
It is also issued if some object files do not have debug info at all.
The generated absolute file may have some correct debug info, but probably not for
all modules.

L1923 File <filename> has no DWARF debug info
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The mentioned file contains no recognized debug information. For the named object
file the debugger will probably not show source files and other symbolic information.
Its code can only be debugged on assembly level.
Tips
317Smart Linker

Messages
Message Kinds
Metrowerks compilers contain an option to avoid the generation of debug informa-
tion.
For other compiler, the generation of debug information must be explicitly specified.
Check the compiler documentation.
The linker itself can also generate ROM libraries without debug information.

L1930 Unknown fixup type in <ident>, type <type>, at offset <offset>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The object file <name< is corrupt or your linker version does not support compiler
instructions.
Tips
Recompile your sources and try to link again. If this leads to the same result, contact
your vendor for support.

L1933 ELF: <details>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Warning while reading an ELF object file. The data in the file are not complete or con-
sistent, but the ELF Linker can continue. <details> specifies the cause of the warn-
ing. Possible values are listed in the message L1934.

L1934 ELF: <details>
[ERROR]
Description
Error while reading an ELF object file. <details> specifies the cause of the error. Pos-
sible causes are:

• Cannot open <File> - See message L1309
• Read error in <File>
• Out of memory in <File> - See message L1803
• No Elf Section Header Table found in <File> - See message L1804
• Elf file <File> is corrupted - See message L1806
• String in '<File>' is too long - See message L1808
• Section '<File>' located in a segment with invalid qualifier. - See message

L1809
• Programming language incompatible
• Incompatible memory model: <m1> in previous files and <m2> in current file

 - See message L1401
• Incompatible processor: <cpu1> in previous files and <cpu2> in current file

 - See message L1400
• String buffer overrun in <File>
• <File> is not a valid ELF file - See message L1303
• <File> is a HIWARE format object file (ELF object file expected)

 - See message L1305
• File <File> not found - See message L1302
318 Smart Linker

Messages
Message Kinds
• Requested section not found
• Program header not found
• Currently no file open
• Request is not valid
• Object <name> has an unknown type
• Fixup error: <cause>
• File is not a valid HIWARE library file
• File is not a valid ELF library file
• Elf file corrupted
• DWARF fixup incorrect: <cause>
• Internal

L1936 ELF output: <details>
[ERROR]
Description
Error in ELF. <details> specifies the cause of the error. Possible causes are:

• Cannot open <File> - See message L1309
• Out of memory in <File> - See message L1803
• Wrong file type for <action>
• Write error in <File>
• No Elf Section Header defined in <File>
• String buffer overrun in <File>
• Wrong section type
• Internal buffer overflow in <Function>
• All local symbols before the first global one
• Currently no file open
• Request is not valid
• Internal

L1937 LINK_INFO: <details>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The compiler does put with the #pragma LINK_INFO some information entries into
the ELF file. This message is used if incompatible information entries exists.
Tips
Check the #pragma LINK_INFO in the compiler source.
This warning could indicate that some incompatible files are linked together.

L1951 Function <Function> is allocated inside of <Object> with off-
set <Offset>. Debugging may be affected
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The common code optimization of the linker has optimized one function. It is now al-
located in the specified object. As both the function and the object are allocate at the
same addresses, the debugger can not distinguish them. Be aware that the debug-
319Smart Linker

Messages
Message Kinds
ger may display information for the wrong object.
Tips
If the two functions are identical per design, for example C++ inline functions, ignore
the warning. If the function is very small, its influence might not be as large either.
Check for large functions why your source does not only contain one instance.
In general be aware why the debugger steps suddenly into a completely different
function.

L1952 Ident <name> too long. Cut after <size> characters
[DISABLE, INFORMATION, WARNING, ERROR]
Description
A very long identifier is truncated to the given length. Different as long identifiers with
the same start until <Offset> may be mapped to the same name.
Tips
The linker supports more than 1000 character long names, so this message only oc-
curs with really long names.
Very long names are generated by the C++ name mangling, as there class names
occur as part of encoded parameter types of functions. If this is the reason, it might
help to use shorter class names or to use less parameters, if possible.

L1970 Modifying code in function <function> at address <address>
for ECALL
[DISABLE, INFORMATION, WARNING, ERROR]
Description
This message informs that the linker has modified the code for an ECALL instruction.
That is that the linker has moved the ECALL instruction after the three following NOP
instructions.

L1971 <Pattern> in function <function> at address <address> may
be ECALL Pattern
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The Linker has found a possible ECALL pattern at the given address. The Linker was
not able to move this pattern.
Tips
The pattern may be produced by a data pattern. In this case check the code/data at
the given address and map this message if this is ok.

L1972 <Pattern> in function <function> at address <address> looks
like illegal ECALL
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The Linker has found a possible ECALL pattern at the given address. The Linker was
not able to move this pattern.
320 Smart Linker

Messages
Message Kinds
Tips
The pattern may be produced by a data pattern. In this case check the code/data at
the given address and map this message if this is ok.

L1980 <Feature> not supported
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The Linker does not support an used feature. This message is only used in rare cir-
cumstances, for example to show that some feature is not supported anymore (or
not yet)
Tips
Check the documentation about this feature. Check why it was removed and if there
are alternatives to use.
321Smart Linker

Messages
Message Kinds
Messages for Linking HIWARE Object File Format
L2000 Segment <Segmentname> (for variables) should not be allo-

cated in a READ_ONLY-section
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Variables must be allocated in RAM. The section <Segmentname>, containing vari-
ables was mapped in the PLACEMENT definition list of the link parameter file to a
section that was defined as read only in the SECTIONS definition list. This is illegal.
Example (link parameter file)
.LINK bankdemo.abs
NAMES ansib.lib start12b.o bankdemo.o END
SECTIONS
 MY_RAM = READ_WRITE 0x0800 TO 0x0BFF;
 MY_ROM = READ_ONLY 0xC000 TO 0xCFFF;
 VPAGE = READ_ONLY 0xD000 TO 0xFEFF;
 MY_PAGE = READ_ONLY 0x128000 TO 0x12AFFF;
PLACEMENT
 _PRESTART, STARTUP,
 ROM_VAR, STRINGS,
 NON_BANKED INTO MY_ROM;
 DEFAULT_RAM INTO MY_RAM;
 VPAGE_RAM INTO VPAGE;
 MyPage,DEFAULT_ROM INTO MY_PAGE;
END
STACKSIZE 0x50

Example (header file)
#pragma DATA_SEG SHORT VPAGE
 int x[4]; /* ‘x’ is a variable, and can’t therefore be */
 /* allocated in a read only segment */

L2001 In link parameter file: segment <Segmentname> must always
be present
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Some segments are required to be always present (mapped in the PLACEMENT
definition list to an identifier defined in the SECTIONS definition list).
Example
DEFAULT_RAM and DEFAULT_ROM have always to be defined.
Tips
Use a template link parameter file, for your target, where these segments are always
defined. Modify this file for your application. This way you avoid to write the same
default settings for every application again and you will not forget to define the sec-
322 Smart Linker

Messages
Message Kinds
tions that have always to be present.

L2002 Library file <Library> (in module <Module>) incorrect:
“cause”
[ERROR]
Description
Object file is corrupt.
Example (Cause)
“object tag incorrect” => The type tag of a linked object (VARIABLE, PROCE-
DURE,..) is incorrect.
Tips
Do compile your sources again. Contact Metrowerks support for help, if the error ap-
pears again.

L2003 Object file <Objfile> (<Cause>) incorrect
[ERROR]
Description
Object file is corrupt. (Equivalent message as L2002 for object files)
Tips
Do recompile the affected source file. Contact Metrowerks support for help, if the er-
ror appears again.

L2009 Out of allocation space in segment <segmentname> at ad-
dress <address>
[ERROR]
Description
More address space allocated in segment <segmentname> than available. The ad-
dress <address> given specifies the location, where the allocation failed.

L2008 Error in link parameter file
[ERROR]
Description
An error occurred while scanning the link parameter file. The message specifying the
error was printed out as last message.

L2010 File not found: <Filename>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
An input file (object file or absolute file) was not found.
Tips
Check your “default.env” path settings. Object files and absolute files opened for
read are searched in the current directory or in the list of paths specified with the en-
vironment variables ‘OBJPATH’ and ‘GENPATH’.

L2011 File <filename> is not a valid HIWARE object file, absolute file
323Smart Linker

Messages
Message Kinds
or library
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The file <filename> is expected to be a HIWARE object file, absolute file or library,
because a file before in the NAMES list was a HIWARE format file. The linker started
therefore to link the application in the HIWARE absolute file format .
Tips
You may have wished to link the application as ELF/DWARF executable, but the fist
object file in the NAMES list found was detected to be a file in HIWARE format.
If you really intended to link an application in the HIWARE absolute format, replace
the file <filename> by a valid HIWARE object file, absolute file or library.

L2014 User requested stop
Description
[DISABLE, INFORMATION, WARNING, ERROR]
The user has pressed the stop button in the toolbar. The linker stops execution as
soon as possible.

L2015 Different type sizes in <ref_objfile> and <cur_objfile>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
In the HIWARE format, the size of many basic types (short, int, long, float, double,
long double, default data pointer and default function pointer) are encoded into the
object file. This message is issued if the linker detects two object files with different
sizes. This may be caused an explicit setting of the types in some files only. Also for
the assembler, the sizes cannot be modified. The linker is using the type sizes of the
first specified object file. For the remaining, it does only issue this warning, if the size
does not match. The sizes are used for the layout of the startup structure, the zero
out and for the copy down information.
Tips
When the startup code object file is specified first, the startup structure sizes corre-
spond to the startup code. Then differing informations in other object files do not mat-
ter and this warning can be ignored.
When this warning is generated by an assembly file, it can usually be ignored.
For C files, one has to be careful that functions are not getting incompatible when
called from a different type setting than they are defined.

L2051 Restriction: library file <Library> (in module <Module>):
<Cause>
[ERROR]
Description
There are some memory restrictions in the linker. This can be happen by the follow-
ing causes:
Examples (Cause)
324 Smart Linker

Messages
Message Kinds
“too many objects” Too many objects allocated.
“too many numeric initializer“ Too many initialized variables.
“too many address initializer“ Too many address initializer.

L2052 RESTRICTION: in object file <Objectfile>: <Cause>
[ERROR]
Description
Equivalent to message L2051, but for object files.

L2053 Module <Modulename> imported (needed for module-initial-
ization?), but not present in list of objectfiles
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Only for linking MODULA-2.
The module <modulename> is in the import list of another module but not present in
the list of object files, specified in the NAMES section of the link parameter file.

L2054 The symbolfiles of module <Modulename> (used from
<User1> and <User2>) have different keys
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Only for linking MODULA-2.
With the link parameter file command CHECKKEYS ON, all keys of equal named im-
ported modules are compared. CHECKKEYS ON is set by default. To switch of this
check, write CHECKKEYS OFF in the .PRM file.

L2055 Function <functionname> (see link parameter file) not found
[DISABLE, INFORMATION, WARNING, ERROR]
Description
An interrupt vector was mapped to the function with name <functionname> in the link
parameter file. But a function with this name was not found in the modules linked.

L2056 Vector address <address> must fit wordsize
[DISABLE, INFORMATION, WARNING, ERROR]
Description
An interrupt vector with word size is mapped to an odd address in the link parameter
file.

L2057 Illegal file format (Reference to unknown object) in <objfile>
[ERROR]
Description
Older versions of HIWARE Compilers use -1 for unknown object.
This leads to inconsistency with the linker. Later versions of the HIWARE Compilers
do avoid this. The error reported here is not a linker error, but a compiler error.
Tips
325Smart Linker

Messages
Message Kinds
Do recompile your sources.

L2058 <objnum> referenced objects in <file>
[ERROR]
Description
Object file is corrupt: Too many referenced objects in file or the number of referenced
objects is negative.
Tips
Do recompile the affected source file. Contact Metrowerks support for help, if the er-
ror appears again.

L2059 Error in map of <absfile>
[ERROR]
Description
Absolute file as input for ROM library is corrupt (Its number of modules is invalid).
Tips
Decode the absolute file. If this works and the number of modules contained is cor-
rect, contact Metrowerks support otherwise do rebuild the absolute file. Contact its
distributor support for help, if this is not possible (absolute file from other party).

L2060 Too many (<objnum>) objects in library <library>
[ERROR]
Description
Number of objects in library exceeds maximum limit.
The actual value for the maximum depends on the linker version. The 32 Bit linker
version allows more than 500’000’000 objects in one library. Old 16 bit linker ver-
sions did have a limit of 8000 objects.
Tips
Cause can be a corrupt library. Do divide your library in sub-libraries if the count is
correct and this large.

L2061 <filename> followed by '-'/'+', but not a library or program
module
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The plus sign after a file name in the NAMES section disables smart linking for the
specified file. A minus sign specified after an absolute file name takes it out from ap-
plication startup.

L2062 <object> found twice with different size (in '<module1>'-
><objsize1> and in '<module2>'-><objsize2>)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Naming conflict or duplicated definition with different attributes in the application.
Two objects where defined with the same name, but with different sizes.
326 Smart Linker

Messages
Message Kinds
L2063 <symbol> twice exported (module <module1> and module
<module2>)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The object <symbol> has been implemented and exported from two different mod-
ules.
Tips
Review your module structure design. Remove one of the objects, if they refer to the
same context. Rename one of the objects if both of them are used in different con-
texts.

L2064 Required system object <objectname> not found
[DISABLE, INFORMATION, WARNING, ERROR]
Description
An object absolutely required by the linker is missing.
Example
‘_Startup’ is such an object.
Tips
The entry point of the application must exist in order to link correctly. It's default name
is _Startup.
This name can be configured by the link parameter file entry INIT.
E.g.
...
INIT MyEntryPoint
..
Probably you forgot to specify the startup module as one of the files in the NAMES
section. _Startup is thought to be defined in the startup module. Another reason can
be name mangling with C++: The names of functions are encoded with the types in
the object file, e.g. ‘void Startup(void)’ is encoded as ‘Startup__Fv’. Either use ‘ex-
tern “C”’ for such cases or use the mangled name in the linker parameter file.

L2065 No module exports with name <objectname>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
An object absolutely required by the linker is not exported.
Example
‘__Startup’ is such an object.
Tips
Probably you forgot to specify the startup module as one of the files in the NAMES
section. __Startup is thought to be defined in the startup module.

L2066 Variable "_startupData" not found, linker prepares no startup
[DISABLE, INFORMATION, WARNING, ERROR]
Description
327Smart Linker

Messages
Message Kinds
The ‘_startupData’ is a structure (C-struct) containing all information read out from
the Startup function as:

• Top level procedure of user program
• Initial value of the stack pointer
• Number of zero out ranges
• Vector of ranges with nofZeroOuts elements
• Rom-address where copydown-data begins
• Number of library startup descriptors
• Vector of pointers to library startup descriptors
• Number of init functions for C++ constructors
• Vector of function pointers to init functions for C++ constructors

Without this structure, no startup can be prepared.
Tips
Probably you forgot to specify the startup module as one of the files in the NAMES
section. __Startup is thought to be defined in the startup module.
If you do not want that the C startup code does perform any operation, you can safely
disable this message.
Having no startup code is common in assembly programming, but it is an advanced
feature with C programming as all of the above C/C++ features will not automatically
work anymore.

L2067 Variable "_startupData" found, but not exported
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The startup data has been found, but is not exported.
Tips
See L2064.

L2068 <objname> (in ENTRIES link parameter file) not found
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Object name in the ENTRIES section was not found. In ENTRIES all objects are list-
ed that are linked in any case (referenced or not by other objects). <objname> was
not found in any module.
Tips
Check out, if the name in the ENTRIES section was written correctly.

L2069 The segment "COPY" must not cross sections
[ERROR]
Description
The COPY segment must be placed in one section. This is not the case here.

L2070 The segment STRINGS crosses the page boundary
[ERROR]
Description
328 Smart Linker

Messages
Message Kinds
The HC16 does not allow, the STRINGS section to cross page boundary.

L2071 Fixup Error: Reference to non linked object (<objname>)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
An object was referenced, but not linked. This error may be caused by a modified
dependency with DEPENDENCY in the prm file or by a wrong compiler/assembler
specified dependency.
Tips
Use DEPENDENCY ADDUSE instead of DEPENDENCY USES. If the compiler/as-
sembler did generate the missing dependencies, try to rebuild the application.
See also
Link Parameter File Command DEPENDENCY

L2072 8 bit branch (from address <address>) out of range (-128 <=
<offset> <= 127)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
8 bit branch from address <address> out of range.
Tips
If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.
Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.
When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS
 ROM1 = READ_ONLY 0x4000 TO 0x4FFF;
 ROM2 = READ_ONLY 0x8000 TO 0x8FFF;
PLACEMENT
 FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or splitup the functions
by hand into different segments, which are assigned to one section only.

L2073 11 bit branch out of range (-2048 <= <offset> <= 2047)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
11 bit branch out of range.
Tips
If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.
Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.
329Smart Linker

Messages
Message Kinds
When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS
 ROM1 = READ_ONLY 0x4000 TO 0x4FFF;
 ROM2 = READ_ONLY 0x8000 TO 0x8FFF;
PLACEMENT
 FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or splitup the functions
by hand into different segments, which are assigned to one section only.

L2074 16 bit branch out of range (-32768 <= <offset> <= 32767)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
16 bit branch out of range.
Tips
If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.
Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.
When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS
 ROM1 = READ_ONLY 0x4000 TO 0x4FFF;
 ROM2 = READ_ONLY 0x8000 TO 0x8FFF;
PLACEMENT
 FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or splitup the functions
by hand into different segments, which are assigned to one section only.

L2075 8 bit index out of range (<index> for <objname>)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Offset to index register is out of range.
Tips
If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.
Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.
When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS
 ROM1 = READ_ONLY 0x4000 TO 0x4FFF;
 ROM2 = READ_ONLY 0x8000 TO 0x8FFF;
330 Smart Linker

Messages
Message Kinds
PLACEMENT
 FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or splitup the functions
by hand into different segments, which are assigned to one section only.

L2076 Jump crossing page boundary
[ERROR]
Description
A jump is crossing page boundary.
Tips
If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.
Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.
When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS
 ROM1 = READ_ONLY 0x4000 TO 0x4FFF;
 ROM2 = READ_ONLY 0x8000 TO 0x8FFF;
PLACEMENT
 FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or splitup the functions
by hand into different segments, which are assigned to one section only.

L2077 16-bit index out of range (<index> for <objname>)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
16 bit index out of range.
Tips
If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.
Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.
When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS
 ROM1 = READ_ONLY 0x4000 TO 0x4FFF;
 ROM2 = READ_ONLY 0x8000 TO 0x8FFF;
PLACEMENT
 FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or splitup the functions
by hand into different segments, which are assigned to one section only.
331Smart Linker

Messages
Message Kinds
L2078 5 bit offset out of range (-16 <= <offset> <= 15)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
5 bit offset out of range.
Tips
If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.
Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.
When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS
 ROM1 = READ_ONLY 0x4000 TO 0x4FFF;
 ROM2 = READ_ONLY 0x8000 TO 0x8FFF;
PLACEMENT
 FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or splitup the functions
by hand into different segments, which are assigned to one section only.

L2079 9 bit offset out of range (-256 <= <offset> <= 255) in <object>
with offset <offset> to <object>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
9 bit offset out of range.
Tips
If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.
Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.
When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS
 ROM1 = READ_ONLY 0x4000 TO 0x4FFF;
 ROM2 = READ_ONLY 0x8000 TO 0x8FFF;
PLACEMENT
 FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or split the functions by
hand into different segments, which are assigned to one section only.

L2080 10 bit offset out of range (0 <= <offset> <= 1023)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
332 Smart Linker

Messages
Message Kinds
10 bit offset out of range.
Tips
If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.
Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.
When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS
 ROM1 = READ_ONLY 0x4000 TO 0x4FFF;
 ROM2 = READ_ONLY 0x8000 TO 0x8FFF;
PLACEMENT
 FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or splitup the functions
by hand into different segments, which are assigned to one section only.

L2081 Illegal allocation of BIT segment ('<objname>':0x<ad-
dress>..0x<endaddress> => 0x20..0x3F, 0x400..0x43F)
[ERROR]
Description
Illegal allocation of BIT segment.

L2082 4 bit offset out of range (-7 <= <offset> <= 15)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
4 bit offset out of range.
Tips
If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.
Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.
When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS
 ROM1 = READ_ONLY 0x4000 TO 0x4FFF;
 ROM2 = READ_ONLY 0x8000 TO 0x8FFF;
PLACEMENT
 FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or splitup the functions
by hand into different segments, which are assigned to one section only.

L2083 11 bit offset out of range (-2048 <= <offset> <= 2047)
[DISABLE, INFORMATION, WARNING, ERROR]
333Smart Linker

Messages
Message Kinds
Description
11 bit offset out of range.
Tips
If the source file of this branch is an assembly file, take a look at the branch at ad-
dress <address>. Rewrite to code correctly.
Some compilers do assume that functions compiled in the same segment and de-
fined close together get allocated in the same order.
When in the link parameter file PLACEMENT such a segment is splitted up into sev-
eral sections, then larger gaps can be generated:
SECTIONS
 ROM1 = READ_ONLY 0x4000 TO 0x4FFF;
 ROM2 = READ_ONLY 0x8000 TO 0x8FFF;
PLACEMENT
 FUNCTIONS INTO ROM1, ROM2;
If this causes your problem, either recompile your sources with this optimization
switched off (see the compiler manual for the correct option) or splitup the functions
by hand into different segments, which are assigned to one section only.

L2084 Can't solve reference to object <name>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Illegal or incompatible object file format. The reference to object <name> can’t be
solved.
Tips
Recompile the sources. If the result remains the same, contact Metrowerks support
for help.

L2085 Can't solve reference to internal object
[ERROR]
Description
Illegal or incompatible object file format. The reference to object <name> can’t be
solved.
Tips
Recompile the sources. If the result remains the same, contact Metrowerks support
for help.

L2086 Cannot switch to segment <segName>. (Offset to big)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Can’t switch to segment <segname>. The offset is too big.

L2087 Object file position error in <objname>
[ERROR]
Description
Object file is corrupt.
334 Smart Linker

Messages
Message Kinds
Tips
Recompile the sources. If the result remains the same, contact Metrowerks support
for help.

L2088 Procedure <funcname> not correctly defined
[ERROR]
Description
The named function was not defined. This error message does occur for example in
the case of an used undefined static function.
Tips
Check if this static function is defined.

L2089 Internal: Code size of <objname> incorrect (<data> <objsize>)
[ERROR]
Description
Illegal object file format. The compiler or the assembler have produced a corrupt ob-
ject file or the file has been corrupted after creation.
Tips
Do recompile your sources. If recompiling leads to the same results, contact Metrow-
erks support for help.

L2090 Internal: Failed to write procedures for <modulename>
[ERROR]
Description
Illegal object file format. The compiler or the assembler have produced a corrupt ob-
ject file or the file has been corrupted after creation.
Tips
Do recompile your sources. If recompiling leads to the same results, contact Metrow-
erks support for help.

L2091 Data allocated in ROM can't exceed 32KByte
[DISABLE, INFORMATION, WARNING, ERROR]
Description
An object allocated in ROM is bigger that 32K. This is not allowed. The object won’t
be allocated.

L2092 Allocation of object <objname> failed
[DISABLE, INFORMATION, WARNING, ERROR]
Description
This error does occur when reserved linker segment names were used as identifier
or when functions (code) should be placed into a non READ_ONLY segment.
Tips
Do not use reserved names for objects.
Check that all you code is placed into READ_ONLY segments.
335Smart Linker

Messages
Message Kinds
L2093 Variable <varname> (objectfile <objfile>) appears in module
<module1> and in module <module2>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
A variable is defined twice (placed at different locations) in different modules.

L2094 Object <varname> (objectfile <objfile>) appears in module
<module1> and in module <module2>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
An object is defined twice (placed at different locations) in different modules.

L2096 Overlap variable <Name> not allocated
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Variables in segment _OVERLAP are only allocated together with the defining func-
tion. This message is issued if all the accesses to some overlap variable are re-
moved, but the variable is defined and should be linked because smart linking is
switched off.
The option -CAllocUnusedOverlap does change the default behavior so that such
variables are allocated.
Note: If any not allocated variable is referenced, the linker does issue L2071.
See also
L2071: Fixup Error: Reference to non linked object (<objname>)
Option -CAllocUnusedOverlap
Overlapping Locals

L2097 Additional overlap variable <Name> allocated
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Variables in segment _OVERLAP are only allocated together with the defining func-
tion. If a function does not refer to one of its local variables, but this variable is still
defined in the object file, this message is issued when allocating this variable. Such
an variable is not used, and, even worse, its space is not overlapped with any other
variable.
Additional overlap variables are only allocated when the option -CAllocUnusedOver-
lap is specified.
Tips
- Switch on SMART Linking when using overlapping.
- Modify the source that no such variables exist.
- Add a dependency of the defining function to this variable by using DEPENDENCY
ADDUSE.
See also
Link Parameter File Command DEPENDENCY
336 Smart Linker

Messages
Message Kinds
Option -CAllocUnusedOverlap
Overlapping Locals

L2098 The label <labelname> cannot be resolved because of a recur-
sion.
[DISABLE, INFORMATION, WARNING, ERROR]
Description
According to the input file depends the label on a recursive definition.
For example label is defined as label b plus some offset and label b is defined as
label a plus some offset.
Tips
- Check the label definition.
- Rebuild the application, an object file might be corrupted.
- Move this error to a warning and check if there are other problems reported too.

L2103 Linking succeeded. Executable is written to <absfile>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Success message of the linker. In <absfile> the destination file of the link process
(absolute file) is printed with full path.
Note that this message is disabled by default. It is only visible if it is explicitly enabled
by a command line option.
See also
Command line option -WmsgSi.

L2104 Linking failed
[ERROR]
Description
Fail message of the linker. The specified destination file (absolute file) of the link pro-
cess is deleted.

L2150 Illegal fixup offset (low bits) in <object> with offset <offset> to
<object>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The linker cannot resolve the fixup/relocation for a relative 8bit fixup. For this relative
fixup the offset has to be even, but it is not.
Tips
Contact support with your example. You may move this message to a warning so you
could continue with linking, but code may not execute correctly at the location indi-
cated in the message.

L2151 Fixup out of range (<low> <= <offset> <= <high>) in <object>
with offset <offset> to <object>
[DISABLE, INFORMATION, WARNING, ERROR]
337Smart Linker

Messages
Message Kinds
Description
The linker cannot resolve the fixup/relocation because the distance to the object is
too far. A reason could be that you indicated e.g. that an object/segment is placed in
a 8bit address area, but in the linker parameter file the object/segment is placed into
a 16bit address area.
Tips
Check if declaration for the compiler/assembler matches your memory map provided
to the linker (parameter file).
Contact support with your example. You may move this message to a warning so you
could continue with linking, but code may not execute correctly at the location indi-
cated in the message.

L2201 Listing file could not be opened
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The listing output file of the link process could not be opened..

L2202 File for output %s could not be opened
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The destination file of the link process (absolute file) could not be opened.
Tips
Check, if it is not opened for reading by any other process (Decoder, Debugger, HI-
WAVE) or the if the destination folder or file is not marked as read only.

L2203 Listing of link process to <listfile>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The listing file is printed with full path, if its creation succeeded.

L2204 Segment <segment> is not allocated to any section
[ERROR]
Description
A special segment (“_OVERLAP”) required by the linker is not allocated to any sec-
tion.
Example
At the current linker version no other segment than “_OVERLAP” causes this mes-
sage.

L2205 ROM libraries cannot have a function main (<main>)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
A main function was defined in the absolute file linked to the application as ROM li-
brary. This is not allowed as default setting.
338 Smart Linker

Messages
Message Kinds
L2206 ROM libraries cannot have an INIT function (<init>)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
An init function was defined in the absolute file linked to the application as ROM li-
brary. This function can cause a conflict when linking ton an application with an init
function with the same name.

L2207 <main> not found
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The function main was not found in any of the linked modules.

L2208 No copydown created for initialized object "<Name>". Initial-
ization data lost.
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The named object is allocated in RAM and it is defined with some initialization val-
ues. But because no copy down information is allocated, the initialization data is lost.
Example
int i= 19;
int j;

When linking the code above with no startup code, then the linker does issue this
warning for i as its initialization value 19 is not used.
Tips
If you do not want this object to be initialized, change the source or ignore the warn-
ing.
If you want this object to be located in a ROM area, check the source. Do you specify
option -CC with the compiler? Is the object constant or not?
If you want this object to be initialized at runtime, you need some startup code. You
can use the one provided with the compiler or take it as example and adapt it to your
needs.

L2251 Link parameter file <prmfile> not found
[ERROR]
Description
The link parameter file (extension .PRM), the source file of the linker, was not found.
The specified source file does not exist or the search paths are not correctly set.
Tips
Check your “default.env” path settings. Link parameter files are searched in the cur-
rent directory or in the list of paths specified with the environment variable ‘GEN-
PATH’.

L2252 Illegal syntax in link parameter file: <syntaxerror>
[ERROR]
339Smart Linker

Messages
Message Kinds
Description
A syntax error occurred in the link parameter file. The detailed error cause is printed
in <syntaxerror>.
Examples (of <syntaxerror> messages)
"number too big"
"Comment not closed"
"hexadecimal number expected"
"unexpected end of file"
Tips
The cause of the errors reported here are syntactically and therefore easily detected
are with the given source position info.

L2253 <definition> not present in link parameter file
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The definition of <definition> is not present in the link parameter file, but absolutely
required by the link process.
Example
“NAMES definition is not present in the link parameter file”
Tips
Use a template link parameter file, for your target, where all these definitions are al-
ways present. Modify this file for your application. This way you avoid to write the
same default settings for every application again and you will not forget definitions
that have always to be present.
If START is specified as not present in the linker parameter file, then the reason for
that could be that the application entry point of the application is not present, e.g. the
‘main’ routine is defined as ‘static’.

L2254 <definition> is multiply defined in link parameter file
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The definition of <definition> is allowed to be present only once but duplicated in the
link parameter file.
Example
“PLACEMENT definition is duplicated in the link parameter file”

L2257 Both stacktop and stacksize defined
[ERROR]
Description
You can only define STACKTOP or STACK size, because a specification of one of
them defines the settings of the other.

L2258 No stack definition allowed in ROM libraries
[DISABLE, INFORMATION, WARNING, ERROR]
Description
340 Smart Linker

Messages
Message Kinds
No stack definition allowed in ROM libraries.

L2259 No main function allowed in ROM libraries
[DISABLE, INFORMATION, WARNING, ERROR]
Description
No main function allowed in ROM libraries.

L2300 Segment <segmentname> not found in any objectfile
[DISABLE, INFORMATION, WARNING, ERROR]
Description
A segment, declared in the link parameter file, was not found in any object file.
Tips:
Check this name in the linker parameter file and in the sources.
This message is issued to warn about possible spelling differences from a segment
name in the source files and in the link parameter file.
If the link parameter file is shared between different projects and some of them do
not have this segment, you can disable this message.

L2301 Segment <segmentname> must always be present
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Some segments are absolutely required by the linker. If they are not present an error
is issued.
Example
“SSTACK” is such a segment if the linked file becomes an executable and not a ROM
library.

L2303 Segment <seg1> has to be allocated into <seg2>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Segment <seg1> has to be allocated in <seg2>
Example
(For XA only) ROM_VAR has to be allocated in ROM section.

L2304 <segmentname> appears twice in the <deflist> definition list
[ERROR]
Description
The name <segmentname> appears twice in the definition list <deflist> of the link pa-
rameter file. <deflist> is either SECTIONS or PLACEMENTS.
Example
“MY_RAM appears twice in the SECTIONS definition list.”

L2305 In link parameter file: The segment <segment> has the sec-
tion type <type> (illegal)
[DISABLE, INFORMATION, WARNING, ERROR]
341Smart Linker

Messages
Message Kinds
Description
The section type of segment <segment> is illegal.

L2306 Section <<seg1start>,<seg1end>> and Section
<<seg2start>,<seg2end>> overlap
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Segments are not allowed to overlap.

L2307 SSTACK cannot be allocated on more than one section
[ERROR]
Description
The stack has to be placed in one section.

L2308 Size of Stack (STACKSIZE = 0x<stacksize>) exceeds size of
segment SSTACK (=0x<segmentsize>)
[ERROR]
Description
The STACKSIZE definition defines the size of the stack, that has to be placed in
SSTACK. Therefore STACKSIZE is not allowed to exceed the size of SSTACK.

L2309 STACKTOP-command specifies 0x<stacktop> which is not in
SSTACK (0x<stackstart>..0x<stackend>)
[ERROR]
Description
The STACKTOP definition defines the top address of the stack, that has to be placed
in SSTACK. Therefore STACKTOP is not allowed to be outsize of the SSTACK seg-
ment.

L2310 The STACKTOP definition is incompatible with SSTACK be-
ing part of a list of segments
[ERROR]
Description
The STACKTOP definition in the link parameter file conflicts with the definition
of the stack segment SSTACK in the link parameter file.
Tips
Change one of the definitions in the link parameter file.

L2311 STACKTOP or STACKSIZE missed
[DISABLE, INFORMATION, WARNING, ERROR]
Description
No STACKTOP or STACKSIZE declared, so no stack defined.

L2312 Stack not initialized
[DISABLE, INFORMATION, WARNING, ERROR]
342 Smart Linker

Messages
Message Kinds
Description
If the stack is defined, it has to be initialized.

L2313 All <segtype>_BASED segments must fit in a range of 64
kBytes
[ERROR]
Description
Based segments must be smaller that 64K.

L2314 A <segtype>_BASED segment must not have an address less
than <address>
[ERROR]
Description
Only for the HC16.
Based segments must be smaller that 64K.

L2315 A <segtype>_BASED segment must not have an address big-
ger than <address>
[ERROR]
Description
Only for the HC16.
Based segments must be smaller that 64K.

L2316 All SHORT <segtype>_BASED segments must fit in a range of
<range> Bytes (<startadr> - <endadr> > 256 Bytes)
[ERROR]
Description
Only for the HC16.
Based short segments must be smaller that 256 Bytes.

L2317 All non far segments have to be allocated on one single page
[ERROR]
Description
Only far segments can be allocated on multiple pages. All others have to allocated
on a single page.

L2318 Cannot split _OVERLAP
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The linker does not support to split the _OVERLAP segment into several areas in the
HIWARE object file format. In the ELF object file format, this is supported.
Tips
Check if you can use the ELF object file format. Most of the build tools do support it
as well as the HIWARE object file format.
Try to allocate the _OVERLAP first. Most other types of segments can be split into
343Smart Linker

Messages
Message Kinds
several areas.

L2400 Memory model mismatch: <model1> (previous files) and
model <model2> in module <objfile>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The memory model of an application to link has to be unique for all modules.
If this error is moved to a warning or less, then the application is generated. However,
depending on the compilation units, the generated application might not work as dif-
ferent memory models do usually have different calling conventions. Also other prob-
lems might occur.
This message should only be moved by experienced users.

L2401 Target CPU mismatch: <cpu1> (previous files) and <cpu2> in
module <objfile>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The memory model of an application to link has to be unique for all modules.
If this error is moved to a warning or less, then the application is generated. However,
depending on the compilation units, the generated application might not work as dif-
ferent memory models do usually have different calling conventions. Also other prob-
lems might occur.
This message should only be moved by experienced users.

L2402 Incompatible flags or compiler options: <flags>
[ERROR]
Description
The flags set in an object file are incompatible with these of proceeding object files
or with compiler options.

L2403 Incompatible flags or compiler options: <flags>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Same as L2402, but not an error, but a relocatable warning message.

L2404 Unknown processor: <processor> in module <modulename>
[ERROR]
Description
The target processor id is not recognized by the linker. This may be caused by the
support of a target by the compiler that is not yet supported by the linker version
used, or the object file is corrupt. Another cause may be an internal error in the Link-
er.
Tips
If recompiling leads to the same results, contact Metrowerks support for help.
344 Smart Linker

Messages
Message Kinds
L2405 Illegal address range in link parameter file. In the <model>
memory model data must fit into one page
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Some memory models (SMALL, MEDIUM1) require the data segment to be allocat-
ed into one page.

L2406 More than one data page is used. Segment <segname> is in
page 0
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Only for the HC16.
In the small memory model the data page must fit into page 0.

L2407 More than one data page is used in <memorymodel> memory
model. The data page is defined by the placement of the stack
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Some memory models (SMALL, MEDIUM) require the data page to be defined in the
same placement as the stack.

L2408 Illegal address range in link parameter file. In <memorymod-
el> memory model the code page must be page zero
[ERROR]
Description
Some memory models (SMALL) require the code page to be on page 0.

L2409 Multiple links are illegal: <object1>(module <module1>) links
to <link1>(module <toModule1>) and to <link2>(module
<toModule2>)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Inconsistency in the handling of unresolved imports. The importing object <object1>
in the module <module1> found the definition of an external candidate object twice.
(The first exporter is the object <link1> in the module <toModule1> and the second
exporter is the object <link2> in the module <toModule2>.

L2410 Unresolved external <object> (imported from <module>)
[DISABLE, INFORMATION, WARNING, ERROR]
Description
An external imported from module <module> could not be found in any object file.

L2412 Dependency '<object>' description: '<description>’
[DISABLE, INFORMATION, WARNING, ERROR]
345Smart Linker

Messages
Message Kinds
Description
This warning is issued if the linker cannot handle a part of a link parameter file com-
mand “DEPENDENCY”. Usually some of the named objects cannot be found.
The linker does not consider this <object> any more for the dependency information.
Tips
Check the spelling of all names. See in the mapfile how C++ name-mangled objects
are called.
See also
Link parameter file command DEPENDENCY

L2413 Align STACKSIZE from <oldSize> to <newSize>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The stack size is aligned to a new value. The actual alignment needed depends on
the target processor.
Tips
Specify an aligned size in the prm file, if your processor needs an aligned stack.

L2414 Stacksize not aligned. Is <oldsize>, expected to be aligned to
<expectedsize>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The stack size is not aligned to an expected size. The actual alignment needed de-
pends on the target processor.
Tips
Specify an aligned size in the prm file, if your processor needs an aligned stack.

L2415 Illegal dependency of '<object>'
[ERROR]
Description
This error is only generated for illegal object files. Check the producing tool.

L2416 Illegal file name '<Filename>'
[ERROR]
Description
The specified filename is was not correctly terminated. This error may happen if a
filename is specified with a single double quotes.
Example
LINK “a.abs
...
Tips
Terminate the file name with a second double quote.

L2417 Object <objname> refers to non existing segment number
346 Smart Linker

Messages
Message Kinds
<segnumber>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The specified object refers to a segment number which is not defined in the segment
table of the object file. This error only occurs for illegal, corrupted object files.
Tips
Delete the object file, and rebuild it. If the error occurs again, contact the vendor of
the object file producing tool.
If this error is ignored, the default ROM/RAM segment is assumed.

L2418 Object <objname> allocated in segment <segname> is not al-
located according to the segment attribute <attrname>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The linker has found an object, allocated in a segment with a special segment at-
tribute, which was not allocated according to this attribute.
This warning occurs when the source code attributes do not correspond to the mem-
ory area specified for the segment.
Example
Note: This example generates the warning only for target compilers supporting the
SHORT segment modifier.
C source file (test.c):
#pragma DATA_SEG SHORT SHORT_SEG
int i;
void main(void) {
 i=1;
}
prm file (test.prm)
LINK test.abs
NAMES test.o END
SECTIONS
 MY_RAM = NO_INIT 0x180 TO 0x1ff;
 MY_ROM = READ_ONLY 0x1000 TO 0x1fff;
PLACEMENT
 DEFAULT_ROM INTO MY_ROM;
 DATA_SEG, _OVERLAP, DEFAULT_RAM INTO MY_RAM;
END
INIT main

Tips
Check your sources and your link parameter file if the handle the named object and
segment correctly.
347Smart Linker

Messages
Message Kinds
Messages Independent of the Object File Format
L1: Unknown message occurred

[FATAL]
Description
The linker tried to emit a message which was not defined.This is a internal error
which should not occur. Please report any occurrences to you distributor.
Tips
Try to find out the and avoid the reason for the unknown message.

L2: Message overflow, skipping <kind> messages
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The linker did show the number of messages of the specific kind as controlled with
the options -WmsgNi, -WmsgNw and -WmsgNe. Further options of this kind are not
displayed.
Tips
Use the options -WmsgNi, -WmsgNw and -WmsgNe to change the number of mes-
sages

L50: Input file ‘<file>’ not found
[FATAL]
Description
The Application was not able to find a file needed for processing.
Tips
Check if the file really exits. Check if you are using a file name containing spaces (in
this case you have to quote it).

L51: Cannot open statistic log file <file>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
It was not possible to open a statistic output file, therefore no statistics are generated.
Note: Not all tools do support statistic log files. Even if a tool does not support it, the
message does still exist, but is never issued in this case, of course.

L52: Error in command line <cmd>
[FATAL]
Description
In case there is an error while processing the command line, this message is issued.

L64: Line Continuation occurred in <FileName>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
In any environment file, the character '\' at the end of a line is taken as line continu-
348 Smart Linker

Messages
Message Kinds
ation. This line and the next one are handles as one line only. Because the path sep-
aration character of MS-DOS is also '\', paths are often incorrectly written ending with
'\'. Instead use a '.' after the last '\' to not finish a line with '\' unless you really want a
line continuation.
Example:
Current Default.env:
...
LIBPATH=c:\metrowerks\lib\
OBJPATH=c:\metrowerks\work
...
Is taken by the compiler identical as
...
LIBPATH=c:\metrowerks\libOBJPATH=c:\metrowerks\work
...

Tips
To fix it, append a '.' behind the '\'
...
LIBPATH=c:\metrowerks\lib\.
OBJPATH=c:\metrowerks\work
...

Note:
Because this information occurs during the initialization phase of the compiler, the
‘C’ might not occur in the error message. So it might occur as "64: Line Continuation
occurred in <FileName>".

L65: Environment macro expansion message '<description>' for
<variablename>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
During a environment variable macro substitution an problem did occur. Possible
causes are that the named macro did not exist or some length limitation was
reached. Also recursive macros may cause this message.
Example
Current variables:
...
LIBPATH=${LIBPATH}
...

Tips
Check the definition of the environment variable.

L66: Search path <Name> does not exist
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The tool did look for a file which was not found. During the failed search for the file,
349Smart Linker

Messages
Message Kinds
a non existing path was encountered.
Tips
Check the spelling of your paths. Update the paths when moving a project. Use rel-
ative paths.

L4000 Could not open object file (<objFile>) in NAMES list
[ERROR]
Description
The linker could not open any object file in the NAMES list. This message prints out
the name of the last file in the names list found (<objFile>).
Tips
Check your “default.env” path settings. Object files are searched in the current direc-
tory or in the list of paths specified with the environment variables ‘OBJPATH’ and
‘GENPATH’.

L4001 Link parameter file <PRMFile> not found
[ERROR]
Description
The specified source file does not exist or the search paths are not correctly set.
Tips
Check your “default.env” path settings. Link parameter files are searched in the cur-
rent directory or in the list of paths specified with the environment variable ‘GEN-
PATH’.

L4002 NAMES section was not found in link parameter file <PRM-
File>
[ERROR]
Description
The new HIWARE Linker detects the object file format to link by scanning the
NAMES section for the first file that it can open to evaluate the file format. If the
NAMES section was not found in the link parameter file, this message is issued.
Tips
Look if the file passed to the linker is really a link parameter file.

L4003 Linking <PRMFile> as HIWARE format link parameter file
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The new HIWARE Linker detects the object file format to link by scanning the
NAMES section for the first file that it can open to evaluate the file format. If the first
file in the NAMES section, that can be opened by the linker is a HIWARE object file,
this message is issued and the HIWARE object file format linker, a subprocess of the
HIWARE Linker is started.
Note that this message is disabled by default. It is only issued if the message is ex-
plicitly enabled on the command line.
350 Smart Linker

Messages
Message Kinds
See also
Command line option -WmsgSi.

L4004 Linking <PRMFile> as ELF/DWARF format link parameter file
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The new HIWARE Linker detects the object file format to link by scanning the
NAMES section for the first file that it can open to evaluate the file format. If the first
file in the NAMES section, that can be opened by the linker is a ELF/DWARF object
file, this message is issued and the ELF/DWARF object file format linker, a subpro-
cess of the HIWARE Linker is started.
Note that this message is disabled by default. It is only issued if the message is ex-
plicitly enabled on the command line.
See also
Command line option -WmsgSi.

L4005 Illegal file format of object file (<objFile>)
[ERROR]
Description
There is no object file in the NAMES list with a known file format or a object file spec-
ified with option -add has a unknown file format.
Tips
Check your “default.env” path settings. Object files are searched in the current direc-
tory or in the list of paths specified with the environment variables ‘OBJPATH’ and
‘GENPATH’. It may be that you have files of another development environment in
your directories.

L4006 Failed to create temporary file
[ERROR]
Description
The linker creates a temporary file for the prescan of the link parameter file in the cur-
rent directory. If this fails, the Linker can’t continue.
Tips
Enable the read access to files for the Linker in the current directory.

L4007 Include file nesting to deep in link parameter file
[DISABLE, INFORMATION, WARNING, ERROR]
Description
Only an include file nesting of maximum depth 6 is allowed.

L4008 Include file <includefile> not found
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The include file <includefile> was not found.
351Smart Linker

Messages
Message Kinds
L4009 Command <Command> overwritten by option <Option>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
This message is generated, when a command from the PRM file is overwritten by a
command line option.
<command name>: name of the command, which is overwritten by a linker option
<option name>: linker options, which overwrites the linker command.
In this case the command line option is stronger than the command specified in the
PRM file. The commands, which may be overwritten by a command line option, are:

• LINK, which may be overwritten by the option –O (definition of the output file
name).

• MAPFILE, which may be overwritten by the option –M (enable generation of the
MAP file).

• INIT, which may be overwritten by the option –E (definition of the application en-
try point).

When the LINK command is detected in the PRM file and the option –O is specified
on the command line, following message is generated:
‘Command LINK overwritten by option -O‘

Tips
Remove either the command in the PRM file or the option on the command line.

L4010 Burner file creation error '<Description>'
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The built-in burner was not able to generate an output file because of the given rea-
son.
Tips
The application (*.abs) is still generated correctly. You might use the external burner
to produce the file.

L4011 Failed to generate distribution file because of <reason>
[DISABLE, INFORMATION, WARNING,ERROR]
Description
Failed to generate a distribution file because of the given reason <reason>.
See also
Option -Dist
Section Automatic Distribution of Variables

L4012 Failed to generate distribution file because of distribution
segment <segment> not found or not alone in placement
[DISABLE, INFORMATION, WARNING, ERROR]
Description
This message is generated, when the distribution segment <segment> doesn‘t exist
in the placement of the PRM file or if it doesn‘t stay alone in the placement.
352 Smart Linker

Messages
Message Kinds
Example
If DISTRIBUTE is the distribution segment <segment>, it has to stay ALONE in the
placement.
Then it should look as follows:
PLACEMENT
 DISTRIBUTE DISTRIBUTE_INTO MY_ROM0, MY_ROM1;

See also
Option -Dist
Section Automatic Distribution of Variables

L4013 Function <function> is not in the distribution segment
[DISABLE, INFORMATION, WARNING, ERROR]
Description
If a function inside of the distribution segment is called from a outside one (the one
mentioned in the message), it has to have a far calling convention. This has a neg-
ative influence of the optimization. This message is generated to have an overview
from which outside functions an incoming call exist.
Tips
If it‘s possible, insert this functions in the distribution segment.
See also
Option -Dist
Section Automatic Distribution of Variables

L4014 The processor <processor> is not supported by the linker op-
timizer
[DISABLE, INFORMATION, WARNING, ERROR]
Description
This message is generated, when the processor is not supported by the linker opti-
mizer.
Tips
If your target CPU has to be supported with this optimization, please check with sup-
port if this could be done with a new release.

L4015 Section <section> has no IBCC_NEAR or IBCC_FAR flag
[DISABLE, INFORMATION, WARNING, ERROR]
Description
This message is generated, when a section <section> which is in the distribution
segment doesn‘t have an IBCC_NEAR (inter bank calling convention near) or an
IBCC_FAR (inter bank calling convention far) Flag.
Example
Each section in the PLACEMENT list used for the distribution (DISTRIBUTE_INTO)
has either to have the IBCC_NEAR or the IBCC_FAR flag.
SECTIONS
 MY_ROM0 = READ_ONLY IBCC_NEAR 0x005000 TO 0x00504F;
353Smart Linker

Messages
Message Kinds
 MY_ROM1 = READ_ONLY IBCC_FAR 0x018000 TO 0x018050;
 MY_ROM2 = READ_ONLY IBCC_FAR 0x028000 TO 0x0280F0;
END
PLACEMENT
 DISTRIBUTE DISTRIBUTE_INTO MY_ROM0, MY_ROM1, MY_ROM2;
END

See also
Option -Dist
Section Automatic Distribution of Variables

L4016 No section in the segment <segment> has an IBCC_NEAR
flag
[DISABLE, INFORMATION, WARNING, ERROR]
Description
This message is generated, when no section which is in the distribution segment
<segment> has an IBCC_NEAR Flag (inter bank calling convention).
Tips
Check if you really don’t want to have distributed functions in a ‘near’ section. Placing
functions in a ‘near’ section may increase performance and could improve code den-
sity.
See also
Option -Dist
Section Automatic Distribution of Variables

L4017 Failed to generate distribution file because there are no func-
tions in the distribution segment <segment>
[ERROR]
Description
This message is generated, when no functions are found in the code segment <Seg-
ment>. <Segment> is the name of the distribution segment, which contains the func-
tions for the optimized distribution. For the Linker optimizer it is necessary to specify
in the source files a command like: #pragma CODE_SEG <Segment>. All functions
which follow this command are automatically distributed into this Segment.
Tips
Check if your compiler supports the “#pragma CODE_SEG”.
Recompile the source files without to include the distribution file.
Check if in the sources the command #pragma CODE_SEG <Segment> really ex-
ists.
See also
Option -Dist
Section Automatic Distribution of Variables

L4018 The sections in the distribution segment have not enough
memory for all functions
354 Smart Linker

Messages
Message Kinds
[ERROR]
Description
This message is generated, when the functions which were distributed into the spe-
cial distribution segment have not enough space into the sections of it.
Tips
Add more pages to the distribution segment or increase the size of this pages.
If this not help decrease the amount of functions in the distribution segment.
See also
Option -Dist
Section Automatic Distribution of Variables

L4019 Function <function name> has a near flag and can not be dis-
tributed
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The linker optimizer doesn‘t support functions which are assigned in the source code
with a near flag.
Example
MyFunction is distributed in the distribution segment “DISTRIBUTE” and has a near
flag:
#pragma CODE_SEG DISTRIBUTE
void near MyFunction(void) {}

Tips
Avoid to use the near Flag (e.g.: void near MyFunction(void) {}) for functions which
have to be distributed in the distribution segment.
See also
Option -Dist
Section Automatic Distribution of Variables

L4020 Not enough memory in the non banked sections of the distri-
bution segment <segment>
[ERROR]
Description
While optimizing functions out of the distribution segment, the linker has not found
enough memory in the non banked sections of the distribution segment. Only func-
tions which have a near flag can be placed in a non banked section.
Tips
All near functions must have enough space in the near sections (sections with the
IBCC_NEAR flag) of the distribution segment. If possible increase the size of the non
banked sections of the distribution segment, otherwise remove some near functions
from it.
See also
Option -Dist
355Smart Linker

Messages
Message Kinds
Section Automatic Distribution of Variables

L4021 Incompatible derivative: <Deriv0> in previous files and
<Deriv1> in current file
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The two mentioned object files were compiled or assembled for different, incompat-
ible derivatives of the same CPU family.
Depending on which features of the two derivatives were used, the generated exe-
cutable might not work for the one or the other derivative (or even for none of them).
Tips
Recompile your sources, and use a common setting for all source files.
Some compilers/assembler do provide a generic mode, which does not use the spe-
cific features not available in all derivatives.

L4022 HexFile not found: <Filename>
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The hexfile <Filename> to link with (specified with the HEXFILE command in the link
parameter file) was not found. The specified hex file does not exist or the search
paths are not correctly set.
Tips
Check your “default.env” path settings. Hex files are searched in the current directory
or in the list of paths specified with the environment variable ‘GENPATH’.

L4023 Hexfile error '<Description>' in file '<Filename>'
[DISABLE, INFORMATION, WARNING, ERROR]
Description
The linker did find some problems with the hexfile <Filename>.
Possible problems are a bad checksum, a bad length, a too large length (>256) or
an otherwise corrupted file.
Tips
Check, if the file specified is really a hex file. If yes, create it and try again.
The decoder can be used to check Motorola S Record files.

L4024 No information available for segment '<name>'.
[DISABLE, INFORMATION, WARNING, ERROR]
Description
A undefined symbol started with one of the linker defined prefixes
"__SEG_START_", "__SEG_END_" or "__SEG_SIZE_"
but the name of the following segment was not known. Therefore the linker does not
know to which address this symbol should evaluate. To handle this case, the linker
does issue this message and the linker is using the address 0 as address.
However, the linking does not fail.
Example
356 Smart Linker

Messages
Message Kinds
extern char __SEG_START_UNKNOWN_SEGMENT[];

Tips
Check the spelling. Do explicitly name the segment in the link parameter file.

L4025 This limited version allows only <num> <limitKind>
[ERROR]
Description
Depending on your license configuration, the linker may e.g. limited only to allow up
to 4K C++ code. The limitation size you will see from the <num> field and the limita-
tion kine (e.g. C++ code) you can see from the <limitKind> field. The limitations are
also shown in the about box.
Tips
Check if you are using a correct license configuration. Contact your vendor for a un-
limited license or upgrade.
357Smart Linker

Messages
Message Kinds
358 Smart Linker

Index

Symbols
#pragma CODE_SEG 354
.abs 15, 66
.copy 216, 226, 287
.data 216, 217
.hidefaults 39, 40, 55, 63
.ini 22
.init 217
.map 66, 239
.overlap 139, 217
.prm 65
.rodata 216
.rodata1 216
.s1 66
.s2 66
.s3 66
.stack 216, 217
.startData 216, 217, 226
.sx 66
.text 216, 217
__DEFAULT_SEG_CC__ 154
__INTERSEG_CC__ 153
__INTRAPAGE__ 152
__NON_INTERSEG_CC__ 153
__SEG_END_ 149
__SEG_END_DEF 150
__SEG_END_REF 150
__SEG_SIZE_ 149
__SEG_SIZE_DEF 150
__SEG_SIZE_REF 150
__SEG_START_ 149
__SEG_START_DEF 150
__SEG_START_REF 150
__SEG_START_SSTACK 149
_OVERLAP 139, 221
_PRESTART 221

A
About Box 33
Absolute File 15, 65, 187, 193
ABSPATH 53, 65, 66, 168
-Add 72

-Alloc 73
Application

Startup (also see Startup) 225
-AsROMLib 75
Assembly

Application 160
LINK_INFO 164
Prm File 160
Smart Linking 161

AUTOLOAD 171
Automatic Distribution 151

B
-B 76

C
-CAllocUnusedOverlap 76
CHECKKEYS 176
CHECKSUM 172
Checksum Computation 156
-Ci 77
-Cocc 78
CODE 123
CodeWarrior 89, 168
color 96, 97, 98
Command

AUTOLOAD 171
CHECKKEYS 176
CHECKSUM 172
DATA 176
DEPENDENCY 177
ENTRIES 130, 131, 132, 133, 182, 241
HAS_BANKED_DATA 184
HEXFILE 185
INIT 186, 241
LINK 89, 168, 187, 241
MAIN 188, 241
MAPFILE 86, 189
NAMES 133, 134, 168, 192, 242
OVERLAP_GROUP 194
PLACEMENT 124, 168, 196, 217, 221
PRESTART 198
SECTIONS 121, 199
SEGMENTS 115, 168, 202
359Smart Linker

STACKSIZE 208
STACKTOP 210
START 211
VECTOR 129, 212

Common Code 207
COPY 220, 230, 287
COPYRIGHT 54, 59, 64
-CRam 79
Current Directory 55
CurrentCommandLine 47

D
DATA 176
Default Directory 41
DEFAULT.ENV 39, 40, 55, 63
DEFAULT_RAM 220, 221
DEFAULT_ROM 220, 221
DEFAULTDIR 40, 41, 54
DefaultDir 41
DEPENDENCY 177
Dependency 66
-Dist 79
-DistFile 80
-DistInfo 80
-DistOpti 81
DISTRIBUTE_INTO 155
Distribution Segment 153
-DistSeg 81

E
-E 82
Editor 46
Editor_Exe 44, 46
Editor_Name 43, 46
Editor_Opts 44, 46
EditorCommandLine 49
EditorDDEClientName 49
EditorDDEServiceName 50
EditorDDETopicName 49
EditorType 49
EDOUT 68
ENTRIES 130, 131, 132, 133, 182, 241
-Env 39, 82
ENVIRONMENT 55
Environment Variable 39, 52

ABSPATH 53, 65, 66, 168, 187
COPYRIGHT 54, 59, 64
DEFAULTDIR 40, 41, 54
ENVIRONMENT 55
ENVIRONMENT 39
ERRORFILE 56, 67
GENPATH 58, 60, 65, 168, 193
HIENVIRONMENT 55
INCLUDETIME 54, 59, 64
LINKOPTIONS 71
LINKPTIONS 60, 71
OBJPATH 60, 168, 193
RESETVECTOR 61
SRECORD 61, 66
TEXTPATH 62, 66, 168, 187
TMP 63
USERNAME 54, 59, 63

Error File 67
Error Listing 67
ERRORFILE 56, 67
Explorer 40

F
-F 83
File

Absolute 15, 65, 187, 193
Error 67
Library 193
Map 66, 187, 190, 239
Motorola S 66
Object 65, 193
Parameter 65
Parameter (Linker) 165

File Manager 40

G
GENPATH 58, 168, 193
Group 41

H
-H 84
HAS_BANKED_DATA 184
HEXFILE 185
HIENVIRONMENT 55
360 Smart Linker

I
IBCC_FAR 155, 353
IBCC_NEAR 155, 353, 355
INCLUDETIME 54, 59, 64
INIT 186, 241

L
-L 84
Library File 193
-Lic 85
-Lica 85
LINK 89, 168, 187, 241
Linker

Configuration 22
Input File 65
Menu 29
Menu Bar 21
Message Settings Dialog Box 31
Messages 31
Options 30
Output Files 65
Status Bar 21
Tool Bar 20

LINKOPTIONS 45, 60

M
-M 86
MAIN 188, 241
map 187
Map File 66, 187, 190, 239

COPYDOWN 240
DEPENDENCY TREE 240
FILE 239
OBJECT ALLOCATION 239
OBJECT DEPENDENCY 239
SEGMENT ALLOCATION 239
STARTUP 239
STATISTICS 240
TARGET 239
UNUSED OBJECTS 240

MAPFILE 86, 189
MCUTOOLS.INI 24, 40, 55
Message

ERROR 257
FATAL 257
WARNING 257

Motorola S File 66

N
-N 86
NAMES 133, 134, 168, 192, 242
NO_INIT 118, 123, 199, 203
-NoBeep 87
-NoEnv 87

O
-O 89
Object File 65, 193
OBJPATH 60, 168, 193
-OCopy 88
Option Settings Dialog 30
Options 41, 49
OVERLAP_GROUP 194
OVERLAYS 135

P
PAGED 118, 123, 135, 200, 203
Parameter

File (Linker) 165
Parameter File 65
Path 41
Path List 51
PLACEMENT 124, 168, 196, 217, 221, 353
PRESTART 198
Prm file controlled Checksum Computation 157
-Prod 46, 89
Program Startup (also see Startup) 225
Project Directory 40
project.ini 46

Q
Qualifier 115, 117, 121, 123, 199, 202

CODE 123
NO_INIT 118, 123, 199, 203
PAGED 118, 123, 200, 203
READ_ONLY 117, 123, 199, 203
READ_WRITE 117, 123, 199, 203

R
READ_ONLY 117, 123, 199, 203
READ_WRITE 117, 123, 199, 203
361Smart Linker

REALLOC_OBJ 153
RecentCommandLineX 47
RGB 96, 97, 98
ROM Library 241
ROM library 75, 187, 189, 193, 226, 231
ROM_LIB 187, 241
ROM_VAR 220

S
-S 90
SaveAppearance 42
SaveEditor 42
SaveOnExit 42
SaveOptions 42
Section 215, 219

.copy 216, 226

.data 216, 217

.init 217

.overlap 217

.rodata 216

.rodata1 216

.stack 216, 217

.startData 216, 217, 226

.text 216, 217
Pre-defined 216
Qualifier 121, 123
rodata 216

SECTIONS 121, 199
Segment 215, 219

_OVERLAP 221
_PRESTART 221
Alignment 115, 119, 202, 205
COPY 220, 230
DEAFULT_RAM 220
DEFAULT_RAM 221
DEFAULT_ROM 220, 221
Fill Pattern 115, 120, 206
fill pattern 202
Optimizing Constants 207
Pre-defined 220
Qualifier 115, 117, 199, 202
ROM_VAR 220
SSTACK 220, 221
STARTUP 220, 221, 230
STRINGS 220

SEGMENTS 115, 168, 202
-SFixups 91

ShowTipOfDay 43
Smart Linking 16, 130, 131
SSTACK 220, 221
STACK 209
STACKSIZE 208
STACKTOP 210
START 211
STARTUP 220, 221, 230
Startup

Application 225
startup 46
Startup Function 230, 232

User Defined 230, 232
Startup Structure 225, 230

finiBodies 228
flags 226, 231
initBodies 228
libInits 228, 231
main 227, 231
mInits 232
nofFiniBodies 228
nofInitBodies 228
nofLibInits 228
nofZeroOuts 227, 231
pZeroOut 227, 231
stackOffset 227, 231
toCopyDownBeg 227, 231
User Defined 228

Startup.TXT 225
-StatF 91
StatusbarEnabled 47
STRINGS 220

T
TEXTPATH 62, 66, 168
Tip of the Day 17
TipFilePos 42
TipTimeStamp 43
TMP 63
ToolbarEnabled 48

U
UNIX 40
USERNAME 54, 59, 63
362 Smart Linker

V
-V 92
VECTOR 129, 212
Vector 16
-View 92

W
-W1 93
-W2 94
-WErrFile 95
WindowFont 48
WindowPos 48
Windows 40
WinEdit 40
-Wmsg8x3 95
-WmsgCE 96
-WmsgCF 97
-WmsgCI 97
-WmsgCU 98
-WmsgCW 98
-WmsgFb 36, 99
-WmsgFi 36, 100
-WmsgFob 101
-WmsgFoi 102
-WmsgFonf 104
-WmsgFonp 106
-WmsgNe 107
-WmsgNi 108
-WmsgNu 108
-WmsgNw 109
-WmsgSd 110
-WmsgSe 110
-WmsgSi 111
-WmsgSw 111
-WOutFile 112
-WStdout 112
363Smart Linker

364 Smart Linker

	Introduction
	Notation
	Structure of this Document
	Purpose of a Linker

	User Interface
	Tip of The Day Dialog
	Main Window
	Window Title
	Content Area
	Tool Bar
	Status Bar
	Linker Menu Bar
	File Menu
	SmartLinker Menu
	View Menu

	Options Settings Dialog Box
	Message Settings Dialog Box
	Changing the Class associated with a Message

	About Box
	Retrieving Information about an Error Message
	Specifying the Input File
	Use the Command Line in the Tool Bar to Link
	Use the Entry File | Link...
	Use Drag and Drop

	Message/Error Feedback
	Example
	Use Information from the SmartLinker Window
	Use a User Defined Editor

	Environment
	The Current Directory
	Global Initialization File (MCUTOOLS.INI) (PC only)
	[Installation] Section
	[Options] Section
	[LINKER] Section
	[Editor] Section
	Example

	Local Configuration File (usually project.ini)
	[Editor] Section
	[[LINKER] Section
	Example

	Paths
	Line Continuation
	Environment Variable Details
	.ABSPATH
	ABSPATH: Absolute Path

	COPYRIGHT
	COPYRIGHT: Copyright Entry in Absolute File

	DEFAULTDIR
	DEFAULTDIR: Default Current Directory

	ENVIRONMENT
	ENVIRONMENT: Environment File Specification

	ERRORFILE
	ERRORFILE: Error File Name Specification

	GENPATH
	GENPATH: Define Paths to search for input Files

	INCLUDETIME
	INCLUDETIME: Creation Time in Object File

	LINKOPTIONS
	LINKOPTIONS: Default SmartLinker Options

	OBJPATH
	OBJPATH: Object File Path

	RESETVECTOR
	RESETVECTOR: Reset Vector Location

	SRECORD
	SRECORD: S Record File Format

	TEXTPATH
	TEXTPATH: Text Path

	TMP
	TMP: Temporary directory

	USERNAME
	USERNAME: User Name in Object File

	Files
	Input Files
	Parameter File
	Object File

	Output Files
	Absolute Files
	Motorola S Files
	Map Files
	Dependency Information

	Error Listing File
	Interactive Mode (SmartLinker window open)
	Batch Mode (SmartLinker window not open)

	SmartLinker Options
	SmartLinker Option Details
	-Add
	-Add: Additional Object/Library File

	-AllocFirst,-AllocNext,-AllocChange
	-Alloc: Allocation over segment boundaries (ELF)

	-AsROMLib
	-AsROMLib: Link as ROM Library

	-B
	-B: Generate S-Record file

	-CAllocUnusedOverlap
	-CAllocUnusedOverlap: Allocate not referenced overlap variables (HIWARE)

	-Ci
	-Ci: Link Case Insensitive

	-Cocc
	-Cocc: Optimize Common Code (ELF)

	-CRam
	-CRam: Allocate non specified const segments in RAM (ELF)

	-Dist
	-Dist: Enable distribution optimization (ELF)

	-DistFile
	-DistFile: Specify distribution file name (ELF)

	-DistInfo
	-DistInfo: Generate distribution information file (ELF)

	-DistOpti
	-DistOpti: Choose optimizing method (ELF)

	-DistSeg
	-DistSeg: Specify distribution segment name (ELF)

	-E
	-E: Define Application Entry Point (ELF)

	-Env
	-Env: Set Environment Variable

	-FA, -FE, -FH -F6
	-FA, -FE, -FH -F6: Object File Format

	-H
	-H: Prints the List of All Available Options

	-L
	-L: Add a path to the search path (ELF)

	-Lic
	-Lic: Print license information

	-LicA
	-LicA: License Information about every Feature in Directory

	-M
	-M: Generate Map File

	-N
	-N: Display Notify Box

	-NoBeep
	-NoBeep: No Beep in Case of an Error

	-NoEnv
	-NoEnv: Do not use Environment

	-OCopy
	-OCopy: Optimize Copy Down (ELF)

	-O
	-O: Define Absolute File Name

	-Prod
	-Prod: specify project file at startup (PC)

	-S
	-S: Do not generate DWARF Information (ELF)

	-SFixups
	-SFixups: Creating Fixups (ELF)

	-StatF
	-StatF: Specify the name of statistic file

	-V
	-V: Prints the SmartLinker Version

	-View
	-View: Application Standard Occurrence (PC)

	-W1
	-W1: No Information Messages

	-W2
	-W2: No Information and Warning Messages

	-WErrFile
	-WErrFile: Create "err.log" Error File

	-Wmsg8x3
	-Wmsg8x3: Cut file names in Microsoft format to 8.3 (PC)

	-WmsgCE
	-WmsgCE: RGB color for error messages

	-WmsgCF
	-WmsgCF: RGB color for fatal messages

	-WmsgCI
	-WmsgCI: RGB color for information messages

	-WmsgCU
	-WmsgCU: RGB color for user messages

	-WmsgCW
	-WmsgCW: RGB color for warning messages

	-WmsgFb (-WmsgFbv, -WmsgFbm)
	-WmsgFb: Set message file format for batch mode

	-WmsgFi (-WmsgFiv, -WmsgFim)
	-WmsgFi: Set message file format for Interactive mode

	-WmsgFob
	-WmsgFob: Message format for Batch Mode

	-WmsgFoi
	-WmsgFoi: Message Format for Interactive Mode

	-WmsgFonf
	-WmsgFonf: Message Format for no File Information

	-WmsgFonp
	-WmsgFonp: Message Format for no Position Information

	-WmsgNe
	-WmsgNe: Number of Error Messages

	-WmsgNi
	-WmsgNi: Number of Information Messages

	-WmsgNu
	-WmsgNu: Disable User Messages

	-WmsgNw
	-WmsgNw: Number of Warning Messages

	-WmsgSd
	-WmsgSd: Setting a Message to Disable

	-WmsgSe
	-WmsgSe: Setting a Message to Error

	-WmsgSi
	-WmsgSi: Setting a Message to Information

	-WmsgSw
	-WmsgSw: Setting a Message to Warning

	-WOutFile
	-WOutFile: Create Error Listing File

	-WStdout
	-WStdout: Write to standard output

	Linking Issues
	Object Allocation
	The SEGMENTS Block (ELF)
	Physical Segments
	Example:
	Virtual Segment
	Example:
	Segment Qualifier
	Segment Alignment
	Segment Fill Pattern

	The SECTIONS Block (HIWARE + ELF)
	Physical Segments
	Example:
	Virtual Segment
	Example:
	Segment Qualifier

	PLACEMENT Block
	Specifying a List of Sections
	Specifying a List of Segments
	Allocating User Defined Sections (ELF)
	Allocating User Defined Sections (HIWARE)

	Initializing Vector Table
	VECTOR Command

	Smart Linking (ELF)
	Mandatory Linking from an Object
	Example:

	Mandatory Linking from all Objects defined in a File
	Example:

	Switching OFF Smart Linking for the Application
	Example:

	Smart Linking (HIWARE + ELF)
	Mandatory Linking from an Object
	Example:

	Mandatory Linking from all Objects defined in a File
	Example:

	Binary Files building an Application (ELF)
	NAMES Block
	Example:

	ENTRIES Block
	Example:

	Binary Files building an Application (HIWARE)
	NAMES Block
	Example:

	Allocating Variables in "OVERLAYS"
	Example:

	Overlapping Locals
	Example:
	Algorithm
	Example

	Name Mangling for Overlapping Locals
	Name Mangling in the ELF Object File Format
	Defining an function with overlapping parameters in Assembler
	Some additional points to consider

	DEPENDENCY TREE in the Map File
	Example:

	Optimizing the overlap size
	Recursion Checks
	Example
	Example (prm file):
	See Also

	Linker Defined Objects
	Automatic Distribution of Paged Functions
	Limitations

	Checksum Computation
	Prm file controlled Checksum Computation
	Automatic Linker controlled Checksum Computation
	Automatic struct detection
	.checksum section:

	Partial Fields
	Runtime support

	Linking an Assembly Application
	Prm File
	Example:

	WARNINGS
	Smart Linking
	Example:

	LINK_INFO(ELF)

	The Parameter File
	The Syntax of the Parameter File
	Mandatory SmartLinker Commands
	The INCLUDE directive

	SmartLinker Commands
	AUTO_LOAD
	AUTO_LOAD: Load Imported Modules (HIWARE, M2)
	Syntax
	Description:
	Example:

	CHECKSUM
	CHECKSUM: Checksum computation (ELF)
	Syntax
	Description:
	Example 1:
	Example 2:

	CHECKKEYS
	CHECKKEYS: Check Module Keys (HIWARE, M2)
	Syntax
	Description:
	Example:

	DATA
	DATA: Specify the RAM Start (HIWARE)
	Syntax
	Description
	Example

	DEPENDENCY
	DEPENDENCY: Dependency Control
	Syntax
	Description

	ROOT
	Example (Overlapped allocation of variables, only for some targets):

	USES
	Example (Overlapped allocation of variables, only for some targets)

	ADDUSE
	Example (Overlapped allocation of variables, only for some targets)
	Example (Smart Linking)

	DELUSE
	Example

	Overlapping of local variables and parameters
	See Also

	ENTRIES
	ENTRIES: List of Objects to Link with the Application
	Syntax (ELF):
	Syntax (HIWARE):
	Description
	ELF Specific issues (ELF):
	Example
	Example

	HAS_BANKED_DATA
	HAS_BANKED_DATA: Application has banked data (HIWARE)
	Syntax
	Description
	Example

	HEXFILE
	HEXFILE: Link a Hex File with the Application
	Syntax
	Arguments
	Description
	Example

	INIT
	INIT: Specify the Application Init Point
	Syntax
	Description
	ELF Specific issues (ELF):
	Example
	ELF Specific Example (ELF):

	LINK
	LINK: Specify Name of Output File
	Syntax
	Description
	Example

	MAIN
	MAIN: Name of the Application Root Function
	Syntax
	Description
	ELF Specific issues (ELF):
	Example
	ELF Specific Example (ELF):

	MAPFILE
	MAPFILE: Configure Map File Content
	Syntax (ELF):
	Syntax (HIWARE):
	Description
	ELF Specific issues (ELF):
	Example
	Example

	NAMES
	NAMES: List the Files building the Application.
	Syntax
	Description
	Example

	OVERLAP_GROUP
	OVERLAP_GROUP: Application uses Overlapping (ELF)
	Syntax
	Description
	Example:
	Example:
	See also

	PLACEMENT
	PLACEMENT: Place Sections into Segments
	Syntax
	Description
	Example
	Example

	PRESTART
	PRESTART: Application Prestart Code (HIWARE)
	Syntax
	Description
	Example

	SECTIONS
	SECTIONS: Define Memory Map
	Syntax
	Description
	Section Qualifier
	Qualifier Handling
	Example

	SEGMENTS
	SEGMENTS: Define Memory Map (ELF)
	Syntax
	Description
	Segment Qualifier
	Qualifier Handling
	Example
	Defining an Alignment Rule
	Example
	Defining a Fill Pattern
	Example
	Example
	Optimizing Constants with Common Code
	Example
	Example

	STACKSIZE
	STACKSIZE: Define Stack Size
	Syntax
	Description
	Example
	Example

	STACKTOP
	STACKTOP: Define Stack Pointer Initial Value
	Syntax
	Description
	Example
	Example

	START
	START: Specify the ROM Start (HIWARE)
	Syntax
	Description
	Example

	VECTOR
	VECTOR: Initialize Vector Table
	Syntax
	Description
	Example
	Example

	Sections (ELF)
	Terms: Segments and Sections
	Definition of Section
	Predefined Sections

	Segments (HIWARE)
	Terms: Segments and Sections (HIWARE)
	Definition of Segment (HIWARE)
	Predefined Segments

	Examples
	Example 1
	Example 2

	Program Startup
	The Startup Descriptor (ELF)
	User Defined Startup Structure: (ELF)
	Example

	User Defined Startup Routines (ELF)
	The Startup Descriptor (HIWARE)
	User Defined Startup Routines (HIWARE)
	Example of Startup Code in ANSI-C

	The Map File
	Map File Contents

	ROM Libraries
	Creating a ROM Library
	ROM Libraries and Overlapping Locals
	See Also

	Using ROM Libraries
	Suppressing Initialization
	Example Application

	How To ...
	How To Initialize the Vector Table
	Initializing the Vector Table in the SmartLinker Prm File
	Example
	Example

	Initializing the Vector Table in the Assembly Source File Using a Relocatable Section
	Example
	Example

	Initializing the Vector Table in the Assembly Source File Using an Absolute Section
	Example
	Example

	Messages
	Message Kinds

