MIDTERM EXAM

Tuesday, October 19, 2004, 3:30-4:50pm
please observe the honor code

- This is an 80 minute, open book, open notes exam. You may use only the Nishimura textbook, class notes, your notes, handouts, and homework. No other written material is allowed. No calculators.
- This exam contains five problems.
- Unless specified, assume that all RF excitations are applied at the Larmor frequency $\omega=\omega_{0}$ and that signal demodulation is based on ω_{0}, the field strength is 3 Tesla, and we are imaging ${ }^{1} \mathrm{H}(4257 \mathrm{~Hz} / \mathrm{G})$.
- Efficient answers that show insight will be rewarded.
- Read each problem carefully.

1. (20 points) Short Answer

Provide short answers (with explanation) for each of the following questions. When appropriate, please use sketches / diagrams to illustrate your point.
a. Gibbs ringing is a characteristic of Fourier imaging methods. How can ringing artifact be reduced, and what are the side effects?
b. What object and sequence parameters influence $T_{2}{ }^{*}$?
c. Does the excitation k-space approach apply to large tip excitations?

2. (25 points) Sequence Design

A "dual-spin-echo" sequence with a long TR can be used to simultaneously acquire a proton density weighted image (minimum TE) and a T2 weighted image ($\mathrm{TE} \approx \mathrm{T} 2$) from a single scan.

For comparison and interpretation, it is important for off-resonant spins to experience similar artifact in both images. Design an appropriate dual spin echo pulse sequence with $\mathrm{TE}_{1}=20 \mathrm{~ms}$ and $\mathrm{TE}_{2}=100 \mathrm{~ms}$.

- Provide a pulse sequence diagram including RF, Gx, Gy, Gz, and DAQ. Identify all relevant timing parameters.
- Sketch the k-space path from one TR, and describe what you did to maintain comparable off-resonance artifact.

3. (10 points) Sampling Model

In conventional 2DFT imaging, the acquisitions typically cover a square in k -space with $\mathrm{W}=\mathrm{W}_{\mathrm{kx}}=\mathrm{W}_{\mathrm{ky}}$. Truncation in k_{x} and k_{y} produce blurring along x and y. Evaluate the blurring function along the x axis? and along the $x=y$ line $\left(45^{\circ}\right)$? Is higher resolution achieved along the $x=y$ line? Explain?
4. (30 points) Off-Resonance in 2D Imaging

We are imaging a 2D slice. Suppose that the off-resonance within the slice is a linear function of position: $\Delta w(x, y)=a x+b y$. The acquisition gradients are $G_{x}(t)$ and $G_{y}(t)$.

What is the effective k -space trajectory $\mathrm{k}_{\mathrm{x}}(\mathrm{t}), \mathrm{k}_{\mathrm{y}}(\mathrm{t})$?
Hint: Start with the signal equation. The solution should be a function of $G_{x}(t), G_{y}(t), a, b$, and t.

If you know the values of a and b in advance, how would you adjust a 2DFT pulse sequence to make the actual samples fall along a rectangular grid in k-space? Explain in words, or with a sketch.

5. (15 points) Excitation

The following RF pulse is called a "hard" pulse:

a. Suppose that peak B1 is limited to 0.16 Gauss. What is the shortest duration, T , which can produce a 90° tip?
b. If this pulse were played by itself (no accompanying gradient), and using the small-tip approximation, find an amplitude and duration that produces a 30° tip for water ($w=0$) and no tip for lipid ($w=-440 \mathrm{~Hz}$).

