
EE 591:  Magnetic Resonance Imaging and Reconstruction   Fall 2009
           K. Nayak

Homework #9
due Tuesday, December 1st, 2009

Reading:   

• Pauly J., “Reconstruction of Non-Cartesian Data”, (preliminary draft of a book chapter).

Assignment:

This assignment introduces the basic operations in gridding reconstruction. Starting from a 
simple routine, you will add pre-weighting density correction, k-space oversampling, and 
deapodization. The dataset from this problem is a simulated phantom using a spiral acquisition 
with 6 interleaves of 1536 samples. The k-space trajectory, pre-weighting function, and 
simulated data are in the file:  http://mrel.usc.edu/class/591/data/rt_spiral.mat

The complex k-space data is in the matlab variable d, and the pre-weighting function is in the 
matlab variable w. The k-space trajectory (kx,ky) is stored as k = kx + iky in the complex matlab 
variable k. k is scaled relative to ±0.5. The k-space trajectory is scaled to produce the correct 
field-of-view when reconstructed as a 128x128 image.

We start with a very basic gridding algorithm that doesn’t do density correction, uses a simple 
separable triangular kernel, uses a 1X grid, and doesn’t do any deapodization. This m-file is 
available as grid1.m. Note that this only does the gridding, and you still need to do an inverse 
2DFFT to produce an image.

function m = grid1(d,k,n)

% function m = grid1(d,k,n)
%     d -- k-space data
%     k -- k-trajectory, scaled -0.5 to 0.5
%     n -- image size

% convert to single column
d = d(:);
k = k(:);

% convert k-space samples to matrix indices
nx = (n/2+1) + n*real(k);
ny = (n/2+1) + n*imag(k);

% zero out output array
m = zeros(n,n);

% loop over samples in kernel
for lx = -1:1,
  for ly = -1:1,

    % find nearest samples
    nxt = round(nx+lx);

http://mrel.usc.edu/class/591/data/rt_spiral.mat
http://mrel.usc.edu/class/591/data/rt_spiral.mat


    nyt = round(ny+ly);

    % compute weighting for triangular kernel
    kwx = max(1-abs(nx-nxt),0);
    kwy = max(1-abs(ny-nyt),0);

    % map samples outside the matrix to the edges
    nxt = max(nxt,1); nxt = min(nxt,n);
    nyt = max(nyt,1); nyt = min(nyt,n);

    % use sparse matrix to turn k-space trajectory into 2D matrix
    m = m+sparse(nxt,nyt,d.*kwx.*kwy,n,n);
  end;
end;

% zero out edge samples, since these may be due to samples outside
% the matrix
m(:,1) = 0; m(:,n) = 0;
m(1,:) = 0; m(n,:) = 0;

The function grid1.m loops over the gridding kernel, which is relatively small (-1 to +1). For 
each sample of the kernel, the gridding operation for the entire data vector is done with the 
sparse() matrix call. This sets up an n × n sparse matrix with values d.*kwx.*kwy at matrix 
locations (nx,ny). This automatically gets converted to a full 2D matrix when it is added to m.

This is one possible way to code the gridding algorithm, and happens to be exceptionally fast in 
Matlab. If you find a faster approach, let us know! 

1. Simple Gridding Reconstruction.  Reconstruct an 128 × 128 image of the simulated 
phantom. There is a dominant low frequency artifact. What is it due to?  Display your 
reconstruction.

2. Density Pre-Compensation.  Extend the algorithm to use the preweighting function w that 
has been provided. Display your reconstruction.

3. Oversampling.  Extend the algorithm to reconstruct on a 2X grid. This is a grid that is 
sampled twice as finely in k-space, and has twice the FOV in image space. The kernel 
should now extend for ±2 samples on the 2X grid. Display the 2X reconstruction. What 
artifacts have been reduced or eliminated.

4. Deapodization.  The kernel we are using is a separable triangle function in kx and ky. 
Compute the apodization produced by this kernel for the 2X oversampled reconstruction, 
and divide it out of the reconstructed image. Plot a cross-section through the phantom 
before and after correction. Display your corrected reconstruction. 

At this point, you should have an algorithm that does a reasonable job of gridding!  

You may earn Extra Credit by going beyond the call of duty on any of these parts.  Feel free to 
suggest ideas to me, and I will approve them over e-mail.  For example, you could:  1) improve 
the convolution kernel, or 2) compare different methods for density compensation.


