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Introduction  

The objective of this project is to develop improved reconstruction algorithm using non-

uniform fast Fourier transform(NUFFT) for spiral MRI. In conventional gridding 

methods, while explicit forms of kernel functions were used, in this paper optimized 

kernels are suggested minimizing reconstruction error in the least square sense between 

real and reconstructed images. To accomplish its goal well-known techniques such as 

Kaiser-Bessel gridding(KB)[3] and a generalized fast Fourier transform(GFFT)[4] are 

being used to put an emphasis on the new NUFFT method called LS_NUFFT[1,2] 

compared to conventional ones. With phantom image(128x128) provided in the 

homework set, the concept of improved NUFFT method and the corresponding results 

are presented and the difference between LS_NUFFT and previous algorithms including 

KB and GFFT is discussed. In order to be able to succeed in getting good reconstruction, 

results with different values of parameters are shown for justification. Finally, some 

possible modification of LS_NUFFT method is addressed in final remarks.  

 
Method 
 
A. Simple gridding reconstruction 
 
Instead of using simple 2DFFT for image reconstruction, density pre-compensation 

function was used to reduce the low spatial artifacts caused by oversampling k-space near 

the origin. The analytical formula for direct summation is  
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where sp is k-space data multiplied by density pre-compensation function and p is the 

number of samples in spiral trajectory. kxp and kyp ranges over –N/2 to N/2, respectively. 

x and y are in [–N/2:N/2-1]/N. Here N is 128. The density compensation function and 6 

interleaved spiral trajectories are shown in Fig.1. As shown in Fig.2, the resultant image 

has less aliasing artifact than that of homework #6 even without using a 2X grid.  Due to 

the corrected density, suppression of low frequency artifacts is also clearly seen.  

 

 
Fig.1. k-space trajectory and density compensation function  

 
Fig.2. Reconstructed image(128x128) using direct summation 

 



B. LS_NUFFT reconstruction 
 
Improved NUFFT algorithm[1] named as LS_NUFFT generates kernel matrices in x-y 

directions to minimize the approximation error in the least square sense. After 

convolution of the weighted k-space data and the kernel matrices, 2DFFT on data set is 

performed to correct aliasing and low frequency artifacts. For further correction 

deapodization procedure is also taken. Kernel functions are defined as follows. 
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For analytical comparison q and m set to be 2 and 3, respectively. m and q determine the 

field of view in reconstructed images and the resolution of inverse FFT procedure in 

frequency domain, respectively. M is the number of samples in spiral trajectory. Since 

kernel functions are separable they are independently multiplied to k-space data sp. As 

mentioned before the important difference between LS_NUFFT and conventional 

methods is the kernel function ρ and scale factor sc. The latter has shift invariant kernels 

whereas the former has shift variant ones. Because of more degree of freedom in kernels 

the former is more accurate than the latter. On the other hand, conventional methods are 

easier to implement than LS_NUFFT. The expression for LS_NUFFT reconstruction is 

given as follows. 
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To justify appropriate parameters for m and q, their variations over several values were 

tested and results are illustrated in Fig.3.  

 
(a) LS NUFFT(m=3, q=2) 
 

 
(b) LS NUFFT(m=3, q=4) 



 
(c) LS NUFFT(m=3, q=6) 

 
(d) LS NUFFT(m=3, q=8) 

 

 
(e) LS NUFFT(m=3.5, q=2) 



 
(f) LS NUFFT(m=3.5, q=4) 

 
(g) LS NUFFT(m=3.5, q=6) 

 
(h) LS NUFFT(m=3.5, q=8) 



 
(i) LS NUFFT(m=3.8, q=2) 

 
(j) LS NUFFT(m=3.8, q=4) 

 
(k) LS NUFFT(m=3.8, q=6) 



 
(l) LS NUFFT(m=3.8, q=8) 
 

Fig.3. Reconstructed results corresponding to different values of m and q 
 
Based on the distance measure(D) defined in next section, the best values for m and q 

were decided. Table 1 summarizes the distance measures with all cases. As shown in 

Table 1, it is better to have lower values of both of them. As a result m and q set to be 3 

and 2, respectively. If m is less than 3 or larger than 4, however, reconstructed image 

depicted in Fig.4 is very poor even compared to those of conventional methods. More 

detail is mentioned in discussion section.     

 

Fig.4. Reconstructed image using LS NUFFT with m=4 
 
 



Table 1. Distance measures with different combination of m and q 
Distance measure(Dx10-2) q=2 q=4 q=6 q=8 

m=3 2.66 7.99 15.99 238.57 
m=3.5 2.69 8.08 16.17 26.95 
m=3.8 2.70 8.12 16.24 27.07 

 
C. Conventional algorithms 
 
The most dominant difference between LS_NUFFT and conventional algorithms such as 

Kaiser-Bessel and generalized FFT methods lies in the fact that the former optimizes 

scale factor and kernel matrix in the least square sense while the latter has fixed forms of 

functions. In Kaiser-Bessel method, Sinc and the modified first order Bessel functions 

were used as scale factor and kernel matrix, respectively. For generalized FFT both of 

them have Gaussian functions. Those scale factors and kernel matrices are recapitulated 

in Table 2. To realize those algorithms in MATLAB all it takes is to replace those of 

LS_NUFFT with explicit functions defined in Table 2. Because of that, implementation is 

much easier and more straightforward than LS_NUFFT.  

      Table 2. Scale factors and kernel matrices for KB, GFFT and LS_NUFFT 
 Kaiser-Bessel Generalized FFT LS_NUFFT 
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Results 
 
Reconstructed images based on Kaiser-Bessel, Generalized FFT, and LS NUFFT 

methods were presented below. The quality of reconstructions(Ir) for size of NxN is 

evaluated in terms of the distance measure defined as  
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where Ir and Id  represent reconstructed images obtained through direct summation and 

other methods, respectively. The result from direct summation was chosen as a standard 



image for comparison with others and calculated through multiplication by conjugate 

phase terms at corresponding positions. Each method employs the same 6 interleaved 

spiral trajectories and density compensation function as already presented in Fig.1. 

Reconstruction results from Kaiser-Bessel and generalized FFT models are illustrated in 

Fig.5 and 6, respectively. In addition, distribution of values for kernel functions 

corresponding to conventional methods is demonstrated in Fig.7 and 8. 

 
Fig.5. Reconstructed image using Kaiser-Bessel model with beta=30.544 

 

 
Fig.6. Reconstructed image using generalized FFT model with m=2 and b=0.1 



. 
 

Fig.7. Kernel matrices for Kaiser-Bessel model with beta=30.544 
 

 
 

Fig.8. Kernel matrices for generalized FFT model with m=2 and b=0.1 
 

Compared to resultant image from direct summation, it is obvious that some swirling 

artifact outside the object in the image of direct summation is pretty much suppressed in 

both conventional algorithms. Without employing 2X grid reconstruction there is little 

aliasing effect observed. In above results, several parameters such as β, m, and b were 

chosen according to the instruction in the reference[1]. Although these methods are really 



dependent on parameters as well as objects to be reconstructed, decent results were 

obtained without any serious complication. Next, kernel matrices and resultant image 

computed by LS_NUFFT are shown in Fig.9 and 10, respectively. 

 
Fig.9. Reconstructed image using LS_NUFFT method with m=3 and q=2 

 

 
 

Fig.10. Kernel matrices for LS_NUFFT method with m=3 and q=2 

Table 3. Distance measures for different methods such as KB, GFFT, and LS_NUFFT  
 Distance measure(Dx10-2) 

KB 5.83 
GFFT 0.48 

LS_NUFFT 2.66 



It is difficult to visually decide which one performs better among three methods. For 

further comparison, the distance measures defined by Eq.(4) for Kaiser-Bessel(KB), 

GFFT, and LS_NUFFT were calculated as summarized in Table 3. As a result, GFFT is 

even better than LS_NUFFT. The reason for this unexpected result is discussed more in 

detail in following section.  

Discussion 

The results derived above indicate that reconstructed images using both conventional 

methods and LS_NUFFT  have better image quality than that from direct summation in 

terms of low frequency artifacts, aliasing effect, and image contrast. In the reference 

proposed method known as LS_NUFFT  is supposed to be superior to other conventional 

techniques including Kaiser-Bessel(KB) and generalized FFT(GFFT) methods. 

Unfortunately, through the simulation, different conclusion from what we had expected 

was drawn that GFFT has better performance even compared to LS_FFT in terms of the 

distance measure D. The first reason that can be ascribed to is the possibility of improper 

choice of kernel matrices for LS_NUFFT. Although exactly following the same way to 

generate kernel matrices as what was introduced in the reference material, we can see the 

different form of kernel distribution through the entire k-space sample.(Compare Fig.8 

with Fig.10) In other words, the distribution for GFFT in Fig.8 is more similar to what 

was illustrated in the reference for LS_NUFFT. If the distribution of kernel matrices for 

LS_NUFFT is more like the one in Fig.8, then the result may be improved such that 

LS_NUFFT shows better quality than GFFT. The second reason is the possibility of 

improper parameter justification of m for LS_NUFFT. Since a limited time was allowed 

for this project, the reconstruction was not executed for further lower values of m. As you 

can tell in Table 1, the smaller m has less distance measure D which means better image 

quality for smaller q. Hence if it’s feasible to try much smaller values of m, then more 



improved image may be reconstructed by LS_NUFFT. The third reason is the improper 

phantom image used for the project. As already mentioned before, conventional methods 

have strong dependency on image quality to be reconstructed. Because the phantom 

applied to LS_NUFFT in the reference paper was the modified Shepp-Logan image and 

the justification for parameters chosen in this project was based on it, there is possibility 

that GFFT performs much better than LS_NUFFT. For further correction, therefore, 

parameters should be determined through careful optimization procedures instead of 

simply using ones provided in the reference. However, we can still claim that this 

LS_NUFFT technique has consistent superiority to Kaiser-Bessel model. In subsequent 

section different version of LS_NUFFT was developed by using Gaussian scale factor 

other than cosine one. Kernel function and several resultant images were calculated based 

on that. 

Additional comparison of  LS_NUFFT with Gaussian NUFFT 

In the final section, the analytic kernel formulation for Gaussian scaling factor[3] was 

defined as follows. 
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Since in LS_NUFFT the kernel matrix is strongly linked to the scaling factor through 

optimization, it is essential to carefully derive kernel values based on different types of 

scaling functions. In previous case, cosine function was used as a scaling factor. The 

difference can be seen for ak,cp term in Eq.(5) compared to Eq.(4). Another thing to 

mention is that G matrix in Eq.(5) is independent of no matter what scaling factor is used, 



while ak,cp is still dependent on it. After taking into consideration all those points made, 

reconstructed images were obtained with different values of b. b parameter plays certain 

role in standard deviation of Gaussian function which is inversely proportional to it. 

Therefore, it can be easily expected that better image will be reconstructed with larger b.  

Resultant images confirm that point as shown in Fig.11, 12, 13, and 14. Distance measure 

D was also calculated and given in Table 4. 

 
Fig.11. Reconstructed image using Gaussian NUFFT with b=0.1 

 
Fig.12. Reconstructed image using Gaussian NUFFT with b=0.5 



 
Fig.13. Reconstructed image using Gaussian NUFFT with b=1 

 

Fig.14. Reconstructed image using Gaussian NUFFT with b=3 

Table 4. Distance measures for Gaussian NUFFT with different b values  
b parameter Distance measure(Dx10-2) 

b=0.1 7.73 
b=0.5 6.66 
b=1 5.92 
b=3 4.31 

 

In Table 4 problems rise when b value goes higher than 1. As Gaussian function gets 

narrower, higher frequency terms are much suppressed. Although distance measure 

decreases towards higher values of b, image contrast is significantly degraded. Therefore, 

compromise between distance measure and image contrast should be taken great care of 



when Gaussian scale factor is being used. As a result, with given phantom image, 

LS_NUFFT with cosine scale factor has much better performance than that of Gaussian 

NUFFT. The reason for this result is also explained in a way that cosine function 

originates from sampled triangle kernel which has less ripples compared to Gaussian case. 
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