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Abstract

Compressed sensing (CS) aims to reconstruct signals and images from significantly fewer measure-

ments than were traditionally thought necessary. Magnetic Resonance Imaging (MRI) is an essential

medical imaging tool burdened by an inherently slow data acquisition process. The application of CS

to MRI has the potential for significant scan time reductions, with benefits for patients and health care

economics.

MRI obeys two key requirements for successful application of CS: (1) medical imagery is naturally

compressible by sparse coding in an appropriate transform domain (e.g., by wavelet transform); (2) MRI

scanners naturally acquire samples of the encoded image in spatial frequency, rather than direct pixel

samples.

In this paper we review the requirements for successful CS, describe their natural fit to MRI, and then

give examples of four interesting applications of CS in MRI. We emphasize an intuitive understanding

of CS by describing the CS reconstruction as a process of interference cancellation. We also emphasize

an understanding of the driving factors in applications, including limitations posed by MRI hardware,

the characteristics of different types of images, and clinical concerns.

I. INTRODUCTION

CS is rapidly attracting interest in medical imaging research, and in particular the MRI research

community. Although the early theoretical publications on CS appeared quite recently (2006) in journals

such as IEEE Trans. Info. Theory [1], [2], the idea was already a very visible presence at the Annual
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meeting of the International Society for Magnetic Resonance in Medicine in May 2007. The enthusiasm

of MRI researchers for CS is driven by two factors. First, MRI is very well suited to CS. The assumptions

behind the theory are easy to justify in MRI. Second, the proposed applications offer very significant

benefits in imaging speed, which will improve patient care and reduce costs.

This paper presents a basic understanding of the natural fit between MRI and CS and four interesting

applications of CS in MRI. In Section II, we review briefly the principles of MRI. We describe how MRI

allows efficient sampling of imagery, not in the original spatial domain of pixels or voxels, but instead

in an encoded form: samples are acquired along curves in the spatial frequency domain. In Section III

we review the natural compressibility of medical images, which can often be represented very efficiently

using a relatively small number of coefficients in an appropriate transform domain, such as the wavelet

domain. In Section IV we review the requirements for successful use of CS. We describe in particular

the notion of incoherence between the frequency domain, where the measurements take place and the

sparsification domain, where the signal has a sparse representation. Incoherence allows reconstruction

from CS measurements by a very intuitive scheme similar to successive interference cancellation in

adaptive signal processing.

Achieving incoherence is the key challenge in designing CS data acquisition methods in MRI; the other

requirements are relatively straightforward to meet. The degree of coherence depends on the trajectory in

spatial frequency space and on the sparsification domain; good trajectory choice is application-dependent.

Section V discusses four interesting applications: Rapid Contrast-Enhanced 3D Angiography, Whole-

Heart Coronary Imaging, Brain Imaging, and Dynamic Heart Imaging. These different applications require

varying choices of sparsification domains and sampling trajectories; the choices are driven by instrumental

considerations, image characteristics and the imaging paradigm. We review these factors and describe

how they drive the design decisions in each application.

II. PRINCIPLES OF MAGNETIC RESONANCE IMAGING

This section briefly sketches the MRI concepts needed for an electrical engineer with a signal processing

background to understand the features of MRI related to CS. More complete descriptions of MRI can

be found in the excellent survey paper by Wright [3] that appeared in this magazine, and the many MRI

textbooks [4]–[6].

2



A. Nuclear Magnetic Resonance Physics

The MRI signal is generated by protons in the body, mostly those in water molecules. A strong static

field B0 (See Fig. 1) polarizes the protons, yielding a net magnetic moment oriented in the direction of the

static field. Applying a radio frequency (RF) excitation field B1 (See Fig. 1) to this net magnetization tips

it and produces a magnetization component m transverse to the static field. The magnetization precesses

at characteristic frequency

f0 =
γ

2π
B0.

Here f0 denotes the precession frequency, B0 the static field strength, and γ/2π is a constant (42.57

MHz/T) [6]. A typical 1.5T clinical MR system has a frequency of about 64 MHz. The transverse

component of the precessing magnetization produces a signal detectable by a receiver coil. The transverse

magnetization at a position r is represented by the complex quantity m(r) = |m(r)|·e−iφ(r), where |m(r)|

is the magnitude of the transverse magnetization and φ(r) is its phase. The phase indicates the direction

the magnetization is pointing in the transverse plane. The transverse magnetization m(r) can represent

many different physical properties of tissue. One very intuitive property is the proton density of the

tissue, but other properties [7] can be emphasized as well. The MR image we are interested in is m(r),

depicting the spatial distribution of the transverse magnetization. Next, we will review how to resolve

that spatial distribution.

B. Spatial Encoding

MR systems can encode spatial information in the MR signal by superimposing additional magnetic

fields on top of the strong static field. These fields vary linearly in space and therefore are called gradient

fields (see Fig. 1), they are denoted as Gx, Gy and Gz corresponding to the three Cartesian axes. As

an example, when Gx is applied, the magnetic field will vary with position as B(x) = B0 +Gxx. This

variation causes the precession frequency to vary linearly in space,

f(x) =
γ

2π
(B0 +Gxx).

As a result, magnetization at positive x positions will precess at a higher frequency than magnetization

at negative x positions.

Spatial encoding using gradients can be understood by a musical instrument analogy: the piano. The

pitch of a piano note varies linearly with the position of the key being struck; the sound one hears is
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the net sum of all notes emitted. A skilled musician listening to the emitted polyharmonic sound can

hear which notes are playing and say which keys were pressed (and how strongly). The MR signal

generated in the presence of a gradient field is likewise a polyphonic mixture. The spatial positions

within the patient’s body are like piano keys and the emitted RF signal from each position is like a

“note,” with a frequency linearly varying with position. The polyharmonic MR signal superimposes the

different “notes;” they encode the spatial position and the magnetization strength at those positions. A

signal processing engineer can immediately realize the Fourier relation between the received MR signal

and the magnetization distribution, and that the magnetization distribution can be decoded by a spectral

decomposition.

To see this Fourier relation more concretely consider the following: the gradient-induced variation in

precession frequency causes a location dependent phase dispersion to develop. The additional frequency

contributed by gradient fields can be written as

f(r) =
γ

2π
G(t) · r,

where G(t) is a vector of the gradient fields amplitudes. The phase of magnetization is the integral of

frequency starting from time zero (immediately following the RF excitation):

φ(r, t) = 2π
∫ t

0

γ

2π
G(s) · rds

= 2πr · k(t),

where

k(t) ≡ γ

2π

∫ t

0
G(s)ds.

The receiver coil integrates over the entire volume, producing a signal

s(t) =
∫
R
m(r)e−i2πk(t)·r dr.

This is the signal equation for MRI. In words, the received signal at time t is the Fourier transform of

the object m(r) sampled at the spatial frequency k(t). Such information is fundamentally encoded and

very different than traditional optical imaging where pixel samples are measured directly.

The design of an MRI acquisition method centers on developing the gradient waveforms G(t) that drive

the MR system. These waveforms, along with the associated RF pulses used to produce the magnetization,

are called a pulse sequence. The integral of the G(t) waveforms traces out a trajectory k(t) in spatial

frequency space, or k-space. For illustration, consider the simple example in Fig. 2 where, immediately
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after the RF excitation, a Gx gradient field is applied followed by a Gy gradient. The phases of the

magnetization are shown at different time points, along with the k-space trajectory and the MR signal.

This encoded sampling and the freedom in choosing the sampling trajectory play a major role in making

CS ideas naturally applicable to MRI.

C. Image Acquisition

Constructing a single MR image commonly involves collecting a series of frames of data, called

acquisitions. In each acquisition, an RF excitation produces new transverse magnetization, which is then

sampled along a particular trajectory in k-space.

In principle, a complete MR image can be reconstructed from a single acquisition by using a k-space

trajectory that covers a whole region of k-space [8]. This is commonly done in applications such as

imaging brain activation. However, for most applications this results in inadequate image resolution and

excessive image artifacts.

Magnetization decays exponentially with time. This limits the useful acquisition time window. Also,

the gradient system performance and physiological constraints limit the speed at which k-space can be

traversed (See Fig. 2). These two effects combine to limit the total number of samples per acquisition. As

a result, most MRI imaging methods use a sequence of acquisitions; each one samples part of k-space.

The data from this sequence of acquisitions is then used to reconstruct an image.

Traditionally the k-space sampling pattern is designed to meet the Nyquist criterion, which depends on

the resolution and field of view (FOV) as shown in Fig. 3. Image resolution is determined by the sampled

region of k-space: a larger region of sampling gives higher resolution. The supported field of view (FOV)

is determined by the sampling density within the sampled region: larger objects require denser sampling

to meet the Nyquist criterion. Violation of the Nyquist criterion causes the linear reconstruction to exhibit

artifacts. The appearance of such artifacts depends on the details in the sampling pattern, as discussed

below.

In MRI, it is possible to selectively excite a thin slice through the three dimensional volume. This

reduces the data collection to two dimensions in k-space for each slice. The volumetric object is imaged

by exciting more slices, known as a multi-slice acquisition. When a volume or a thick slab is excited, a

3D k-space volume must be sampled. Each of these approaches is very common, and has advantages in

specific applications [4]–[6].

We have considerable freedom in designing the k-space trajectory for each acquisition. Some 2D and
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3D sampling trajectories are illustrated in Fig. 4. By far the most popular trajectory uses straight lines

from a Cartesian grid. Most pulse sequences used in clinical imaging today are Cartesian. Reconstruction

from such acquisitions is wonderfully simple: apply the inverse Fast Fourier Transform (FFT). More

importantly, reconstructions from Cartesian sampling are robust to many sources of system imperfections.

While Cartesian trajectories are by far the most popular, many other trajectories are in use, including

sampling along radial lines and sampling along spiral trajectories. Radial acquisitions are less susceptible

to motion artifacts than Cartesian trajectories [9], and can be significantly undersampled [10], especially

for high contrast objects [11], [12]. Spirals make efficient use of the gradient system hardware, and are

used in real-time and rapid imaging applications [13]. Reconstruction from such non-Cartesian trajectories

is more complicated, requiring filtered back-projection algorithms [14] or k-space interpolation schemes

(e.g. gridding [15]).

D. Rapid Imaging

MR acquisition is inherently a process of traversing curves in multi-dimensional k-space. The speed of

k-space traversal is limited by physical constraints. In current systems, gradients are limited by maximum

amplitude and maximum slew-rate (See Fig. 2. In addition, high gradient amplitudes and rapid switching

can produce peripheral nerve stimulation in patients [16]. Since this must be avoided, the physiology of

the patient provides a fundamental limit to gradient system performance.

Because sampling speed is fundamentally limited, many researchers are striving to reduce the amount

of acquired data without degrading image quality. Many such efforts are inspired by the idea that MRI

data are, or can be made to be, redundant. Such redundancy can be created by design, for example,

using multiple receiver coils [17], [18], which provides more useful data per MR acquisition, so fewer

acquisitions are needed per scan. Redundancy can be a known or modeled signal property such as spatial-

temporal correlation [19]–[26] or a redundancy learned and extracted from the data itself [27]–[29].

All efforts at reduced data acquisition might well be labeled “compressive sampling,” however, the

underlying phenomena being exploited are often quite different. In this paper, we focus on approaches

rooted in the theory described in [1], [2]; such approaches are called here CS approaches. Much ongoing

work is based on such approaches [30]–[37].
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III. THE SPARSITY/COMPRESSIBILITY OF MR IMAGES

Natural images can often be compressed with little or no perceptible loss of information [38]. The

world-wide-web demonstrates this billions of times weekly. Medical images are just as compressible [39]

as other imagery, although historically compression has been avoided in medical applications [40].

Transform-based compression is a widely used compression strategy adopted in the JPEG, JPEG-2000,

and MPEG standards. This strategy first applies a sparsifying transform, mapping image content into a

vector of sparse coefficients, and then encodes the sparse vector by approximating the most significant

coefficients and ignoring the smaller ones. The Discrete Cosine transforms (DCT) is the sparsifying

transform at the heart of JPEG, while the discrete wavelet transform (DWT) is the workhorse of JPEG-

2000, respectively [38].

Most MR images are sparse in an appropriate transform domain. To begin with, consider angiograms,

which are images of blood vessels in the body. These images contain primarily contrast-enhanced blood

vessels in a sea of void and look sparse to the naked eye. Equivalently, they are already sparse in the pixel

domain, so here the sparsifying transform is the identity transform. Some brain images are piecewise

smooth and their gradient field is sparse; the sparsifying transform there is spatial finite-differencing.

More complex imagery can be sparsified in more sophisticated domains, such as the discrete cosine

transform domain or the wavelet domain – witness the success of JPEG and JPEG-2000, respectively.

Sparse representation is not limited to still imagery. Many still images can be compressed 5 to 10-fold

without perceptible loss of visual information, but often videos can safely be compressed much more

heavily. This is demonstrated by the success of MPEG, which uses the fact that some parts of a movie are

either constant or else undergo motion that is similar between neighboring pixels. Interframe temporal

differences of video content are often sparse, so movies are sparsified by temporal finite differences.

Dynamic MR images are highly compressible as well. For example, heart images are quasi-periodic.

Therefore, their temporal Fourier transform is sparse. The hemodynamic response of brain activation in

some functional MRI experiments can also be sparsified by temporal Fourier transform.

The transform sparsity of MR images can be demonstrated by applying a sparsifying transform to a

conventional MR image and reconstructing an approximation to the image using a subset of the largest

transform coefficients. To illustrate this, consider Fig. 5 in which a typical brain image was compressed

with wavelets, a slice of an angiogram was compressed with finite-differences, and the time series of a

cross section of a dynamic heart sequence was compressed by temporal Fourier transform. The important
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information is captured by 10%, 5% and 5% of the largest transform coefficients, respectively.

Uncovering transform sparsity in the context of CS offers a research challenge to the signal processing

community. As we will see, it is not enough to identify a sparse representation: the sparsifying transform

must also be incoherent with respect to the sampling transform.

IV. THE NATURAL FIT BETWEEN CS AND MRI

The transform sparsity of MR images and the coded nature of MR acquisition are two key properties

enabling CS in MRI. Figure 6 illustrates these elements, making MRI a natural CS system. We now give

a more formal discussion of the requirements.

A. Compressed Sensing Theory

CS emerged in the literature of Information Theory and Approximation Theory as an abstract math-

ematical idea [1], [2]. One measures a relatively small number of ‘random’ linear combinations of the

signal values – much smaller than the number of signal samples nominally defining it. However, because

the underlying signal is compressible, the nominal number of signal samples is a gross over-estimate of

the ‘effective’ number of ‘degrees of freedom’ of the signal. As a result, the signal can be reconstructed

with good accuracy from relatively few measurements by a non-linear procedure.

In MRI, we look at a special case of CS where the sampled linear combinations are simply individual

Fourier coefficients (k-space samples). In that setting, CS is claimed to be able to make accurate

reconstructions from a small subset of k-space, rather than an entire k-space grid.

Theoretical and technical aspects of CS are discussed elsewhere in this special issue. However, the

key points can be reduced to nontechnical language. A successful application of CS requires:

CS1 Transform Sparsity: The desired image must have a sparse representation in a known transform

domain (i.e., it must be compressible by transform coding),

CS2 Incoherence of Undersampling Artifacts: The aliasing artifacts in a linear reconstruction

caused by k-space undersampling must be incoherent (noise-like) in the sparsifying transform

domain.

CS3 Nonlinear Reconstruction: The image must be reconstructed by a non-linear method which

enforces both sparsity of the image representation and consistency of the reconstruction with

the acquired samples.
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The first condition is clearly met for MR images, as explained in Section III above. The fact that

incoherence is important, that MR acquisition can be designed to achieve incoherent undersampling, and

the fact that there are efficient and practical algorithms for reconstruction will not, at this point in the

article, be at all obvious. So we turn to a very simple example.

B. Intuitive example: Interference Cancellation

To develop intuition for the importance of incoherence and the feasibility of CS, consider the 1D

case illustrated in Fig. 7. A sparse signal (Fig. 7.1), is sub-Nyquist (8-fold) sampled in k-space (Fig.

7.2). A textbook linear reconstruction simply zero-fills the missing k-space values and inverts the Fourier

transform; this produces artifacts which depend on the type of undersampling, i.e. which k-space values

are sampled and which are not sampled, and the signal energy distribution in the frequency domain. While

equispaced undersampling is a standard topic in signal processing classes, this is inherently a bad scheme

to use here. With equispaced undersampling (Fig. 7.3a), this reconstruction generates a superposition of

shifted signal copies. In this case, recovery of the original signal is hopeless, as each replica is an equally

likely candidate.

With random undersampling, the situation is very different. The zero-filled Fourier reconstruction

exhibits incoherent artifacts that actually behave much like additive random noise (Fig. 7.3). Despite

appearances, the artifacts are not noise; rather, undersampling causes leakage of energy away from

each individual nonzero value of the original signal. This energy appears in other reconstructed signal

coefficients, including those which had been zero in the original signal.

It is possible, starting from knowledge of the k-space sampling scheme and the underlying original

signal, to calculate this leakage analytically. This observation immediately suggests a nonlinear iterative

technique which enables accurate recovery, even though the signal in Fig. 7.1 was 8-fold undersampled.

The recovery procedure is illustrated in Figs. 7.4-7. Because the signal to be recovered is sparse, it

has a few truly nonzero values in a “sea” of zeros. The zero-filled Fourier reconstruction will look like a

noisy version of the signal (Fig. 7.4). Again this “noise” is not random noise, but is interference caused

by the signal we are trying to recover. When the signal to be recovered is smaller, the interference level

will also be smaller. The largest true nonzeros in the original sparse signal will stand out above the level

of the interference, although some true nonzeros may be submerged beneath it. By setting an appropriate

threshold, the largest components can be detected (Fig. 7.5.), while most values which were truly zero

in the original signal will not rise above threshold.
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Next we introduce the idea of iteration. The interference caused by the already-detected components

can be calculated analytically by assuming that the original signal consisted only of those few detected

values (Fig.7.6.). Once computed, the calculated interference can be subtracted away. This yields a new

reconstruction which still looks noisy, but in which the noise attributed to interference caused by the

largest few nonzeros has been eliminated (Fig. 7.7.). The total interference level is thus reduced. If we

now set a new threshold based on this lower level of interference, some of the truly nonzero values in the

original sparse signal are now higher than the interference level, and can now be successfully detected.

In our example, this procedure is repeated until all the significant signal components are recovered. A

recovery procedure along the lines just described was proposed in [41] as a fast approximate algorithm

for CS reconstruction.

C. Incoherent Sampling in MRI

Designing a CS scheme for MRI can now be viewed as selecting a subset of the frequency domain

which can be efficiently sampled, and is incoherent with respect to the sparsifying transform.

Before we formally introduce the notion of incoherence, we note that narrow optimization of incoher-

ence must not be pushed too far. Some of the most powerful and elegant results about CS have been

obtained for sampling a completely random subset of k-space, which indeed gives very low coherence

[1]. The motivation for random sampling can be easily and intuitively understood using our 1D example

given earlier in subsection IV-B. Although random sampling is an inspiring and instructive idea, sampling

a truly random subset of k-space is generally impractical; it can be far slower than conventional Nyquist

rate sampled Cartesian MRI. Any practical sampling trajectory must satisfy hardware and physiological

constraints. Therefore sampling trajectories must follow relatively smooth lines and curves. Sampling

schemes must also be robust to non-ideal, real-life situations. Non-Cartesian sampling schemes are often

sensitive to magnetic field homogeneity, eddy currents, signal decay, hardware delays and other sources

of imperfection.

Furthermore, a uniform random distribution of samples in spatial frequency does not take into account

the energy distribution of MR images in k-space, which is far from uniform. Most of energy in MR

imagery is concentrated close to the center of k-space and rapidly decays towards the periphery of

k-space.

Therefore, realistic designs for CS in MRI should have variable-density sampling with denser sampling

near the center of k-space, matching the energy distribution in k-space. Such designs should also create
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k-space trajectories that are somewhat irregular and partially mimic the incoherence properties of pure

random sampling, yet allow rapid collection of data. To compare designs, we need a quantitative notion

of incoherence that will allow us to compare data acquisition schemes and their performance.

Measuring Incoherence

We first measure incoherence for cases where the image is already sparse in the pixel domain, so no

further sparsification is needed. Suppose we sample a subset S of k-space. Let FS denote the Fourier

transform evaluated just at frequencies in subset S. Let F∗S denote the adjoint operation, which can be

represented as zero-filling followed by inverse Fourier transform. Define the point spread function (PSF)

as, simply PSF (i, j) = (F∗SFS)(i, j). Under complete Cartesian sampling, the PSF is the identity and

off-diagonal terms vanish. Undersampling k-space induces nonzero off-diagonal terms in PSF (i, j). A

nonzero at (i, j) means that linear reconstruction of pixel i suffers interference by a unit impulse in pixel

j 6= i. In short, the PSF measures the tendency of zero-filled linear reconstruction to leak energy from the

true underlying source pixel to other pixels. This energy shows up as blurring or aliasing artifacts in the

image (See Fig. 8 for examples). The goal of irregular sampling is to spread such leakage quasi-uniformly

across the image, so that the maximal leakage is small. Accordingly, we define coherence as the maximum

off-diagonal entry in a properly normalized PSF. This is analogous to notions of sidelobe-to-peak ratio

the reader will have encountered in many branches of signal processing.

Most MR images are sparse in a transform domain other than the pixel domain. In such settings, we

use the notion of the transform point spread function (TPSF). Let Ψ denote the sparsifying transform;

and then define TPSF (i, j) = (Ψ∗FS∗FSΨ)(i, j). With this notation, coherence is formally measured

by

max
i 6=j
|TPSF (i, j)|,

the maximum size of any off-diagonal entry in the TPSF. Small coherence, e.g. incoherence, is desirable.

More discussion about the TPSF can be found in [30].

Incoherent MRI Acquisition

We now consider several schemes and their associated coherence properties. In 2D Cartesian MRI,

complete Cartesian sampling is often implemented as a series of npe acquisitions (called phase encodes)

along very simple trajectories: parallel equispaced lines. This scheme yields, say, nfe k-space samples
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per trajectory (called frequency encodes), producing a Cartesian grid of npe × nfe samples overall. The

sampling along a trajectory, e.g. the frequency encodes, are rarely a limiting factor in terms of sampling-

rate and in terms of the scan time. The number of acquisition lines, e.g. the phase encodes, is limiting.

This suggests immediately to speed up a whole scan by simply dropping entire lines from an existing

complete grid. This is indeed practical: one has complete freedom in choosing the lines to acquire, and the

number of lines is what determines the overall scan time, so scan time reduction is exactly proportional

to the degree of undersampling. In fact, implementation of this scheme requires only minor modifications

to existing pulse sequences– simply skip certain acquisitions. Since most pulse sequences in clinical use

are Cartesian, it is very convenient to implement a CS acquisition this way.

Undersampling parallel lines suffers a drawback: the achievable coherence is significantly worse than

with truly 2D random k-space sampling. In 2D imaging, only one dimension is undersampled, things

behave as if the images were one-dimensional signals and we are randomly sampling the 1D frequency

domain exploiting only 1D sparsity. This reduced incoherence is visible in Fig. 8a.

In 3D Cartesian imaging the situation improves. Now, there is an additional encoding dimension

(called the slice encode). Standard Cartesian collections acquire data from nse× npe parallel equispaced

lines with nfe equispaced samples per line, filling out a complete nse × npe × nfe grid in k-space. It

is very practical to undersample the set of lines, just as in the 2D case. However, the coherence (in

the slice-phase encode cross-section) is much smaller than in a comparable 2D scheme with the same

number of k-space samples (see Fig. 8b). Undersampling parallel lines in 3D has another advantage: real

3D volumetric images have 2D cross-sections which are significantly more compressible than their 1D

profiles, so the effectiveness of CS is much higher. 3D Cartesian CS is particularly attractive because 3D

imaging is more time-consuming than 2D imaging, so scan time reduction has more impact.

Getting completely away from a Cartesian grid allows far greater flexibility in designing sampling

trajectories with low coherence. Popular non-Cartesian schemes include sampling along radial lines or

spirals. Traditionally, undersampled radial trajectories have been used [10]–[12] to accelerate acquisitions,

because the artifacts from linear reconstruction seem benign and incoherent – much like adding noise to

the image. Variable-density spirals [42], [43] and also variable density Cartesian acquisitions [44]–[46]

have been proposed for similar reasons. From our perspective, we recognize that such artifacts are benign

because the corresponding PSFs are incoherent. Figure 8c-f shows the PSF of several such trajectories:

radial, uniform spirals, variable density spirals and variable density perturbed spirals. These trajectories

are strong candidates for CS: with appropriate nonlinear reconstruction, the seeming noise-like artifacts
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can be suppressed without degrading image quality.

A dynamic sequence of images is a multi-dimensional signal with two or three spatial coordinates and

time as an additional dimension (See Fig. 9 top-left panel). Dynamic MRI data are acquired in the spatial

frequency vs time (k − t) domain. Traditional collection schemes sample the k − t domain on a regular

set of congruent lines (Fig. 9 top-right). Often, it is impossible to meet the spatio-temporal Nyquist-rate

this way. Then, sub-Nyquist sampling, followed by linear reconstruction, causes coherent aliasing of the

signal in the spatial-temporal frequency (x−f ) domain. As an alternative, randomly ordering a subset of

k-space lines (Fig. 9 bottom-right) is incoherent with respect to the x− f domain and produces benign

artifacts in linear reconstructions [23]. So random ordering of lines is an effective and inexpensive way to

incoherently sample dynamic data. Of course, the same ideas of random ordering apply to non-Cartesian

sampling such as radial lines and spirals, improving incoherence and better exploiting the hardware.

Dynamic imaging CS has major advantages over static imaging: sequences of images, like videos,

are highly compressible – much more than static images as illustrated in both Figs. 5 and 9 bottom-left

panel. At the same time, dynamic imaging requires several orders of magnitude more samples than static

imaging and it is often impossible to meet the Nyquist rate. CS compensates for this by incoherent

sampling and by exploiting the inherent sparsity of the dynamic sequence.

D. Image Reconstruction

We now briefly describe a useful formal approach for reconstruction. Represent the reconstructed image

by a complex vector m, let Ψ denote the linear operator that transforms from pixel representation into

a sparse representation. Let FS denote the undersampled Fourier transform, corresponding to one of

the k-space undersampling schemes discussed earlier. Our reconstructions are obtained by solving the

following constrained optimization problem:

minimize ||Ψm||1

s.t. ||FSm− y||2 < ε,

where y is the measured k-space data from the MRI scanner and ε controls the fidelity of the reconstruction

to the measured data. The threshold parameter ε is roughly the expected noise level. Here the `1 norm

||x||1 =
∑

i |xi|.

Minimizing the `1 norm of ||Ψm||1 promotes sparsity [47]. The constraint ||FSm− y||2 < ε enforces

data consistency. In words, among all solutions which are consistent with the acquired data, Eq. 1 finds
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a solution which is compressible by the transform Ψ.

When finite-differences are used for the sparsifying transform, the objective in the optimization is

effectively the Total-Variation (TV) [48] norm, a widely-used objective in image processing. Even if

another sparsifying transform is intended, it is often useful to include a TV penalty as well [49]–[51]

Such a combined objective seeks image sparsity both in the transform domain and the finite-differences

domain, simultaneously. In this case the optimization is written as

minimize ||Ψm||1 + λTV (m)

s.t. ||FSm− y||2 < ε,

where λ trades Ψ-sparsity with finite-differences sparsity.

The reader may well ask how such formal optimization-based reconstructions relate to the informal idea

of successive interference cancellation. In fact, iterative algorithms for solving such formal optimization

problems in effect perform thresholding and interference cancellation at each iteration so there is a close

connection between our exposition and more formal approaches [41], [50], [52], [53].

V. APPLICATIONS OF COMPRESSED SENSING TO MRI

We now describe four potential applications of CS in MRI: (a) Rapid Angiography; (b) Whole-Heart

Coronary Imaging; (c) Enhanced Brain Imaging; (d) Dynamic Heart Imaging.

The three requirements for successful CS in MRI come together differently in different applications.

Of particular interest is the way in which different applications face different constraints, imposed by

MRI scanning hardware or by patient considerations, and how the inherent freedom of CS to choose

sampling trajectories and sparsifying transforms plays a key role in matching the constraints.

A. Rapid 3D Angiography

Angiography is increasingly popular for diagnosis of vascular disease. It attempts to image blood

vessels in the body and helps to detect aneurysms, vascular occlusions, stenotic disease and tumor feeder

vessels. It also serves to guide surgical procedures and to monitor the treatment of vascular disease

[54]. Often, a contrast agent is injected, significantly increasing the blood signal and enabling rapid data

acquisition. In angiography, a significant portion of the diagnostic information comes from imaging the

dynamics of the contrast agent bolus. This requires high spatial and temporal resolution with a very

large FOV – obviously a very difficult task. Today MR angiography scans are often undersampled [11],
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[12], [55] obtaining improved spatial resolution and temporal resolution at the expense of undersampling

artifacts.

CS is particularly suitable for angiography. Angiograms are inherently sparse images – already sparse in

the pixel representation, and are sparsified even better by spatial finite-differences (See Fig. 5). The need

for rapid high temporal and spatial resolution imaging means that undersampling is almost inevitable. CS

offers to improve current strategies by significantly reducing the artifacts that result from undersampling.

In this example, we apply CS to 3D Cartesian contrast-enhanced angiography (the most common

scheme in clinical practice). Figure 10 illustrates the collection scheme, acquiring equispaced parallel

lines in k-space. Choosing a pseudo-random subset with variable k-space density of 10% of those lines

combines undersampling with low coherence. Fig. 10 shows a maximum intensity projection (MIP)

through the 3D volume of several reconstructions. CS is able to significantly accelerate angiography

imaging, enabling better temporal resolution or alternatively improving the resolution of current imagery

without compromising scan time. The nonlinear reconstruction in CS avoids most of the artifacts that

appear in linear reconstruction from undersampled data.

B. Whole Heart Coronary Imaging

X-ray coronary angiography is the gold standard for evaluating coronary artery disease, but it is invasive.

Multi-slice x-ray CT is a non-invasive alternative, but generates high doses of ionizing radiation. MRI is

emerging as a non-invasive, non-ionizing alternative [13], [56]–[59].

Coronary arteries are constantly subject to heart and respiratory motion; high-resolution imaging is

therefore a challenging task. Heart motion can be handled by synchronizing acquisitions to the cardiac

cycle (cardiac gating). Respiratory motion can be mitigated by long scans with navigated breething

compensation [59], or simply by short breath-held acquisitions [13], [56]. However, breath-held cardiac-

triggered collection schemes face strict timing constraints and very short imaging windows. The number

of acquisitions is limited to the number of cardiac cycles in the breath-hold period. The number of heart-

beats per period is itself limited – patients in need of coronary diagnosis cannot be expected to hold

their breath for long! Also, each acquisition must be very short to avoid motion blurring. On top of this,

many slices need to be collected to cover the whole volume of the heart. Because of these constraints,

traditionally breath-held cardiac triggered acquisitions have limited spatial resolution and only partial

coverage of the heart [56], [59]. Compressed sensing can accelerate data acquisition, allowing the entire

heart to be imaged in a single breath-hold [60].
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Figure 11 shows a diagram of the multi-slice acquisition. To meet the strict timing requirements, the

hardware efficient spiral k-space trajectory is used. For each cardiac trigger, a single spiral in k-space is

acquired for each slice. The heart does move considerably during the imaging period, but because each

acquisition is very short, each slice is relatively immune to motion and inter-slice motion is manifested

as geometric distortion across the slices rather than blurring. Geometric distortion has little effect on the

clinical diagnostic value of the image. Even though spirals are very efficient, the strict timing limitations

make is necessary to undersample k-space 2-fold. To do so, undersampled variable density spirals [42] are

used. Such spirals have an incoherent PSF (see Fig. 8e). When used with linear gridding reconstruction

[15] undersampling artifacts are incoherent and appear simply as added noise. Coronary images are

generally piece-wise smooth and are sparsified well by finite-differences. CS reconstruction can suppress

undersampling-induced interference without degrading the image quality.

Figure 11 shows a comparison of the linear direct gridding reconstruction and CS, on the right coronary

artery reformatted from a single breath-hold whole-heart acquisition. The linear gridding reconstruction

suffers from apparent noise artifacts actually caused by undersampling. Indeed, the CS reconstruction

suppresses those artifacts, without impairing the image quality.

C. Brain Imaging

Brain scans are the most common clinical application of MRI; most such scans are 2D Cartesian

multi-slice. For scan time reasons and SNR reasons, the slices are often quite thick, often with large gaps

between slices. The ideas of CS promise to reduce collection time while improving the resolution of

current imagery. Indeed, by significantly undersampling the existing k-space, some of the saved collection

time could be used to collect data from the missing slices, and still leave a shorter collection overall. But

are the requirements for CS all satisfied? Section III showed that brain images exhibit transform sparsity

in the wavelet domain. If incoherence can be obtained, the application may succeed.

We tested the application of CS to brain imaging by acquiring a full Nyquist sampled data-set which

we undersampled in retrospect. Our idea was to explore various combinations of scan time reduction and

improved resolution.

The 2D Cartesian multi-slice sampling trajectories are illustrated in Fig. 12. For each slice we selected

a different random subset of 80 trajectories from 192 possible trajectories – a speedup factor 2.4.

Undersampling each slice differently reduces coherence compared to sampling the same way in all slices;

see [30].
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Figure 12 shows the experimental results. In Fig. 12a coronal and axial slices of the multi-slice CS

reconstruction are compared to full Nyquist sampling, linear reconstruction from the undersampled data,

and linear reconstruction from a low resolution (LR) acquisition taking the same amount of scan time.

CS exhibits both significant resolution improvement over LR at the same scan time, and significant

suppression of the aliasing artifacts compared to the linear reconstruction with the same undersampling.

D. k-t Sparse: Application to Dynamic Heart Imaging

Dynamic imaging of time-varying objects is challenging because of the spatial and temporal sampling

requirements of the Nyquist criterion. Often temporal resolution is traded off against spatial resolution (or

vice versa). Artifacts appear in the traditional linear reconstruction when the Nyquist criterion is violated.

Now consider a special case: dynamic imaging of time-varying objects undergoing quasi-periodic

changes. Special cases include heart imaging, which we focus on here, but also imaging the hemodynamic

response of functional brain activity. Heart motion is quasi-periodic: the time series of intensity in a single

voxel is sparse in the temporal frequency domain (See Fig. 5). At the same time, a single frame of the

heart ‘movie’ is sparse in the wavelet domain. A simple transform can exploit both effects: apply a spatial

wavelet transform followed by a temporal Fourier transform (see Fig. 9 bottom-left panel).

Can we exploit the natural sparsity of dynamic sequences to reconstruct a time-varying object sampled

at significantly sub-Nyquist rates? Consider the Cartesian sampling scheme that acquires for each time

slice a single line in k-space, following an orderly progression through the space of lines as time progresses

(see Fig. 9 top-right panel). For our desired FOV and resolution it is impossible, using this scheme, to

meet the spatial-temporal Nyquist rate. In fact, this scheme is particularly inefficient for dynamic imaging

with traditional acquisitions and reconstruction methods. Instead, we make one change: make the k-space

line ordering random instead of orderly [23], [32]. The random ordering comes much closer to randomly

sampling k − t space (See Fig. 9 bottom-right panel) and the sampling operator becomes much less

coherent with the sparsifying transform.

Fig. 13 shows results from two experiments. The first result used synthetic data: a motion phantom,

periodically changing in a cartoon of heart motion. The figure depicts an image sequence reconstructed

from a sampling rate 4 times slower than the Nyquist rate, using randomly-ordered acquisition and

nonlinear reconstruction. The second result involved dynamic real-time acquisition of heart motion. The

given FOV (16cm), resolution (2.5mm) and repetition time (4.4ms) allows a Nyquist rate of 3.6 frames

per second (FPS). This leads to temporal blurring and artifacts in the traditionally-reconstructed image.
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By instead using random ordering and CS reconstruction we were able to recover the dynamic sequence

at the much higher rate of 25FPS with significantly reduced image artifacts.

VI. RELATION TO OTHER METHODS

Much ongoing development of new MRI methods is concerned with speeding up MRI. CS is com-

plementary to much of this work, and can be used to extend and improve many other acceleration

techniques.

Two examples of complementary techniques are partial k-space imaging [29] – which exploits conjugate

symmetry in the Fourier transform of real images to sample only half of k-space – and the use of parallel

receive arrays (multiple coils). Each can speed up MR image collection. Combined intelligently, the

speed up from either methods multiplies the speed up from CS, producing an even faster hybrid imaging

technique. Future research should ask how to best balance the speedups from each method, how they

interact, and what the ultimate performance limits will be.

Many other fast imaging methods are closely related to CS, and can be extended using the CS

framework. An excellent example is undersampling radial trajectories, mentioned above [9], [12]. This is

successful exactly for the same reason that CS is successful. The point-spread function for undersampled

radial sampling is incoherent (See Fig. 8c.). Undersampling artifacts contribute to an apparent noise

level increase, but allow high-contrast objects like angiograms, to be reconstructed with high fidelity.

The CS framework allows view streak artifacts to be rendered even more noise-like, and with nonlinear

reconstruction this artifact can be largely eliminated from the reconstruction. Some of the work in applying

the CS ideas to radial sampling has been presented by Chang et. al [36] Jung el. al [33] and Block et.

al [35]

CS can also supplement existing approaches is in dynamic imaging. There is a very long history of

exploiting redundancy in the time series, either for imaging rapidly moving objects, such as the heart, or

for imaging objects whose contrast is rapidly changing, such as in dynamic contrast uptake studies, and

contrast angiography.

For rapidly moving objects like the heart, several methods attempt to reduce the Nyquist sampling

requirements in k-t space. One approach is UNFOLD [19] and a similar independently developed method

by Willis [20], [21]. These methods attempt to match the temporal bandwidth of the dynamic series to

allow greater spatial-frequency sampling. Aliasing is allowed in the individual images, and is suppressed

by a temporal filter. Another approach is k-t BLAST [27], which uses training data to learn and exploit
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the spatio-temporal correlation to reconstruct high frame-rate dynamic images from reduced data. In

comparison, CS uses a random sampling pattern to achieve the same end, without the need for training

or prior knowledge of the spatio-temporal correlation. CS extensions to these ideas have been presented

by Lustig et. al [32] and [34]

Considerable effort has also been devoted to developing methods for efficiently imaging objects where

only the contrast of the image changes with time. These generally exploit the idea that the high spatial

frequencies define the edges of the object, and are present throughout the study, or are slowly changing.

The low spatial frequencies determine the contrast and appearance of the image, and must be tracked

much more rapidly. An early example was KEYHOLE [22], which initially acquires a full resolution

image of the object, followed by a time series of rapid, low resolution images. The low frequency data

are combined with the original high spatial frequency data to produce a time series that has the spatial

resolution of the original imaging, with the time resolution of the low-spatial resolution dynamic images.

This works surprisingly well, but has significant limitations. For example, some part of the image may

not show up at all until part way through the dynamic study, and won’t be represented in the high spatial

frequency data. This has been addressed by methods that continuously sample different k-space regions

at different frequencies, so that the low frequencies are sampled much more rapidly, but all of k-space is

acquired periodically. A particularly successful example is contrast angiography using TRICKS [25]. An

extension of this is HYPR [28] which uses the undersampling characteristics of a radial acquisition that

is interleaved to provide a complete acquisition over the duration of the study. The full reconstruction

provides the high spatial resolution data of the spatial distribution of the signal, but has lost its dynamic

information. Small subsets of the radial frames can be used with the spatial distribution constraint to

provide high-temporal resolution dynamic contrast images, at full spatial resolution. This is a different

perspective that achieves a result very similar to CS.

VII. CONCLUSIONS

We have reviewed the requirements for CS and described their natural fit to MRI, emphasizing the

different system-level factors that come into play in real applications.

We demonstrated four applications where CS improves on current imaging techniques. The concepts

and the approaches we discussed should be useful to develop entirely new applications – perhaps solving

problems that are intractable by current methods.

CS-MRI is in its infancy. Many crucial issues remain unsettled. For starters: optimizing sampling
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trajectories; developing improved sparse transforms that are incoherent to the sampling operator; studying

reconstruction quality in terms of clinical significance; improving the computation time of the reconstruc-

tion algorithms. The signal processing community has a major opportunity here: there are fascinating

theoretical and practical research problems, promising substantial payoffs in improved medical care.
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Fig. 1. The magnetic fields used in MR imaging: The main homogeneous magnetic field B0 creates a net magnetization that
precesses at a resonance frequency γ

2π
B0. The transverse rotating radio-frequency field B1 is used for exciting the magnetization.

The gradient fields G (only Gx is illustrated) are used for spatial encoding.
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Fig. 2. Fourier spatial encoding. The temporal MRI signal directly samples the spatial frequency domain of the image. Gradient
fields cause a linear frequency distribution across the image, which produces a linear phase accrual with time. The received signal
samples are spatial frequencies of the image. The corresponding spatial frequencies are proportional to the gradient waveform
area. The gradient is limited in amplitude, Gmax, and slew rate, Smax, which are both system specific.
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Fig. 3. Image resolution is determined by the extent of the k-space that is covered. The supported field of view is determined by
the sampling density. Violation of the Nyquist criteria causes the linear reconstruction to exhibit artifacts. The appearance of the
artifact depends on the sampling. Equispaced sampling results in Coherent folding and irregular sampling results in incoherent
aliasing.
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Fig. 4. Common sampling trajectories. Top, left to right: Cartesian 2D, Cartesian echo-planar, radial, spiral. Bottom left to
right: Cartesian 3D, stack of radial, 3D radial, 3D stack of spirals
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Fig. 5. Transform sparsity of MR images. Fully sampled images (left) are mapped by a sparsifying transform to a transform
domain (middle); the several largest coefficients are preserved while all others are set to zero; the transform is inverted forming
a reconstructed image (right).
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Fig. 6. MRI as a compressed sensing system: The user controls the gradient and RF waveforms which, in turn, control the phase
of the pixels/voxels in the image. An RF coil receives the signal in an encoded form – samples in k-space. Careful crafting of
the gradient waveforms allows for incoherent measurements of k-space. With an appropriate non-linear reconstruction enforcing
sparsity, an image can be reconstructed.
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Fig. 7. Intuitive Procedure for Reconstruction from Undersampled Data. A sparse signal (1) is 8-fold undersampled in its
1D k-space domain (2). Equispaced undersampling results in signal aliasing (3a) that can not be recovered. Pseudo-random
undersampling results in incoherent interference (3). Some strong signal components stick above the interference level, are
detected and recovered by thresholding (4 and 5). The interference of these components is computed (6) and subtracted (7),
thus lowering the total interference level and enabling recovery of weaker components
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Fig. 8. Point Spread Functions (PSF) of various sampling trajectories. (a) Random lines in 2D (b) Random points in 2D, or
cross-section of random lines in 3D (c) Radial (d) Uniform spirals (e) Variable density spirals (f) Variable density perturbed
spirals
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Fig. 9. Top left:Dynamic MRI is a multi-dimensional signal with two or three spatial coordinates and time as an additional
dimension. Bottom left: Dynamic images have a sparse representation in an appropriate transform domain. Top right: Traditional
k − t sequential sampling. Bottom right: Random ordering is an efficient way to incoherently sample the k − t space.
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Fig. 10. 3D Contrast enhanced angiography. Top: Even with 10-fold undersampling CS can recover most blood vessel
information revealed by Nyquist sampling; there is significant artifact reduction compared to linear reconstruction; and a
significant resolution improvement compared to a low-resolution centric k-space acquisition. Bottom: The 3D Cartesian random
undersampling configuration.
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Fig. 11. Single breath-hold whole heart coronary artery imaging. Left: the sequence diagram. Right: The incoherent artifacts
of undersampled variable-density spirals appear as noiselike interference in the linear gridding reconstruction. These artifacts
are suppressed in the CS reconstruction without compromising image quality
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Fig. 12. CS exhibits suppression of aliasing artifacts over linear reconstruction from incoherent sampling, improved resolution
over a low-resolution acquisition with the same scan time and a comparable reconstruction quality to a full Nyquist sampled
set.
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Fig. 13. Dynamic imaging of quasi-periodic change. Top: Phantom experiment showing a reconstruction from 4-fold
undersampling. Bottom: Dynamic acquisition of the heart motion showing a reconstruction from 7-fold undersampling.
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